数学家的小故事(通用41篇)
在生活、工作和学习中,大家都跟故事打过交道吧,下面是小编为大家收集的数学家的小故事,仅供参考,欢迎大家阅读。
陈景润
陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,因此有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。
1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个搞笑的现象:6=3+3,8=5+3,10=5+5,12=5+7,28=5+23,100=11+89。每个大于4的偶数都能够表示为两个奇数之和。正因这个结论没有得到证明,因此还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的`前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。课余时刻他最爱到图书馆,不仅仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。因此获得了“书呆子”的雅号。
兴趣是第一老师。正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
祖冲之
祖冲之(429-500),中国南北朝时代南朝数学家、天文学家、物理学家。祖冲之的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他性格爱好研究数学,也钟爱研究天文历法,经常观测太阳和星球运行的状况,并且做了详细记录。
宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,能够更加专心研究数学、天文了。
我国历代都有研究天文的`官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时刻)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不就应改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不好拿空话吓唬人嘛。”宋孝武帝想帮忙戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他以前对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3。1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。
祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天能够航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。
阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去领悟。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
之后阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过超多实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。
《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的.。
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的。在这部著作中,他还提出了著名的"阿基米德公理"。
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。
《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。
《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。
《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。
《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。
丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。
正正因他的杰出贡献,美国的ET贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。但是以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。
华罗庚
华罗庚上小学时,一个老师对新上任的老师介绍学校的情况时,说这个学校的学生都是穷人家的孩子,多数是笨蛋……这话深深刺痛了华罗庚的'心,他决心要以优异的成绩回敬那位老师。
一天,数学老师出了一道有趣的难题给大家:今有一物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问为几何?
全班同学面面相觑答不上来,唯有华罗庚站起来说:“老师,我知道,是‘23’。”全班震惊,老师也点头称赞。从此,他便爱上了数学课。
华罗庚的故事都值得我们学习。正当他求学时,父亲店铺生意日见萧条,无力供他继续读书了,他只好辍学看柜台。他利用一本代数、一本几何、一本只剩50页的微积分开始了自学。白天没有时间,晚上守着小油灯一遍遍地演算。父亲说他是个“书呆子”,几次逼他把书烧掉,邻居也劝他好好做买卖,一些上了大学的同学有的对他也有些冷淡。不幸的是,他又患上了可怕的伤寒,医生摇头叹息地叫家人为他准备“后事”。他向死神发起挑战,挣扎着下地干活,左腿又被摔成残废。他还是不气馁,拄着拐杖忍着疼痛进行锻炼。练得能走了,就到一所中学去干杂务,给老师打水、削铅笔,即使这样,他也没有放弃自学。就在中学工作不久,他开始向报刊投寄数学论文,多次退稿也不灰心。后来他发表了《苏家驹之代数的五次方程式解法不能成立的理由》一文,得到了数学泰斗熊庆来的赏识,很快把他介绍到清华园,安置在自己身边。
一年半后,华罗庚攻下了清华大学数学专科的全部课程,并且自修了英语和法语。接着,他的数学论文在国内外刊物上陆续发表。1934年,在熊庆来的推荐下,任命华罗庚为数学系助教。不久,校领导又任命他为数学教授。
一个贫困而又残疾的人,终于以惊人的毅力自学成才,并成为驰名中外的数学家。华罗庚的故事值得我们为之学习。
欧几里得
欧几里得(公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,被广泛的认为是历史上最成功的教科书。
在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识当中,存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。因此,把这些几何学知识加以条理化和系统化,成为一整套可以自圆其说、前后贯通的知识体系,已经是刻不容缓。欧几里得通过早期对柏拉图数学思想,尤其是几何学理论系统而周详的研究,已敏锐地察觉到了几何学理论的发展趋势。他下定决心,要在有生之年完成这一工作,成为“几何第一人”。为了完成这一重任,欧几里得不辞辛苦,长途跋涉,从爱琴海边的雅典古城,来到尼罗河流域的埃及新埠—亚历山大城,为的就是在这座新兴的,但文化蕴藏丰富的异域城市实现自己的`初衷。在此地的无数个日日夜夜里,他一边收集以往的数学专著和手稿,向有关学者请教,一边试着著书立说,阐明自己对几何学的理解,哪怕是尚肤浅的理解。经过欧几里得忘我的劳动,终于在公元前300年结出丰硕的果实,这就是几经易稿而最终定形的《几何原本》一书。这是一部传世之作,几何学正是有了它,不仅第一次实现了系统化、条理化,而且又孕育出一个全新的研究领域——欧几里得几何学,简称欧氏几何。
数学家的问题费马
数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。
费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“......
