证明数列是等比 数列

时间:2021-10-04 17:21:57 证明范文 我要投稿
  • 相关推荐

证明数列是等比 数列

证明数列是等比 数列

an=(2a-6b)n+6b

证明数列是等比  数列

当此数列为等比数列时,显然是常数列,即2a-6b=0

这个是显然的东西,但是我不懂怎么证明

常数列吗.所以任何一个K和M都应该有ak=amak=(2a-6b)k+6b am=(2a-6b)m+6bak-am=(2a-6b)(k-m)因为ak-am恒为0k m 任意所以一定有2a-6b=0 即a=3b

补充回答: 题目条件看错,再证明 当此数列为等比数列时

2a-6b=0

因为等比a3:a2=a2:a1

即 (6a-12b)*2a=(4a-6b)^2

a^2-6ab+9b^2=0

即(a-3b)^2=0

所以肯定有 a=3b成立

2

数列an前n项和为Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 证明

(1)(Sn/n)是等比数列

(2) S(n+1)=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S[(n+1)/(n+1)]/[Sn/n]=2

S1/1=A1=1

所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的.等比数列

所以Sn/n的通项公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

=n2^(n-1)-(n-1)2^(n-2)

=n*2*2^(n-2)-(n-1)2^(n-2)

=[2n-(n-1)]*2^(n-2)

=(n+1)2^(n-2)

=(n+1)*2^n/2^2

=(n+1)2^n/4

=S(n+1)/4

所以有S(n+1)=4An

a(n)-a(n-1)=2(n-1)

上n-1个式子相加得到:

an-a1=2+4+6+8+.....2(n-1)

右边是等差数列,且和=[2+2(n-1)](n-1)/2=n(n-1)

所以:

an-2=n^2-n

an=n^2-n+2

4、

已知数列{3*2的N此方},求证是等比数列

根据题意,数列是3*2^n(^n表示肩膀上的方次),n=1,2,3,...

为了验证它是等比数列只需要比较任何一项和它相邻项的比值是一个不依赖项次的固定比值就可以了.

所以第n项和第n+1项分别是3*2^n和3*2^(n+1),相比之后有:

[3*2^(n+1)]/(3*2^n)=2

因为比值是2,不依赖n的选择,所以得到结论.

5

数列an前n项和为Sn 已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......) 证明

(1)(Sn/n)是等比数列

(2) S(n+1)=4an

1、A(n+1)=(n+2)sn/n=S(n+1)-Sn

即nS(n+1)-nSn=(n+2)Sn

nS(n+1)=(n+2)Sn+nSn

nS(n+1)=(2n+2)Sn

S(n+1)/(n+1)=2Sn/n

即S[(n+1)/(n+1)]/[Sn/n]=2

S1/1=A1=1

所以Sn/n是以2为公比1为首项的等比数列

2、由1有Sn/n是以2为公比1为首项的等比数列

所以Sn/n的通项公式是Sn/n=1*2^(n-1)

即Sn=n2^(n-1)

那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)

An=Sn-S(n-1)

【证明数列是等比 数列】相关文章:

证明数列是等比数列12-07

等比数列的证明12-07

证明等比数列12-07

等比数列求和公式02-09

笔试题(等比数列)01-01

数列极限的证明12-07

等比数列求和公式的推导02-09

等比数列中的创新题07-19

无穷递缩等比数列10-25