用向量证明线面平行

时间:2023-04-29 18:47:12 证明范文 我要投稿
  • 相关推荐

用向量证明线面平行

用向量证明线面平行

面垂直就是说直线是面的法向量。单位法向量当然平行这条直线,不过要排除与0向量的讨论。0向量与任何向量都平行。但0向量不垂直与面。

用向量证明线面平行

比如单位法向量是(x,y,z)直线的方向向量是m=(a,b,c)

那么m=a(x,y,z) 这不完全对。

比如单位法向量是(0,1,0),难道m=0吗?

只能是a≠0是可以这样。

面面平行:可以证明两个平面的法向量平行。

不过不一定是单位法向量,单位法向量是模等于1的法向量,其实只需证明两平面的法向量垂直就可以了。

当然你要证明分别平行于两平面的直线平行,

或平行一平面的直线与另一平面的法向量垂直也未尝不可。

2

三维空间上一平面上一活动点钟(x,y, z) 而(m,n,p )是在原点与平面的垂线的交点, 我们得

[(x,y,z) - (m,n,p) ] * (m,n,p) = 0

m(x-m)+n(y-n)+p(z-p)=0

mx+ny+pz=m^2+n^2+p^2

所以 ax+by+cz=d 中的a=m, b= n, c=p , d=m^2+n^2+p^2= 原点与平面的垂直距离

x+y+z=1是一个面它垂直和相交(1,1,1) 这支向量

[1,8,-3]×[4,-5,9]≠[0,0,0]

所以两直线的方向向量不平行

即两直线不平行

但是书后的答案说两直线是平行的。。。

你确定题没有写错吗?

其实直线很简单

[x,y,z]=[4,-3,2]+ t[1,8,-3]

表示通过点[4,-3,2],沿着方向[1,8,-3]延伸

而[1,8,-3]跟[4,-5,9]方向不一样,两直线不平行

平行向量

平行向量(也叫共线向量):方向相同或相反的非零向量ab叫做平行向量,记作:ab,规定零向量和任何向量平行。

加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。

已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。以减向量的终点为起点,被减向量的终点为终点(三角形法则)

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。

设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ + μ)a = λa + μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算

【用向量证明线面平行】相关文章:

证明线面平行04-28

证明平行的方法01-02

理科数学平面向量的平行与垂直考点练习05-01

点线面作文08-04

点线面美术教案01-12

平面向量教案05-01

向量值正交小波的构造与向量值小波包的特征04-26

房贷用收入证明02-28

《平面向量的数量积》04-01

平行04-29