激光原理与技术6

时间:2023-05-01 07:56:32 资料 我要投稿
  • 相关推荐

激光原理与技术6

激光原理与技术

西安电子科技大学 技术物理学院 刘继芳

§2.3 对称共焦腔的自再现模行波场

?

——开腔模场分布的波动光学分析 研究方法采用波动光学理论

光的衍射概念和计算方法

?

采用腔型

开腔的典型代表:对称共焦腔

R1=L

?

R2=L

F L

一、对称共焦腔及其意义

实共焦腔: R1 ? 0, R2 ? 0 对称共焦腔:R1 ? R2 ? L

?

R1 R2 ? ? L 两腔镜焦点重合且在腔内 2 2 g1 ? 0, g2 ? 0, g1g2 ? 0 临界腔!

?

无几何偏折损耗!(衍射损耗仍存在)

意义:

? ?

惟一可以给出自再现模解析解的腔型

其他腔型模的解可等效为共焦腔处理

F L

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

二、Fox and Li开腔模概念(1961)

平面光波在平行平面腔中的来回反射,不计几何偏折损耗(大NF 腔) 时,等价于通过周期分布“孔拦”的传输。用数值迭代方法 计 算证实:自再现模存在。(3000次以后不再发生变化)

等价

L L L

?

u1 u2 u3 uq uq+1

uq ?1 ? ?uq ?复常数

开腔中的自再现模场分布=衍射为零时的自洽场分布

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

三、自再现模的本征方程(对称共焦腔)

1. 求自再现模本征方程的物理基础 ——菲涅耳—基尔霍夫方程

已知衍射屏xOy上场分布u(x,y),根据惠更斯—菲涅耳原理:

e ?ikr 1 ? cos ? u ?( x ?, y ?) ? ?? u ( x, y ) dxdy S ? r 2 i

子波强度 球面波倾斜因子

r:pp?两点间距,

1 ? cos? 倾斜因子, 2

x r

x? p?

?

?:r与腔轴之间夹角

p?

y

?

y?

z

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析 2. 再现模本征方程

若谐振腔满足:

?

L>>a,a >>?,有: cos ? ? 1 i e ?ikr u ?( x ?, y ?) ? ?? u ( x, y ) dxdy S ? L

1 ? cos ? ?1 2

?

自洽条件:u?( x?, y?) ? ?u ( x, y )

S

则有:

?u( x?, y?) ? ?? u( x, y) K ( x, y; x?, y?)dxdy

x

?

只有对称共焦腔:当xOy面在M1处,当x?O?y?面在M2处满足! x?

F L z y?

y

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

分析如下:

?

这是关于u的积分方程,?求解:u(x,y)[ u?(x?,y?) ]横 向场分布的本征方程。 其解u为本征函数(横模),?为本征值。 本征方程积分核 K ( x, y; x?, y?) ? e?ikr ,为复对称核。 腔结构对称,积分核对称! ?L

i

? ?

积分方程理论:(1) 对称核:本征函数一定是正交归一函数系 腔内任意场分布=?ti本征函数i (2) 复核:本征函数、本征值一定是复值

?

本征函数u正交归一化的函数系,加下标: u? um 。 um对应本征值? ? ?m

§2.3 对称共焦腔的自再现模

行波场

——开腔模场分布的波动光学分析

? 本征方程可改写为: 因此:

? m u m ( x?, y ?) ? ?? u m ( x, y) K ( x, y; x?, y ?)dxdy m ? 0,1,2?

S

?

um和?m为复数,故有:

um ( x, y) ? um ( x, y) e

?

m

i? m ( x , y )

? m ? ? m ei? 意义?

m

?

? ? ?um? ? m e i? u m ∵ um

?

可见:?m对本征模在腔内渡越时产生两方面影响: (1) ??m??引起振幅变化:损耗 ? (2) e i?m?产生一个附加相移

?

自再现模平均单程损耗因子:

?D ?

? um ? um um

2

2

2

?1? ?m

2

不同横模损耗不同!

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

?

自再现模腔内单程渡越相移:

? ? ?k m L ? Δ? m ?? m ? arg( u?) ? arg( u) ? arg(? m ) ? ? m

几何相移

?

附加相移

对称共焦腔的驻波条件(频率条件):

2π? m ? ?? m ? ?k m L ? Δ? m ? ?qπ ? k ? ? m ?

c ? Δ?m ? ?m ? ?q ? ? 2L ? π ?

纵模指数

?

c

?

