- 相关推荐
立体几何证明题
立体几何证明题如图,原题意就是一个正方体,然后E、F分别是A'B、B'C的中点,求证EF//面ABCD。
那些虚线是我做的辅助线,EM⊥AB,FN⊥BC,连接MN;然后EG⊥BB',连接FG,EF。然后证那个五面体EGF-MBN是个三棱柱,从而证得EF//面ABCD,可不可以?
3
证明:(1)连接BG并延长交PA于点H..
因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...
因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....
即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...
所以GF⊥面PBC...
(2)在BC上取异于E的一点K,,使得CK=1/3BC...
因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..
因为E为BK中点,,BF=FK..所以FE⊥BC...
4
1.设P点的射影是H因为PB=PC=PD,所以H必是BC,DC的中垂线的交点,因为BH^2+PH^2=CH^2+PH^2=DH^2+PH^2又因为A是BC,DC的中垂线的交点,所以A与P重合,PA垂直于平面ABCD.2.取AB中点F,过F做FM垂直AB于M,则∠EMF为所求角因为EF=1/2AP=1,FM=1/2BN=√3/2(N为AC中点)则可求得
5
取CD和BC的中点M,N,连接PM,PN,AM,AN,因为三角形ABC和三角形PBC都为等腰三角形,所以PN垂直于BC,AN还垂直于BC,所以BC垂直于面PAN,所以BC垂直于PA,同理证PA垂直于CD,即可。第二问,建空间直角坐标系,求两个面的法向量,再用向量夹角公式就可求出,结果为arccos(根号下21)/7.
6
PA⊥AB PA⊥AC,∴PA⊥面ABC
∴PA⊥BC,
又∵AB⊥BC
∴BC⊥面PAB,∴BC⊥AE
又因为 AE⊥PB
∴AE⊥面PBC,∴AE⊥PC
又∵ AF⊥PC
∴ PC⊥平面AEF
7
3
证明:(1)连接BG并延长交PA于点H..
因为PA,PB,PC两辆垂直,,所以PC⊥面PAB..所以PC⊥GF...
因为G为△PAB的重心,,所以HG=1/3BH,,又因为PF=1/3PB..所以GF平行PH,,所以∠GFB=∠APB=90°....
即GF⊥PB...因为PB在面PBC上,,PC也在面PBC上..又PB∩PC=P...
所以GF⊥面PBC...
(2)在BC上取异于E的一点K,,使得CK=1/3BC...
因为BF=2/3PB,,BK=2/3BC,,所以所以△BFK∽△BPC...所以FK=2/3PC=2/3PB..即FK=BF..
因为E为BK中点,,BF=FK..所以FE⊥BC...
【立体几何证明题】相关文章:
几何证明题04-29
初中几何证明题的入门的论文04-27
高中数学证明题04-30
如何攻克考研数学证明题的诅咒04-28
攻克考研数学证明题思路总结04-28
考研数学证明题高手解决方案04-28
立体几何序言课教案设计04-25
完胜考研数学证明题思路总结04-28
2012考研数学 攻克证明题思路总结04-28
高中立体几何知识点总结11-03