陈景润 1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的`草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(AWeil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。
索菲·科瓦列夫斯卡娅
索菲·科瓦列夫斯卡娅(1850~1891)是俄国人,她一生获得了很多“第一”:她是历史上第一个获得数学博士学位的女性,是第一个获得科学院院士称号的女数学家,此外,她还是除了意大利外世界上第一个担任数学教授的妇女,她对数学做出了卓越的贡献。
索菲·科瓦列夫斯卡娅从小就对数学怀有特殊的感情,并有着极大的好奇心和强烈的求知欲望。在她8岁的时候,全家搬到了波里宾诺田庄。由于带去的糊墙纸不够用,父母就在她的房间里用著名的数学家奥斯特洛格拉得斯基所著的微积分讲义来裱糊墙壁。那时,索菲·科瓦列夫斯卡娅常常独自坐在卧室的墙前,望着糊墙纸上奇妙的数字和神秘的符号出神,一坐就是好几个小时。后来,索菲·科瓦列夫斯卡娅在自传中写道:“我常常坐在那神秘的墙前,企图解释某些词句,找出这些书页的.正确次序。通过反复阅读,书页上那些奇怪的公式,甚至有些文字的表述,都在我的脑海里留下了深刻的印象,尽管当时我对它们还是一窍不通。”
索菲·科瓦列夫斯卡娅的祖父和外祖父都是出色的数学家,这或许有助于形成她的数学天赋,但她的成功主要还是源于她不懈的努力。她在学习数学时,注意力总是非常集中,能很快理解和掌握老师所讲的内容。有一次,数学老师让索菲·科瓦列夫斯卡娅重复上次课上所讲的内容,索菲·科瓦列夫斯卡娅没有按老师讲的方法去讲,而是换成了自己的思路方法。当她讲完后,老师立即竖起大拇指夸她了不起。由此可见,索菲·科瓦列夫斯卡娅善于独立思考问题,善于积极寻找自己的思路方法,使自己的思维不局限于某一特定的方式,这对她日后的数学研究非常重要。
高中毕业之后,索菲·科瓦列夫斯卡娅想继续学习高深的数学知识,但当时俄国有一种普遍轻视妇女的风气,妇女无权接受高等教育。对索菲·科瓦列夫斯卡娅来说,继续深造只有出国求学了。索菲·科瓦列夫斯卡娅把想要出国求学的愿望告诉家人,遭到了家人的强烈反对。为了争取上大学的权利,索菲·科瓦列夫斯卡娅冲破了种种阻力,终于如愿以偿来到了德国的海德堡大学求学,在陌生的异国城市过起了紧张而简朴的学习生活。
在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。
索菲·科瓦列夫斯卡娅一生获得了很多荣誉,为数学的发展做出了巨大贡献,但她从没有自满过。不幸的是,她在一次旅途中染上了风寒,由于没能及时休息,以致卧床不起,不久便与世长辞,终年只有41岁。
约瑟夫·路易斯·拉格朗日
约瑟夫·路易斯·拉格朗日(1736—1813),18世纪的伟大科学家。他在数学、力学和天文学三个学科中都有历史性的重大贡献,但尤以数学方面的成就最为突出,拿破仑曾称赞他是“一座高耸在数学界的金字塔”,他最突出的贡献是在把数学分析的基础脱离几何与力学方面起了决定性的作用。
拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,拉格朗日开始研究“极大和极小”的`问题。
他采用的是纯分析的方法。1758年8月,他把自己的研究方法写信告诉了欧拉,欧拉对此给予了极高的评价。从此,两位大师开始频繁通信,就在这一来一往中,诞生了数学的一个新的分支——变分法。1759年,在欧拉的推荐下,拉格朗日被提名为柏林科学院的通讯院士。接着,他又当选为该院的外国院士。在柏林科学院工作期间,拉格朗日对代数、数论、微分方程、变分法和力学等方面进行了广泛而深入的研究。1813年4月10日,拉格朗日因病逝世,走完了他光辉灿烂的科学旅程。他那严谨的科学态度,精益求精的工作作风影响着每一位科学家。而他的学术成果也为高斯、阿贝尔等世界著名数学家的成长提供了丰富的营养。可以说,在此后100多年的时间里,数学中的很多重大发现几乎都与他的研究有关。
笛卡儿
笛卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一。他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学。数学和自然科?
笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的'地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段。
笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今。
笛卡儿在物理学,生理学和天文学方面也有许多独到之处。
秦九韶
秦九韶,南宋数学家,1247年完成著作《数书九章》,其中“中国剩余定理”、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献。
在中国数学史上,广泛流传着一个“韩信点兵”的故事:韩信是汉高祖刘邦手下的大将,他英勇善战,智谋超群,为汉朝的建立立下了卓绝的功劳。据说韩信的数学水平也非常高超,他在点兵的时候,为了保住军事机密,不让敌人知道自己部队的实力,先令士兵从1至3报数,然后记下最后一个士兵所报之数;再令士兵从1至5报数,也记下最后一个士兵所报之数;最后令士兵从1至7报数,又记下最后一个士兵所报之数;这样,他很快就算出了自己部队士兵的总人数,而敌人则始终无法弄清他的部队究竟有多少名士兵?因为《孙子算经》早就对这类问题有过研究,但只是初具雏形,还远远谈不上完整。 因此,后人把这一命题及其解法称为“孙子定理”主要是推崇《孙子算经》在这一类问题处理上的时间领先,其实想法的成熟,还有待提高。为了解决 “孙子问题”中的不足,秦九韶推广了“孙子问题”的'解法,从而提出了“中国剩余定理”。秦九韶经过长期的积累和苦心钻研,于公元1247年写成《数书九章》。这部中世纪的数学杰作,在许多方面都有所创造,其中求解一次同余组的“大衍求一术”和求高次方程数值解的“正负开方术”,更是具有世界意义的成就。正是因为这样,在西方数学史著作中,一直公正地称求解一次同余组的剩余定理为“中国剩余定理”。
棉花的价格
有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”,这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的'”。
华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来……
八岁的高斯发现了数学定理
德国著名大科学家高斯八岁时进入乡村小学读书。教数学的老师喜欢处罚学生。
有一天,老师说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”
教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。
不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”
老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。
可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”
数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的`小鬼怎么这样快就得到了这个数值呢?
