导语:由于有理数的加法是有理数运算的开始,因而它是时一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。以下是大学网unjs.com小编整理的有理数的加法优质课教案及教学反思(附说课稿),欢迎阅读参考!
有理数的加法优质课教案及教学反思
一、 教材分析
有理数的加法是有理数运算的一个非常重要的内容,它建立在小学算术运算的基础上。
但是,它与小学的算术又有很大的区别,小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值。因此,有理数加法运算,在确定“和”的符号后,实质上是进行算术数的加减运算,思维过程就是如何把中学有理数的加法运算化归为小学算术的加减运算。
由于有理数的加法是有理数运算的开始,因而它是时一步学习有理数运算的基础,也是今后学习实数运算、代数式的运算、解方程以及函数知识的基础。同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。
本节课的重点是有理数的加法法则,理由是:
(1)要熟练地进行有理数的加法运算,就得深刻理解运算法则,对运算法则理解得越深,运算才能掌握得越好。
(2)有理数的加法作为基本运算,在今后的各种运算中有着广泛的应用。
本课的教学难点是异号两数相加的法则,原因是:学生学习数学是一种认识过程,要遵循一般的认识规律。而初一年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需有通过绝对值大小的比较来确定和的符号和加法转化为减法两个思维过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度。在教学时,应从实例出发,充分利用数轴,从数形结合的观点加以讲授,并配以适量的练习,让学生在练习中感知法则的应用。以求突破这一难点。
二、教学目的的确定
1.使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力。
3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神。
以上教学目的是从知识教学、技能训练和能力培养三个方面,根据《教学大纲》中关于“有理数加法”的教学要求,和加强“双基”教学的要求,以及培养学生良好的个性品质等要求而确定的。
三、教学方法的选择
引导发现法和直观演示法
引导发现法属于启发式教学,是通过教师的引导,启发调动学生的学习积极性,让学生在课堂上多活动、多观察,主动参与到整个教学的全过程来,通过自己的努力,发现规律、总结出法则。它符合教学论中自学性和积极性、教师的主导作用和学生的主体地位相统一的原则。
另外,在教学中,还运用电教手段进行直观演示,动态演示出物体在一直线上两次运动的结果,使学生在获得感性知识的同时,为掌握理性知识创造条件,这样做可激发学生的学习兴趣,注意力也容易集中,符合教学论中直观性和可接受性原则。这就是说,要从感性和理性两个方面入手来提高学生的素质和能力。
四、学法指导
通过本节课的教学,教师应引导学生学会观察、归纳的学习方法。通过观察实例,让每个学生都 动口、动脑、动手,积极思考,自己归纳出运算法则,培养学生学习的主动性和积极性。
五、课堂教学程序
1.类比联想,提出问题
2.直观演示,归纳法则
3.应用举例,变式练习,解决问题
4.反馈练习
学生对所学法则到底掌握了多少呢?为了检测学生对本课教学目的完成情况,进一步加强法则的应用训练,我设计了反馈练习,针对学生的解答情况:若出现问题,准备采以措施及时弥补和调整;若学生解答顺利,可再给学生出一些补充练习题。
5.归纳小结
为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想。
(1)本节所学习的主要内容;
(2)有理数的加当选法则在应用时应注意的问题;
(3)本节课涉及的数学思想方法主要有哪些?
有理数的加法优质课教案说课稿
师:在小学里,同学们已经学过数的加、减、乘、除四则运算。这些数是正整数、正分数、和零,也就是说,这些运算是在非负有理数范围内进行的。自从引进负数后,数的范围就扩大到整个有理数。那么,在有理数范围内,怎样进行四则运算呢?今天,我们来探索有理数的加法运算。 (教师板书课题:有理数的加法)
请同学们思考一下,两个有理数进行加法运算时,这两个加数的符号可能有哪些情况。
生1:加数都是正数或都是负数。(教师板书:同号两数相加) 加数一正一负(教师板书:异号两数相加)
师:还有其他情况吗?
生2:正数与零,负数与零,或者两个都是零
师:同学们回答得很好。现在让我们一起来看一个具体问题:某人从一点出发,经过下面两次运动,结果的方向怎样?离开出发点的距离是多少? ① 先向东走了5米,再向东走3米,结果怎样?
生3:向东走了8米
师:如果规定向东为正,向西为负,同学们能不能用一个数学式子来表示? 生4:表示为(+5)+(+3)=+8 (教师板书) 师:我们可以画出示意图。 (教师用投影仪显示图1)
②先向西走了5米,再向西走了3米,结果如何?
生5:向西走了8米。可以表示为:(-5)+(-3)=-8 [教师板书]
(教师用投影仪显示图2)
③ 向东走了5米,再向西走了3米,结果呢?
