初中数学证明

时间:2023-04-29 20:40:17 证明范文 我要投稿
  • 相关推荐

初中数学证明

初中数学证明

2

初中数学证明

证明 设E,F分别边AB,CD的中点,连ME,MF,NE,NF。

则ME∥BC,MF∥AD,NE∥AD,NF∥BC,所以四边形EMFN为平行四边形。

由于NF∥BC,所以得:

S(PFN)=S(BNF)=S(BDF)/2=S(BDC)/4. (1)

同理可得:S(PFM)=S(ACD)/4. (2)

由于有

S(PMN)=S(PFN)+S(PFM)+S(FMN)=[S(BDC)+S(ACD)]/4+S(EMFN)/2.(3)

所以只需证明:

S(EMFN)=[S(ABD)-S(ACD)]/2. (4)

延长EM,NF分别交AP于G,H。平行四边形ENHG的底EN=AD/2,EN上高[即EN与AB的距离]等于三角形ABD的边AB上的高的一半,所以

S(ENHG)=S(ABD)/2.

同理可得:S(FMGH)=S(ACD)/2。

故 S(EMFN)=S(ENHG)-S(FMGH)=[S(ABD)-S(ACD)]/2.

所以(4)式成立,将(4)式代入(3)式即得所得结论.

3

证明:

分别取AE,CE的中点P和Q,连接FP,PH,HQ,QG,

下面证明三角形FPH 全等于 三角形 HQG

易知 FP = 1/2 AD = 1/2 AE = HQ

HP = 1/2 CE = 1/2 CB = GQ

易知 角DEA = 角BEC = 角ADE = 角CBE

易证 角DAE = 角BCE

角FPH = 角FPE +角EPH = 角DAE + 角BEC

角HQG = 角HQE +角EQG = 角DEA + 角CBE

于是 角FPH = 角HQG

由SAS定理,三角形FPH全等于三角形HQG

于是 FH = HG

4

分析:(1)由∠ADB+∠BAD=135°,∠ADB+∠CDE=135°,得出∠BAD=∠CDE,推出△ABD∽△DCE.第二问分AD=AE(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合、(ⅱ)当AD=DE时,由①知△ABD∽△DCE,、(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,故∠ADC=∠AED=90°.三种情况讨论.(2)存在,可证△ADC∽△AE′D,得到CD=AC=2.解:(1)①由∠BAC=90°,AB=AC,推出∠B=∠C=45°.由∠BAD+∠ADB=135°,∠ADB+∠EDC=135°得到∠BAD=∠EDC.推出△ABD∽△DCE.②分三种情况:(ⅰ)当AD=AE时,∠ADE=∠AED=45°时,得到∠DAE=90°,点D、E分别与B、C重合,所以AE=AC=2.(ⅱ)当AD=DE时,由①知△ABD∽△DCE,又AD=DE,知△ABD≌△DCE.所以AB=CD=2,故BD=CE=2 根号 2-2,所以AE=AC-CE=4-2根号 2.(ⅲ)当AE=DE时,有∠EAD=∠ADE=45°=∠C,故∠ADC=∠AED=90°.所以AE=DE= 1/2AC=1.(2)①存在(只有一种情况).由∠ACB=45°推出∠CAD+∠ADC=45°.由∠ADE=45°推出∠DAC+∠DE′A=45°.从而推出∠ADC=∠DE′A.证得△ADC∽△AE′D.所以 AC/CD= AD/DE′,又AD=DE′,所以CD=AC=2.考查相似三角形的判定和性质,相似三角形和全等三角形的转化.分情况讨论等腰三角形的可能性.

【初中数学证明】相关文章:

初中贫困证明07-02

中考数学证明作文06-07

证明初中作文04-27

数学证明中的推理问题04-30

初中毕业证明范文06-06

初中生贫困证明06-30

初中生贫困证明范文11-28

初中毕业证明范文优秀06-21

初中学历证明范文02-25

初中毕业证明(精选10篇)05-15