横模指数

可见:对于横模指数为m的横模,可以有不同的振荡频率! 记为TEMm(n)q模

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

四、对称共焦腔自再现模在镜面上场分布

1. 自再现模本征方程解

i ?ikr K ( x, y; x?, y?) ? e ?L

r—关键 —

对称共焦腔最简单

任意腔可等效为对称共焦腔

已知M1面(球面)上场分布u,求M2面上场分布! 相应间距: r ? P ? 1P 1 ? PP? ? ? 1 ? ?2 由?OO?P和?OO?P? : x O P? P1

1

( L ? ?1 )2 ? L2 ? ( x 2 ? y 2 )

?2 x? ? P? P 1

O? z L

( L ? ?2 )2 ? L2 ? ( x?2 ? y?2 )

?1 ?

x ?y 2L

2

2

?2 ?

x? ? y? 2L

2

2

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

可求得r: r ? [( x ? x?)2 ? ( y ? y?)2 ? L2 ]1 / 2 ? ?1 ? ?2

? ( x ? x?) ( y ? y?) ? ? L ?1 ? ? ? 2 2 L L ? ?

2

2 1/ 2

? ?1 ? ?2

? ( x ? x?)2 ? ( y ? y?)2 ? ? L ?1 ? ? ? ?1 ? ?2 2 2L ? ? x 2 ? y 2 x ? 2 ? y ? 2 xx ? ? yy ? ? L? ? ? ? ?1 ? ?2 2L 2L L

xx? ? yy? ? L? L

代入本征方程有: ? mum ( x?, y?) ?

x?2 ? y?2 x2 ? y2 ?2 ? ?1 ? 2L 2L

i ?ikL e ?? um ( x, y )e S ?L

ik

xx?? yy? L

dxdy

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

? mum ( x?, y?) ? 本征方程也可改写为:

x? 其中: f x ? , ?L

i ?ikL i2π( f x? f y) e ?? um ( x, y )e x y dxdy S ?L y? fy ? ?L

可见:um ( x, y) ? um ( x?, y?) 构成傅里叶变换对

? mum ( x?, y?) ? cFT?um ( x, y)? 物场与频谱场分布自洽

① 若um(x?,y?)可分离变量?

求解大为简化

um ( x?, y?) ? umn ( x?, y?) ? um ( x?)un ( y?)

? m ? ? mn ? ? m? n

② 若S有限大——本征方程可精确求解; 若S很大——本征方程需近似求解。

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

③ 实际上,S的大小并不由腔镜镜面尺寸决定,很多情况下是由腔 内增益介质横截面尺寸决定(尺寸很小) ④ 腔镜横截面(介质横截面)形状不同,分离变量方法不同。

方形——直角坐标系下分离变量

圆形——极坐标系下分离变量

2. 方镜对称共焦腔镜面上场分布—厄米高斯函数

直角坐标系下分离变量 u mn ( x, y) ? u m ( x)u n ( y) y

2a 2a x 腔镜反射面在xOy面投影 腔镜反射面形状

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

分离变量后的本征方程:

ik ( ? ? ) ik ? ? ? m? n u m ( x )u n ( y ) ? e ? ? u m ( x)u n ( y )e L L dxdy ? a 2 πL 2 a 2 令:X ? x 2πN / a, Y ? y 2πN / a N ? a k /( 2πL) ? 菲涅耳数 ?L 2 πN i ?ikL i ( XX ? ?YY ? ) ? ? ? ? U ( X ) U ( Y ) ? e U ( X ) U ( Y ) e dXdY 有: m n m n n ? ?? 2 πN 2π m ?ikL a xx? yy ?

令: 则:

? m ? n ? ? m? n /ie ?ikL

1 U m ( X ?) ? 2π? m

?

2 πN

? 2 πN

U m ( X )eiXX ?dX

U n (Y ?) ?

1 2π? n

?

2 πN

? 2 πN

U n (Y )eiYY ?dY

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

当N较大时,积分方程有如下解(用近似解代替精确解):

Um ( X ) ? e

? X2 2

Hm ( X )

U n (Y ) ? e

?

Y2 2

H n (Y )

其中:Hm、Hn为厄米多项式:

H0 (? ) ? 1 H2 (? ) ? 4? 2 ? 2 H4 (? ) ? 16? 4 ? 48? 2 ? 12

H1 (? ) ? 2?

H3 (? ) ? 8? 3 ? 12?

d m ?? 2 H m (? ) ? (?1) e ? m e d?

m ?2

(?1) k m! ?? (2? ) m ? 2 k k ? 0 k!( m ? 2k )!