高斯解释道:因为1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050。
苏步青
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的`道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋 剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。
天才高斯
高斯是数学史上少有的天才,很多人认为伟大的科学家和才子都出自于书香门第,家里人可以对他的智力进行较早的开发。可是,高斯的出身却正好推翻了这一论断。高四的祖父是一个朴实的德国农民,父亲也是以种果树为生,母亲则是一个穷石匠的女儿。由于家贫,他的母亲在34岁时才做新娘,而他的父亲这时已经40岁了,父亲根本就没有指望他能读书长学问,也根本不用可能对他进行早期教育。幸运的是,高斯有一个聪明的舅舅,他是一位心灵手巧的'织绸能手,虽然文化不高,但知道许多故事。这位舅舅也十分喜欢高斯,常常通过给他讲故事来教育他。
高斯的父亲整天忙于自己的事,只要小高斯不哭,他就专心算自己的帐,而小高斯则经常在旁边一声不响地看父亲算账。有一次,还在牙牙学语的小高斯像往常一样聚精会神的看父亲算账,父亲一边算,一边直摇头,算来算去还是算不出一个结果来,过了好久,才自言自语地报出一个结果,父亲紧锁的眉头终于舒展了,点上一支烟,深深吸了一口,一边准备把答案写下来。可是小高斯却在一旁用小手敲着桌子,不停地摇头,向父亲示意这个结果是不正确的,然后从小嘴中慢慢的说出了一个数字,父亲十分惊异,儿子还不会说话,怎么会报数呢?他突然灵感一现,莫不是高斯说出了自己所计算的正确答案。于是,父亲抱着好奇的心理,重新进行验算,答案竟然和高斯说的一样,小高斯对了。
父亲高兴极了,逢人便夸自己的儿子还不会说话就会做数学了。
艾米·诺特
艾米·诺特,德国女数学家,1882年3月23日生于德国大学城爱尔兰根的一个犹太人家庭。她的研究领域为抽象代数,她善于藉透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。她彻底改变了环、域和代数的理论。她还被称为“现代数学之母”,她允许学者们无条件地使用她的工作成果,也因此被人们尊称为“当代数学文章的合著者”。
诺特生活在公开歧视妇女发挥数学才能的制度下,她通往成功的道路,比别人更加艰难曲折。当诺特考进了爱尔朗根大学,由于性别歧视,女生不能注册,但她依然大大方方地坐在教室前排,认真听课,刻苦地学习。后来,她勤奋好学的精神感动了主讲教授,破例允许她与男生一样参加考试。毕业的这年冬天,她来到著名的哥廷根大学,旁听了希尔伯特、克莱因、闵可夫斯基等数学大师的讲课,感到大开眼界,大受鼓舞,益发坚定了献身数学研究的决心。博士毕业后,她在著名的数学家高丹、费叶尔的指引下,数学的不变式领域作了深入的研究。不到两年时间,她就发表了两篇重要论文。在一篇论文里,诺特为爱因斯坦的广义相对论给出了一种纯数学的严格方法;而另一篇论文有关“诺特定理”的观点,已成为现代物理学中的基本问题。此后,诺特走上了完全独立的数学道路。 1921 年,她从不同领域的相似现象出发,把不同的'对象加以抽象化、公理化,然后用统一的方法加以处理,完成了《环中的理想论》这篇重要论文。这是一项非常了不起的数学创造,它标志着抽象代数学真正成为一门数学分支,或者说标志着这门数学分支现代化的开端。诺特也因此获得了极大的声誉,被誉为是“现代数学代数化的伟大先行者”,“抽象代数之母”。
伽利略
伽利略17岁那年,考进了比萨大学医科专业。他喜欢提问题,不问个水落石出决不罢休。
有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”
比罗教授的`话音刚落,伽利略就举手说道:“老师,我有疑问。”
比罗教授不高兴地说:“你提的问题太多了!你是个学生,上课时应该认真听老师讲,多记笔记,不要胡思乱想,动不动就提问题,影响同学们学习!”“这不是胡思乱想,也不是动不动就提问题。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的.正好相反,这该怎么解释?”伽利略没有被比罗教授吓倒,继续反问。
“我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授搬出了理论根据,想压服他。
伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。
后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。
戴维·希尔伯特