生6:向东走了2米。可以表示为:(+5)+(-3)=+2 [教师板书]
(教师用投影仪显示图3)
④先向西走了5米,再向东走了3米,结果呢?
生7:向西走了2米。可以表示为:(-5)+(+3)=-2 (教师板) (教师用投影仪显示图4)
⑤先向东走5米,再向西走5米,结果呢?
生8:回到原地位置。可以表示为:(+5)+(-5)=0 (教师板书) (教师用投影仪显示图5)
⑥先向西走5米,再向东走5米,结果呢?
生9:仍回到原地位置。可以表示为:(-5)+(+5)=0 [教师板书]
(教师用投影仪显示图6)
师:同学们开动脑筋,完成上面这组问题完成得非常好,我非常高兴,请同学们独立完成下面一组有理数加法的具体问题,用数学式子表示出来。 (教师用投影仪显示下面内容):
从河岸现在水位线开始,规定上升为正,下降为负:
①上升8cm,再上升6cm,结果怎样? ②下降8cm,再下降6cm,结果怎样?
③上升6cm,再下降8cm,结果怎样? ④下降6cm,再上升8cm,结果怎
样?
⑤上升8cm,再下降8cm,结果怎样? ⑥下降8cm,再上升0cm,结果怎样?
师:下面同学们分组讨论,互相订正。
教师公布正确答案:
①上升14cm。 [教师板书 (+8)+(+6)=+14]
②下降14cm。 [教师板书 (-8)+(-6)=-14]
③下降2cm。 [教师板书 (+6)+(-8)=-2]
④上升2cm。 [教师板书 (-6)+(+8)=+2]
⑤回到原水位线。 [教师板书 (+8)+(-8)=0]
⑥在原水位下线下8cm。 [教师板书 (-8)+0=-8]
师:通过以上两组题目,从两个有理数相加的过程中你发现了什么?请同学们发表演自己的观点,与本组同学交流。
小组1:我们这一小组同学发现了正数加正数结果是正数,负数加负数结果是负数,也就是说:同号两数相加,符号不变。
师:其他小组还有没有新的发现什么?
小组2:我们发现符号不同的两个有理数相加,结果的符号与最前面加数的符号一样。
师:这一小组的看法是否正确呢?
小组3:不正确。因为(+6)+(-8)=-2, (-6)+(+8)=+2,结果和符号与第一个加数的符号不一样。应改为:符号不同的两个有理数相加,结果的符号决定于加数中较大的数的符号。
小组4:这句话也不对,如(+3)+(-5)=-2 中,和的符号是负的,但+3比 -5大,应改为:和的符号与绝对值大的加数符号一样。 师:还有没有不同意见?
小组5:我们这一小组有不同意见。符号不同的两个数相加还有一种可能是相反数的情况,结果为0与每个的数的符号都不一样。
师:观察仔细,很好。
师:刚才同学们只是发现了两个有理数相加,结果的符号问题,结果除了
符号部分外,另一部分称为结果的什么?
众生:结果的绝对值
师:结果的绝对值与加数绝对值又有何关系呢?
小组5:同号两数相加和的绝对值等于加数绝对值的和,异号两数相加和的绝对值等于较大绝对值减去较小绝对值。
师:请同学归纳,总结出有理数的加法规律。
小组6:同号两数相加,符号不变,并把绝对值相加;异号两数相加取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值。
小组7:不对,异号两数相加应分两种情况。⑴绝对值不等的异号两数相加;⑵绝对值相等的异号两数相加。
师:很好!同学们已经感受到两个有理数相加的情况与小学加法要复杂一些,是否还有没有考虑到的情况呢?
小组8:有,一个数同0相加,仍是这个数。
师:全班同学共同说出有理数的加法法则。
教(板书):有理数加法法则:
①同号两数相加,取加数的符号,并把绝对值相加;
②异号两数相加,如果绝对值相等和为0;如果绝对值不等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;
③一个数同0相加,仍是这个数。
(点评:学生学习知识是一个动态的过程。学生认知的效果,完全取决于学生是否以积极的心态参与认知活动。因此本节课在教学设计上有如下闪光点:
1.通过回顾已具备的部分知识与技能,让学生产生一个暂时成功感和满足感,达到一个暂时的心理平衡。
2.以提问的形式展现新矛盾、新问题,挑起学生引起心理的不平衡。旨在诱发学生好强、好胜的天性,将学生的注意力导向下一个环节。
3.再次以提问的形式,渗透分类的思想,将学生的思维导向分类探索的境地。旨在让学生的思维能圆润地过度到探索新知情境之中。
4.分类展示生活情境,放手让全体学生感受并探索,从而构建加法法则。)
[有理数的加法优质课教案及教学反思(附说课稿)]