?m? ?2? ? ?

m ?m? ? 整数部分 ?2? 2 ? ?

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

2 2 2 2 2 X x π x a x 2 由: ? 2 ? 2πN? 2 ? 2π ? x ? 2 2 2a ?L ? L 2a w0s ?L 其中: w0 s ?

π

得: X ?

2

x w0s

Y? 2 第一文库网 y w0s

? x2 ? y2

2 w0 s

? x ? ? x ? 镜面上场分布: u ( x, y ) ? CmnH m ? 2 ? ? ? Hn ? 2 e ? ? ? w0s ? ? w0s ? ?

? mn ? e

π ? i[ kL ? ( m ? n ?1) ] 2

m=0,1,2? n=0,1,2?

镜面上场分布为厄米高斯函数(分布)!相应光束称为厄米高斯光束

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

3. 圆镜对称共焦腔镜面上场分布—拉盖尔高斯函数

取极坐标系 (?,?,z)

分离变量

umn ( ? ,? ) ? um (? )un ( ? )

? ?

得镜面上场分布: umn ( ? ,? ) ? Cmn ? ? ? 2 其中

:w0 s ?

?L

π

? ? ? ? ?e L 2 n? 2 ? ? w0s ? ? w0s ?

2

? ? m?

?

?2

2 w0 s

e?im?

, Lm 为缔合拉盖尔多项式 n (? ) m=0,1,2? n=0,1,2?

? mn ? e

π ?i[ kL ? ( m ? 2 n ?1) ] 2

镜面上场分布为拉盖尔高斯函数(分布)!相应光束称为拉盖尔高斯光束

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

缔合拉盖尔多项式: Lm 0 (? ) ? 1

Lm 1 (? ) ? 1 ? m ? ?

L (? ) ? ?

m n k ?0

n

1 Lm ( ? ) ? [(1 ? m)( 2 ? m) ? 2(2 ? m)? ? ? 2 ] 2 2 (n ? m)!(?? )k

(m ? k )! k!(n ? k )! n ? 0,1,2?

综合(方和圆)讨论:

(1) 方:? mn ? e

π ?i[ kL ? ( m ? n ?1) ] 2

圆: ? mn ? e

π ?i[ kL ? ( m ? 2 n ?1) ] 2

均为纯虚数!?mn描述损耗,说明衍射损耗等于零!

相当于菲涅耳数NF??,亦即镜面尺寸a??的结果。

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

(2) 镜面上场分布相位与x,y无关。 ——镜面是本征模场分布的等相面! (3) 用TEMmnq表示本征模。 m —x ? 方向场零点数目 n — y ? 方向场零点数目

m, n—横模指数 q — 纵模指数

q — z 方向半波长数目

(4) m=0,n=0的本征模称为基模,记为TEM00。 方: u00 ( x, y) ? C00e

? ? ? ?

? x2 ? y2

2 w0s

圆: ?e u00 ( ? ,? ) ? C00

?

?2

2 w0s

损耗最低,起振容易。称为优势振荡模

振幅分布为高斯函数——基模高斯光束 1 2 2 当 x 2 ? y 2 ? w0s 或 ? 2 ? w0s 时,振幅减小为中心的

e

圆形光斑,中心最亮,向外逐渐减弱。w0s称为光斑半径

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

(5) 镜面光斑图样

? x2 ? y2

2 w0s

TEM00模

m=0,n=0

2 x 2 ? y 2 ? ? 2 ? w0 s

方: u00 ( x, y) ? C00e y

?e 圆:u00 ( ? ,? ) ? C00

?

?2

2 w0s

?

x

?

u00 ( x, y) ? u00 (0,0) / e

w0s ?

?L

π

y

x 镜面上00模光斑半径

?

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析 TEM10模 方:

u10 ( x, y) ? C10 xe

? x ?y

2 w0s 2 2

圆:

? ?e u10 ( ? ,? ) ? C10

?

?2

2 w0s

cos?

m=1,n=0

x方向:1根零线 y方向:无零线 y

?方向:1根零线 ?方向:无零线 ? ?

x

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析 TEM01模

方: 圆:

? x ?y

2 w0s 2 2

u 01 ( x, y) ? C01 ye

m=0,n=1

? (1 ? 2 u 01 ( ? ,? ) ? C01

?

w

2 2 0s

?

