向量证明正弦定理

时间:2023-04-29 18:47:12 证明范文 我要投稿
  • 相关推荐

向量证明正弦定理

向量证明正弦定理

表述:设三面角∠P-ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则 Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。

向量证明正弦定理

目录

1证明2全向量证明

证明

过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。 显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。 另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。 则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。 同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。

全向量证明

如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°-A,j与向量CB的夹角为90°-C

由图1,AC+CB=AB(向量符号打不出)

在向量等式两边同乘向量j,得·

j·AC+CB=j·AB

∴│j││AC│cos90°+│j││CB│cos(90°-C)

=│j││AB│cos(90°-A)

∴asinC=csinA

∴a/sinA=c/sinC

同理,过点C作与向量CB垂直的单位向量j,可得

c/sinC=b/sinB

∴a/sinA=b/sinB=c/sinC

2步骤1

记向量i ,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c

∴a+b+c=0

则i(a+b+c)

=i·a+i·b+i·c

=a·cos(180-(C-90))+b·0+c·cos(90-A)

=-asinC+csinA=0

接着得到正弦定理

其他

步骤2.

在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H

CH=a·sinB

CH=b·sinA

∴a·sinB=b·sinA

得到a/sinA=b/sinB

同理,在△ABC中,

b/sinB=c/sinC

步骤3.

证明a/sinA=b/sinB=c/sinC=2R:

任意三角形ABC,作ABC的外接圆O.

作直径BD交⊙O于D. 连接DA.

因为直径所对的圆周角是直角,所以∠DAB=90度

因为同弧所对的圆周角相等,所以∠D等于∠C.

所以c/sinC=c/sinD=BD=2R

类似可证其余两个等式。

3

用向量叉乘表示面积则 s = CB 叉乘 CA = AC 叉乘 AB

=> absinC = bcsinA (这部可以直接出来哈哈,不过为了符合向量的做法)

=> a/sinA = c/sinC

2011-7-18 17:16 jinren92 | 三级

记向量i ,使i垂直于AC于C,△ABC三边AB,BC,接着得到正弦定理 其他步骤2. 在锐角△ABC中,证明a/sinA=b/sinB=c/sinC=2R: 任意三角形ABC,

4

过三角形ABC 的顶点A作BC边上的高,垂足为D.(1)当D落在边BC上时,向量AB 与向量AD 的夹角为90°-B ,向量AC 与向量AD 的夹角为90°-C ,由于向量AB、向量AC 在向量AD 方向上的射影相等,有数量积的几何意义可知 向量AB*向量AD=向量AC*向量AD即 向量AB的绝对值*向量AD的绝对值*COS(90°-B)=向量的AC绝对值*向量AD的绝对值*cos(90°-C)所以 csinB=bsinC即b/sinB=c/sinC(2)当D落在BC的延长线上时,同样可以证得

【向量证明正弦定理】相关文章:

数学正弦定理教案02-12

高中数学正弦定理教案11-24

高中数学《正弦定理》教案07-19

《共面向量定理》的教学反思范文04-27

共线与共面向量定理的引申与应用04-27

高中数学正弦定理教案(6篇)11-26

高中数学《正弦定理》教案4篇01-07

高中数学正弦定理教案6篇11-25

定理与证明教案12-28

垂心余弦定理证明04-28