傅里叶变换的意义

时间:2023-05-01 01:06:45 资料 我要投稿
  • 相关推荐

傅里叶变换的意义

1、为什么要进行 傅里叶变换,其物理意义是什么?

傅 立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都 可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频 率、振幅和相位。

和傅立叶变换算法对应的是反傅立 叶变换算法。该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。

因此,可以说,傅立叶变换将原来 难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。最后还可以利用傅立叶反变换将这些频域信 号转换成时域信号。

从现代数学的眼光来看,傅里叶变 换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连 续傅里叶变换和离散傅里叶变换。

在数学领域,尽管最初傅立叶分析 是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。

正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

2、图像傅立叶变换的物理意义

图 像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于 地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的 谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将 图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频

率分布函数,傅立叶逆变换是将图像的频率分布函数变换为 灰度分布函数

傅立叶变换以 前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由z=f(x,y)来 表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。 为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在 不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这 么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率 图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果 频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称 分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移 频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻 滤波器消除干扰

另外我还想 说明以下几点:

1、图像经过二维傅立叶变换后,其变换系数矩阵表明:

若变换矩阵Fn原点设在中心,其频谱能量集中分布在变换系数短阵的中心附近(图中阴影区)。若所用的二维傅立叶变换矩阵Fn的原点设在左上角,那么图像信号能量将集中在系数矩阵的四个角上。这是由 二维傅立叶变换本身性质决定的。同时也表明一股图像能量集中低频区域。

2 、变换之后的图像在原点平移之前四角是低频,最亮,平移之后中间部分是 低频,最亮,亮度大说明低频的能量大(幅角比较大)

----------------------------------------------我是分割线

-----------------------------------------------------------------------------------------------

傅里叶变换是将信号从时域转换到频域,这样在时域上一些交叉在一起的、看不出来的信号的特性,在频域上就很明显的能看出来了。比如下图:

Figure1,是a=0.4*sin(4*w*(x))的图形,Figure2,是

b=1.6*cos(12*w*(x))的图形。这两个图形,在时间 轴上,很容易看出来。但是两个的和,也就是a+b,如Figure3所示,里面的一些信息就看不出来了。但是做一个傅里叶变换,转换到频域上,如 Figure4所示,就很明显了。Figure4的横坐标是频率,纵坐标是幅值,就可以看出Figure3是有两个信号组成的,频率大的信号的幅值比较大 (就是b,由于此处用了fftshift,所以恰好相反),意义就比较明显了。

附:上图的Matlab程序

w=2*pi;

x=-1:0.01:1;

a=0.4*sin(4*w*(x));

b=1.6*cos(12*w*(x));

subplot(2,2,1);

plot(w*x,a),title('Figure 1 : a=0.4*sin(4*w*(x))'); subplot(2,2,2);

plot(w*x,b),title('Figure 2 : b=1.6*cos(12*w*(x))'); subplot(2,2,3);

plot(w*x,a+b),title('Figure 3 : a+b');

c=fft(a+b);

subplot(2,2,4);

plot(x,fftshift(abs(c))),title('Figure 4 : FFT');

【傅里叶变换的意义】相关文章:

分数阶傅里叶变换的数值实现04-28

图像傅里叶变换、反变换的实现05-01

基于变形分数傅里叶变换的六重密钥图像加密04-29

探测波导全息光栅傅里叶变换光谱的新方法04-27

数字离轴无透镜傅里叶变换全息重建方法研究04-27

彝药金沙青叶胆的傅里叶变换红外光谱研究04-26

离轴无透镜傅里叶变换数字全息三维物场重建04-30

意义的意义04-29

CCSD超高压变质岩中金红石结构水(OH-)的傅里叶变换红外光谱测定及其地球动力学意义04-29

液相基质辅助激光解吸电离-傅里叶变换离子回旋共振质谱研究04-26