- 相关推荐
初中数学证明题解答
初中数学证明题解答1.若x1,x2 ∈|-1,1
且x1*x2+x2*x3+……+xn*x1=0
求证: 4|n
(x1,x2,x3,xn中的数字和n均下标)
2.在n平方(n≥4)的空白方格内填入+1和-1,
每两个不同行且不同列的方格内数字的和称为基本项。
求证:4|所有基本项的和
1.
y1=x1*x2,y2=x2*x3,……,yn=xn*x1
==>
y1,y2,..,yn∈{-1,1},
且y1+..+yn=0.
设y1,y2,..,yn有k个-1,则有n-k个1,所以
y1+..+yn=n-k+(-k)=n-2k=0
==>n=2k.
而y1*y2*..*yn=(-1)^k=[x1*x2*..*xn]^2=1
==>k=2u
==>n=4u.
2.
设添的数为x(i,j),1≤i,j≤n.
基本项=x(i,j)+x(u,v),i≠u,j≠v.
这时=x(i,j)和x(u,v)组成两个基本项
x(i,j)+x(u,v),x(u,v)+x(i,j),
和x(i,j)不同行且不同列的x(u,v)有(n-1)^2个,
所以每个x(i,j)出现在2(n-1)^2个基本项中.
因此所有基本项的和 =2(n-1)^2[所有x(i,j)的和].
设x(i,j)有k个-1,则
所有基本项的和 =2(n-1)^2[所有x(i,j)的和]=
=2(n-1)^2[n^2-2k]
显然4|2(n-1)^2[n^2-2k],
所以4|所有基本项的和 .
命题:多项式f(x)满足以下两个条件:
(1)多项式f(X)除以X^4+X^2+1所得余式为X^3+2X^2+3X+4
(2)多项式f(X)除以X^4+X^2+1所得余式为X^3+X+2
证明:f(X)除以X^2+X+1所得的余式为X+3
X^4+X^2+1=(X^2+X+1)·(X^2-X+1)
X^3+2X^2+3X+4=(X^2+X+1)·(X+1)+X+3
X^3+X+2=(X^2+X+1)·(X-1)+X+3
====>f(X) 除以X^2+X+1所得的余式为X+3
各数平方的和能被7整除.”“证明”也称“论证”,是根据已知真实白勺判断来确某一判断的直实性的思维形式.只有正确的证明,才能使一个真判断的真实性、必然性得到确定.这是过去同学们较少涉足的新内容、新形式.本刊的“有奖问题征解”中就有不少是证明题(证明题有代数证明题和几何证明题等),从来稿看,很多同学不会证明.譬如上题就是代数证明题,不少同学会取出一组或几组连续的自然数,如O+1+2+3+4+5+6z一91—7×13,1+2+3+4+5+6+7z一140—7×2O后,便依此类推,说明原题是正确的,以为完成了证明.其实,这叫做“验证”,不叫做证明.你只能说明所取的数组符合要求,而不能说明其他的数组就一定符合要求,“验证”不具备一般性、必然性.这道题的正确做法是:证明设有一组数n、n+1、n+2、n+3、n+4、n+5、n+6(n为自然数),‘.‘+(n+1)+(n+2)2+(n+3)2+(n+4)2+(n+5)2+(n+6)2一n2+(n2+2n,4-1)+(n2+4n+4)+(n2+6n+9)+(n2+8n+16)+(n2+10n+25)+(n+12n+36)一7nz+42n+91—7(nz+6n+13),.‘.n+(n+1)2+(n+2)2+(n+3)2+(n+4)2+(n+5)+(n+6)能被7整除.即对任意连续7个自然数,它们平方之和都能被7整除.(证毕)显然,因为n可取任意自然数,因此n,n+1,n+2,n+3,n+4,n+5,n+6便具有一般性,所得结论也因此具有然性.上面的证明要用到整式的乘法(或和的平方公式)去展开括号,还要逆用乘法对加法的分配律进行推理.一般来说,代数证明的推理,常要借助计算来完成.证明中的假设,应根据具体情况灵活处理,如上例露勤鸯中也可设这7个数是n一3、n一2、n一1、n、n+1、n+2、n+3(n为自然数,且n≥3).这时,它们的平方和就会简便得多.证明由论题.论据和论证方式组成.常用的论证方式有直接证明和间接证明、演绎证明和归纳证明.上例中的题目便是论题,证明中“‘.”’之后是论据,“.‘.”之后是结论,采用的论证方式是直接证明.以后还要学习几何的证明,就会对证明题及其解法有更全面、更深入的了解.几何题的证明则较多采用演绎证明.证明是对概念、判断和推理的综合运用,是富有创造性的思维活动,在发现真理、确认真理、宣传真理上有重要的作用.当你学习并掌握了“证明”的方法及其精髓以后,数学向你展示的美妙与精彩,将使你受到更大的激励,享有更多成功的喜悦。
【初中数学证明题解答】相关文章:
高中数学证明题04-30
初中几何证明题的入门的论文04-27
如何攻克考研数学证明题的诅咒04-28
攻克考研数学证明题思路总结04-28
考研数学证明题高手解决方案04-28
完胜考研数学证明题思路总结04-28
2012考研数学 攻克证明题思路总结04-28
几何证明题04-29
中考数学解答难题的方法02-02
数学问题解答04-28