?2

2 w0s

)e

x方向:无零线 y方向:1根零线 y

?方向:无零线 ?方向: 1根零线 ? ?

x

与TEM10模相同

与TEM10模不同

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

(6) 共振(纵模)频率 方:? mn ?

e

π ?i[ kL ? ( m ? n ?1) ] 2 π ?i[ kL ? ( m ? 2 n ?1) ] 2

圆:? mn ? e

π 2

?? mn ? ?[kL ? (m ? n ? 1) ]

?? mn ? ?[kL ? (m ? 2n ? 1) ]

k? 2 π? c

π 2

共振(驻波)条件:?? mn ? ?qπ

π ? [kL ? (m ? n ? 1) ] ? ?qπ 2

? mnq ?

c [q ? (m ? n ? 1) / 2] 2L

π ? [kL ? (m ? 2n ? 1) ] ? ?qπ 2 c ? mnq ? [q ? (m ? 2n ? 1) / 2] 2L

纵模频率间隔: Δ? q ? ? q ?1 ?? q ?

c 2L

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

五、腔内(外)行波场

我们得到了对称共焦腔镜面上的场分布。实际上,上述光波场 在腔内(外)是传播的!腔内(外)任一参考面上的光波场?

由镜面上的场分布+菲涅耳—基尔霍夫积分求出任意z面上的场 分布,即为行波场。 umn(x,y) umn(x,y,z) z

L RP TEMmn: m?x,? n?y,?

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

1. 方型镜

umn ( x, y, z ) ?

?2

1

m?n

m! n!

?

1/ 2

? 2x ? ? 2 y ? w0 ? ? ? Hm ? ?Hn ? ? w ( z ) w ( z ) ?L w( z ) ? ? ? ? 2

2

?e

x2 ? y2 ? ik 2R( z)

?e

?

x2 ? y2 w (z)

?e

? z? ? i ? kz ? ( m ? n ?1) tan ?1 ? f? ?

基模:TEM00(m=0, n=0)厄米—高斯光束

u00 ( x, y, z ) ?

w0 ?e ?L w( z ) ?

2

2

x2 ? y2 ? ik 2R( z)

?e

?

x2 ? y2 w (z)

2

?e

? ?1 z ? ?i ? ? kz ? tan f ? ? ? ?

w0 ? ? ?e ?L w( z )

? ik

x2 ? y2 ~( z) 2q

?e

? ?1 z ? ?i ? ? kz ? tan f ? ? ? ?

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

其中:

1 1 ? ——光束复曲率 ? ? i 2 ~ q ( z ) R( z ) πw ( z )

2 R L πw0 ——光束共焦参数 f ? ? ? 2 2 ?

w0 ?

?f

π

?

?L

?

w0s 2

条件:

f2 R( z ) ? z ? ——光束等相面曲率半径 z 1/ 2 ? ? z ?2 ? w( z ) ? w0 ?1 ? ? ?f? ? ? ——光斑半径 ? ?L/2 ? ? ? ? ?

? O

(1) z坐标原点选在对称共焦腔中心处

L

L/2 z

(2) 行波场相位参考点也选在腔中心处。即z=0,?=0

§2.3 对称共焦腔的自再现模行波场

2. 圆型镜

m ?? TEMmn: n ??

——开腔模场分布的波动光学分析

m

umn (? , ? , z ) ? u0 ?e

w0 ? ? ? m? ? ? ? ? 2 Ln ? 2 2 ? e ? ? ? ? w( z ) ? w( z ) ? ? w ( z) ?

2

?

?2

w 2 ( z ) ? im?

e

? ? ? ?2 ? ? ? ? ( m ? 2 n ?1) tan ?1 z ? ?i ? k ? z ? ? f? ? ? ? 2R( z) ? ?

w0 ? ? ? m? ? ? ? ? ? u0 2 Ln ? 2 2 ? e ? ? ? ? w( z ) ? w( z ) ? ? w ( z) ?

2

m

? z? ?2 ? i ? kz ? ( m ? 2 n ?1) tan ?1 ? ? ik ~ f? 2 q ( z ) ? im? ?

e

e

其中:~

1 , f , w0 , w( z ), R( z ) 与

方型镜意义相同。 q ( z)

基模:TEM00(m=0, n=0)拉盖尔—高斯光束

u 00 (? , ? , z ) ? u 0

w0 e w( z )

? ik ~ 2q ( z )

?2

e

? ?1 z ? ?i ? ? kz ? tan f ? ? ? ?

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

五、基模高斯光束特性

1. 基模高斯光束参量

基模光束可统一表示为: E ( x, y, z ) ? E0 ( z )e

等相面为球面,所以为球面波。 描述光束的基本参量为: ~

1 1 ? ? ?i 2 —复曲率 q ( z ) R( z ) πw ( z )

r2 ? ik ~ 2q ( z )

e

? ?1 z ? ?i ? ? kz ? tan f ? ? ? ?

w0 ?

