数学几何中空间与图形

学人智库 时间:2018-01-15 我要投稿
【www.unjs.com - 学人智库】

  图形的认识

  (1)角

  角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

  (2)相交线与平行线

  同角或等角的补角相等,同角或等角的余角相等;

  对顶角的性质:对顶角相等

  垂线的性质:

  ①过一点有且只有一条直线与已知直线垂直;

  ②直线外一点有与直线上各点连结的所有线段中,垂线段最短;

  线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;

  线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;

  平行线的定义:在同一平面内不相交的两条直线叫做平行线;

  平行线的判定:

  ①同位角相等,两直线平行;

  ②内错角相等,两直线平行;

  ③同旁内角互补,两直线平行;

  平行线的特征:

  ①两直线平行,同位角相等;

  ②两直线平行,内错角相等;

  ③两直线平行,同旁内角互补;

  平行公理:经过直线外一点有且只有一条直线平行于已知直线。

  (3)三角形

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;

  三角形的内角和定理:三角形的三个内角的和等于;

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;

  三角形的三条角平分线交于一点(内心);

  三角形的三边的垂直平分线交于一点(外心);

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;

  全等三角形的判定:

  ①边角边公理(SAS)

  ②角边角公理(ASA)

  ③角角边定理(AAS)

  ④边边边公理(SSS)

  ⑤斜边、直角边公理(HL)

  等腰三角形的性质:

  ①等腰三角形的两个底角相等;

  ②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)

  等腰三角形的判定:

  有两个角相等的三角形是等腰三角形;

  直角三角形的性质:

  ①直角三角形的两个锐角互为余角;

  ②直角三角形斜边上的中线等于斜边的一半;

  ③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);

  ④直角三角形中角所对的直角边等于斜边的一半;

  直角三角形的判定:

  ①有两个角互余的三角形是直角三角形;

  ②如果三角形的三边长a、b、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。

  (4)四边形

  多边形的内角和定理:n边形的内角和等于(n≥3,n是正整数);

  平行四边形的性质:

  ①平行四边形的对边相等;

  ②平行四边形的对角相等;

  ③平行四边形的对角线互相平分;

  平行四边形的判定:

  ①两组对角分别相等的四边形是平行四边形;

  ②两组对边分别相等的四边形是平行四边形;

  ③对角线互相平分的四边形是平行四边形;

  ④一组对边平行且相等的四边形是平行四边形。

  矩形的性质:(除具有平行四边形所有性质外)

  ①矩形的四个角都是直角;

  ②矩形的对角线相等;

[数学几何中空间与图形]