- 相关推荐
用分析法证明 已知
用分析法证明 已知要证明(b+c-a)/a+(a+c-b)/b+(a+b-c)/c>3
即是证明(b+c)/a-1+(a+c)/b-1+(a+b)/c-1>3
b/a+a/b+a/c+c/a+b/c+c/b>6
因为a,b,c>0,且不全等,所以b/a+a/b≥2
a/c+c/a≥2
b/c+c/b≥2
上式相加的时候,等号不能取到,因为不全等。故b/a+a/b+a/c+c/a+b/c+c/b>6
命题获证
a-b=tanα+2tanαsinα+sinα-tanα+2tanαsinα-sinα
=4tanαsinα
左边=16tanαsinα
=16tanα(1-cosα)
=16tanα-16tanαcosα
=16tanα-16sinα/cosα*cosα
=16tanα-16sinα
右边=16(tanα-sinα)
所以左边=右边
命题得证
要证|(a+b)/(1+ab)|<1
就是要证|a+b|<|1+ab|
就是要证(a+b)^2<(1+ab)^2
就是要证a^2+2ab^2+b^2<1+a^2b^2+2ab
就是要证a^2b^2-a^2-b^2+1>0
就是要证(a^2-1)(b^2-1)>0
而已知|a|<1 |b|<1
所以(a^2-1)(b^2-1)>0成立
|(a+b)/(1+ab)|<1成立
左边通分整理
即证|(b-a)(b+a)/(a+1)(b+1)|<|a-b|
把|a-b|约分
|(b+a)/(a+1)(b+1)|<1
即证|a+b|<(a+1)(b+1)
显然a和b同号时|a+b|较大
所以不妨设a>0,b>0
a+b a-a+1/4=(a-1/2)
b-b+1/4=(b-1/2)
所以a-a+b-b+1>0
ab>=0
所以a>0,b>0时
a+b 若都小于0,绝对值一样
把以上倒推回去即可
证明:由a>0,b>0,ln x是增函数,要证:a^a b^b>= a^b b^a,
即证:aln a + bln b>= aln b + bln a
即证:a(ln a - ln b)+b(ln b-ln a)>=0
即证:(a-b)(ln a -ln b)>=0.
由于,ln x是增函数,因此,a-b与lna -lnb符号相同。
则(a-b)(ln a - ln b)>=0成立。
于是:原不等式成立。
【用分析法证明 已知】相关文章:
已知的未知05-01
已知数04-29
用层次分析法对学生进行综合评价04-28
用鱼骨图与层次分析法结合进行企业诊断04-30
象限分析法05-01
房贷用收入证明02-28
关于层次分析法和灰色关联分析法的研究12-01
用层次分析法探讨地震次生火灾区划05-02
用层次分析法定量评价百色盆地致密储层04-28