?f

π

f2 R( z ) ? z ? z ? ? w( z ) ? w0 ?1 ? ? ? ? ? ? 2 πw0 f ?

———等相面曲率半径

z f ? ? ? ?

2 1/ 2

? ? —光斑半径 ? ?

?

———光束共焦参数

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析 2. 振幅特性

z处基模光束振幅为:

? r2 2 w2 ( z )

A( z ) ? E0 ( z )e

A[r ? w( z )] ? E0 ( z )/e w(z)—z处光斑半径

? ? z ?2 ? 由 w( z ) ? w0 ?1 ? ? ? ? ?f? ? ? ? ? ? ?

1/ 2

w2 ( z ) z 2 ? 2 ? 1 关于z的双曲方程 2 w0 f

可见:w(z)随z变化,并且有: w(0)=w0取最小值—束腰 束腰半径:w0 ?

?f

π

w0

O L

w(z) w0s z

w0s ? 2w0

z ? L/2? f

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析 3. 方向特性—发散角

xOz面或yOz为双曲线:

?00

L

z

双曲线的两渐近线的夹角2?00称为高斯光束的远场发散角 由: ? 00 ? lim dw( z ) ? ? z ?? π w0 dz

得: 2? 00 ?

2? πw0

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析 4. 变心特性—变心球面波

相位因子: ? 2f

?1

?

O

?

e

? r2 ? ?ik ? z ? ? ? 2R( z) ? ? ?

球面波

?e

i tan

z f

球心

z

超前的附加相位因子

f2 由: R( z ) ? z ? z

( R ( z ) ? z!不同于球心不变的球面波了) R(z)

2f

可见: z=0,R(0)??,平面波 z=f,R(f)=2f=L=R,球面波(心在另一镜处) z>L/2,R(z)>L=R,球面波(心向原点靠近) z?? ,R(0)??,球面波(心在原点处)

?f

f ?2f

z

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

5. 附加相移

根据相位因子: 附加相移:

e

? r2 ? ?ik ? z ? ? 2 R ( z ) ? ? ? ?

?e

i tan ?1

z f

z f 可见: z=0,tan?10=0,附加相移??=0 Δ? ? tan ?1

z=f=R/2,tan?11=?/4,附加相移??=?/4 z=?f=? R/2,tan?1?1 = ??/4,附加相移??= ??/4 从镜1到镜2一个单程相移?/2!

tan?1z/f ?/2 ?/4

f

z

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

6. 谐振频率

单程相移(?2=r2=0):

? ?1 z2 ?1 z1 ? ?

k ( z2 ? z1 ) ? (m ? n ? 1)? tan ? tan ? πq ? ? ? π f πf ? ? L 4 ? 4 z ?1 2 ?1 z1 ? ? k ( z2 ? z1 ) ? (m ? 2n ? 1)? tan ? tan ? πq ? ? f f ? ?

z1

O L

?

z z2

? mnq ?

c ? 1 ? q ? ( m ? n ? 1 ) ? 方镜 2L ? 2 ? ?

? mnq ?

c ? 1 ? 圆镜 q ? ( m ? 2 n ? 1 ) ? 2L ? 2 ? ?

? 00q ?

c ? 1? q ? 2L ? 2? ? ?

Δ? q ?

c 2L

Δ? m ? Δ? n ? 4

c 2L

§2.3 对称共焦腔的自再现模行波场

——开腔模场分布的波动光学分析

6. 模体积

基模体积(m=n=0):

V00 ? 1 1 ? ?L ? 2 ? Lπw0 Lπ ? s? ? 2 2 ? π ? ?

2

w0s

L2? ? 2 高阶模体积:

Vmn ?

L

1 2 2 Lπwm w s ns 2 1 2 ? Lπ (2m ? 1)( 2n ? 1) w0 s 2

wms ? 2m ? 1w0s

wns ? 2n ? 1w0s

? (2m ? 1)(2n ? 1) ? V00

【激光原理与技术6】相关文章:

激光分解固体微推力器工作原理初探05-03

机翼变形的双激光器实时测量原理04-30

激光陀螺的偏频技术04-26

浅谈机载激光测深技术04-27

相位激光测距技术的研究04-29

SCR技术的控制原理04-26

船闸水位与水位差值激光检测系统的原理与实践04-28

激光微技术的发展现状05-02

激光冲击处理技术的应用潜力04-27

航空钛合金件的激光修复技术04-29