余弦定理的证明
余弦定理的证明在△ABC中,AB=c、BC=a、CA=b
则c^2=a^2+b^2-2ab*cosC
a^2=b^2+c^2-2bc*cosA
b^2=a^2+c^2-2ac*cosB
下面在锐角△中证明第一个等式,在钝角△中证明以此类推。
过A作AD⊥BC于D,则BD+CD=a
由勾股定理得:
c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2
所以c^2=(AD)^2-(CD)^2+b^2
=(a-CD)^2-(CD)^2+b^2
=a^2-2a*CD +(CD)^2-(CD)^2+b^2
=a^2+b^2-2a*CD
因为cosC=CD/b
所以CD=b*cosC
所以c^2=a^2+b^2-2ab*cosC
题目中^2表示平方。
2
谈正、余弦定理的多种证法
聊城二中 魏清泉
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法.人教A版教材《数学》(必修5)是用向量的数量积给出证明的,如是在证明正弦定理时用到作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受.本文试图通过运用多种方法证明正、余弦定理从而进一步理解正、余弦定理,进一步体会向量的巧妙应用和数学中“数”与“形”的完美结合.
定理:在△ABC中,AB=c,AC=b,BC=a,则
(1)(正弦定理) = = ;
(2)(余弦定理)
c2=a2+b2-2abcos C,
b2=a2+c2-2accos B,
a2=b2+c2-2bccos A.
一、正弦定理的证明
证法一:如图1,设AD、BE、CF分别是△ABC的三条高。则有
AD=bsin∠BCA,
BE=csin∠CAB,
CF=asin∠ABC。
所以S△ABC=abcsin∠BCA
=bcsin∠CAB
=casin∠ABC.
证法二:如图1,设AD、BE、CF分别是△ABC的3条高。则有
AD=bsin∠BCA=csin∠ABC,
BE=asin∠BCA=csin∠CAB。
证法三:如图2,设CD=2r是△ABC的外接圆
的直径,则∠DAC=90°,∠ABC=∠ADC。
证法四:如图3,设单位向量j与向量AC垂直。
因为AB=AC+CB,
所以jAB=j(AC+CB)=jAC+jCB.
因为jAC=0,
jCB=| j ||CB|cos(90°-∠C)=asinC,
jAB=| j ||AB|cos(90°-∠A)=csinA .
二、余弦定理的证明
法一:在△ABC中,已知 ,求c。
过A作 ,
在Rt 中, ,
法二:
,即:
法三:
先证明如下等式:
⑴
证明:
故⑴式成立,再由正弦定理变形,得
结合⑴、 有
即 .
同理可证
.
三、正余弦定理的统一证明
法一:证明:建立如下图所示的直角坐标系,则A=(0,0)、B=(c,0),又由任意角三角函数的定义可得:C=(bcos A,bsin A),以AB、BC为邻边作平行四边形ABCC′,则∠BAC′=π-∠B,
∴C′(acos(π-B),asin(π-B))=C′(-acos B,asin B).
根据向量的运算:
=(-acos B,asin B),
= - =(bcos A-c,bsin A),
(1)由 = :得
asin B=bsin A,即
= .
同理可得: = .
∴ = = .
(2)由 =(b-cos A-c)2+(bsin A)2=b2+c2-2bccos A,
又| |=a,
∴a2=b2+c2-2bccos A.
同理:
c2=a2+b2-2abcos C;
b2=a2+c2-2accos B.
法二:如图5,
,设 轴、 轴方向上的单位向量分别为 、 ,将上式的两边分别与 、 作数量积,可知
,
即
将(1)式改写为
化简得b2-a2-c2=-2accos B.
即b2=a2+c2-2accos B.(4)
这里(1)为射影定理,(2)为正弦定理,(4)为余弦定理.
参考文献:
【1】孟燕平?抓住特征,灵活转换?数学通报2003年第11期.
【2】《中学生数学》(上)2000年3月上
【3】《数学(必修5)》人民教育出版社
【余弦定理的证明】相关文章:
垂心余弦定理证明04-28
余弦定理的证明方法04-28
余弦定理教案04-25
余弦定理教案01-11
“余弦定理”教学设计05-01
《余弦定理》教学反思范文(精选10篇)07-10
凸n边形(n≥5)余弦定理04-28
单位证明范文_证明05-15
离职证明离职证明01-22
小孩改名证明范文_证明05-23