中心极限定理证明

时间:2023-04-29 18:04:05 证明范文 我要投稿
  • 相关推荐

中心极限定理证明

中心极限定理证明

一、例子

中心极限定理证明

[例1] 高尔顿钉板试验.

图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.

如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且

那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.

二、中心极限定理

设是独立随机变量序列,假设存在,若对于任意的,成立

称服从中心极限定理.

[例2] 设服从中心极限定理,则服从中心极限定理,其中为数列.

解:服从中心极限定理,则表明

其中.由于,因此

故服从中心极限定理.

三、德莫佛-拉普拉斯中心极限定理

在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则

[例3] 用频率估计概率时的误差估计.

由德莫佛—拉普拉斯极限定理,

由此即得

第一类问题是已知,求,这只需查表即可.

第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.

第三类问题是已知,求.

解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计: .

[例4] 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?

解:由例4中的第二类问题的结论,.即.查表得.将代入,便得. 由此可见,利用比利用契比晓夫不等式要准确得多.

[例5] 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:

的随机变量.求.

解:

因为很大,于是

所以

利用标准正态分布表,就可以求出的值.

[例6] 某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.

解:以表示第个分机用不用外线,若使用,则令;否则令.则.

如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,

查表得,,故取.于是

取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.

[例7] 根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.

解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.

由德莫佛—拉普拉斯极限定理,有

其中,即有

四、林德贝格-勒维中心极限定理

若是独立同分布的随机变量序列,假设,则有

证明:设的特征函数为,则

的特征函数为

又因为,所以

于是特征函数的展开式

从而对任意固定的,有

而是分布的特征函数.因此,

成立.

[例8] 在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.

设有个数,它们的近似数分别是,.,.令

用代替的误差总和.由林德贝格——勒维定理,

以,上式右端为0.997,即以0.997的概率有

[例9] 设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.

证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有

由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.

作业:

P222 EX 32,33,34,35

五、林德贝尔格条件

设为独立随机变量序列,又

令,对于标准化了的独立随机变量和

的分布

当时,是否会收敛于分布?

[例10] 除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.

设是独立随机变量序列,又,,这时

(1)若是连续型随机变量,密度函数为,如果对任意的,有

(2)若是离散型随机变量,的分布列为

如果对于任意的,有

则称满足林德贝尔格条件.

[例11] 以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.

证明: 令,则

于是

从而对任意的,若林德贝尔格条件成立,就有

这个关系式表明, 的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.

六、费勒条件

设是独立随机变量序列,又,,称条件为费勒条件.

林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.

七、林德贝尔格-费勒中心极限定理

引理1 对及任意的,

证明:记,设,由于

因此, ,其次,对,

用归纳法即得.

由于,因此,对也成立.

引理2 对于任意满足及的复数,有

证明:显然

因此,

由归纳法可证结论成立.

引理3 若是特征函数,则也是特征函数,特别地

证明 定义随机变量

其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸 独立,不难验证的特征函数为,由特征函数的性质即知 成立.

林德贝尔格-费勒定理

定理 设为独立随机变量序列,又 .令 ,则

(1)

与费勒条件成立的充要条件是林德贝尔格条件成立.

证明:(1)准备部分

(2)

显然(3)

(4)

以及分别表示的特征函数与分布函数,表示的分布函数,那么 (5)

这时

因此林德贝尔格条件化为:对任意,

(6)

现在开始证明定理.设是任意固定的实数.

为证(1)式必须证明

(7)

先证明,在费勒条件成立的假定下,(7)与下式是等价的:

(8)

事实上,由(3)知,又因为

故对一切,

把在原点附近展开,得到

因若费勒条件成立,则对任意的,只要充分大,均有

(9)

这时

(10)

对任意的,只要充分小,就可以有

(11)

因此,由引理3,引理2及(10),(11),只要充分大,就有

(12)

因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.

(2)充分性

先证由林德贝尔格条件可以推出费勒条件.事实上,

(13)

右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.

其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,

当时,

当时,

因此

(14)

对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.

(3)必要性

由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,

(15)

上述被积函数的实部非负,故

而且

(16)

因为对任意的,可找到,使,这时由(15),(16)可得

故林德贝尔格条件成立.

八、李雅普诺夫定理

设为独立随机变量序列,又.令,若存在,使有

则对于任意的,有

【中心极限定理证明】相关文章:

扩张映射的带有收敛速度的高维中心极限定理04-26

平稳高斯向量序列最大值的几乎处处中心极限定理04-28

极限 定义证明11-20

树上随机过程的强极限定理05-01

log-最优投资组合的极限定理04-27

定理与证明教案12-28

随机环境中马氏链函数的极限定理04-27

广义线性回归参数的学生化极限定理04-27

垂心余弦定理证明04-28

余弦定理的证明方法04-28