戴维·希尔伯特(1862~1943),德国著名数学家。希尔伯特是对二十世纪数学有深刻影响的数学家之一,他领导的数学学派是19世纪末20世纪初数学界的一面旗帜,希尔伯特被称为“数学界的无冕之王”,他是天才中的天才。
希尔伯特认为,科学在每个时代都有它自己的问题,而这些问题的解决对于科学发展具有深远意义。他指出:“只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的衰亡和终止。”在1900年巴黎国际数学家代表大会上,希尔伯特发表了题为《数学问题》的著名讲演。他根据过去特别是十九世纪数学研究的成果和发展趋势,提出了23个最重要的数学问题,被认为是20世纪数学的至高点,对这些问题的研究有力推动了20世纪数学的发展,在世界上产生了深远的`影响。这23个问题统称“希尔伯特问题”,后来成为许多数学家力图攻克的难关,对现代数学的研究和发展产生了深刻的影响,并起了积极的推动作用,希尔伯特问题中有些现已得到圆满解决,有些至今仍未得到解决。他在讲演中所阐发的相信每个数学问题都可以得到解决的信念,对数学工作者是一种巨大的`鼓舞。他说:“在我们中间,常常听到这样的呼声:这里有一个数学问题,去找出它的答案!你能通过纯思维找到它,因为在数学中没有不可知。”三十年后,1930年,在接受哥尼斯堡荣誉市民称号的讲演中,针对一些人信奉的不可知论观点,他再次满怀信心地宣称:“我们必须知道,我们必将知道。”希尔伯特去世后,这句话就刻在了他的墓碑上。
奥古斯丁·路易斯·柯西
奥古斯丁·路易斯·柯西(1789—1857),法国数学家、物理学家、天文学家。他是数学分析严格化的开拓者,复变函数论的奠基者,也是弹性力学理论基础的建立者。柯西在数学上的最大贡献是在微积分中引进了极限概念,并以极限为基础建立了逻辑清晰的分析体系。这是微积分发展史上的精华,也是柯西对人类科学发展所做的巨大贡献。
1821年柯西提出极限定义的方法,把极限过程用不等式来刻画,后经魏尔斯特拉斯改进,成为现在所说的柯西极限定义。当今所有微积分的教科书都还(至少是在本质上)沿用着柯西等人关于极限、连续、导数、收敛等概念的定义。他对微积分的解释被后人普遍采用。柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”。在定积分运算之前,强调必须确立积分的存在性。他利用中值定理首先严格证明了微积分基本定理。通过柯西以及后来魏尔斯特拉斯的艰苦工作,使数学分析的基本概念得到严格的.论述。从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念、运动和直观了解的`完全依赖中解放出来,并使微积分发展成现代数学最基础最庞大的数学学科。1857年5月23日柯西在巴黎病逝。他临终的一句名言“人总是要死的,但是,他们的业绩永存。”这句话长久地叩击着一代又一代学子的心扉。
欧几里德
欧几里德(eucild)生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。
古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的`独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。
《原本》问世后,它的'手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。
欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”
欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
欧氏还有《已知数》《图形的分割》等著作。
文森特·多布林
文森特·多布林是一位年轻的法国士兵,在第二次世界大战中英勇捐躯,但却被誉为数学天才。这是因为他在马其诺防线服役时,写下了不朽的数学手稿。
多布林出生于德国的一个犹太人家庭。当反犹浪潮席卷第三帝国时,他和家人从柏林逃到了法国。1938年,年仅23岁的多布林成为巴黎大学有史以来最年轻的数学博士,不久便担当了整个巴黎地区同龄人的数学导师。那时他所进行的概率理论的研究项目,被认为是整个欧洲最前途无量的数学研究项目。他原本是一个前途无量的'数学家,但希特勒入侵法国,使得他的数学生涯于1940年悲剧性地中断了。面对入侵的德国军队,多布林决心奋起抗争,而不是苟且偷生,他参加了法国陆军,成为一名普通的士兵。
多布林随身携带着他的研究论文和即将完成的定理上了前线,驻守马其诺防线。在战争最初的几个月中,上司特许他利用一切空闲时间继续数学研究。1940年夏,德军粉碎了法军的抵抗,多布林所在的步兵团也面临着灭顶之灾。当其他士兵纷纷后撤时,多布林自愿与两名战友留下,抵抗即将到来的.德军。6月21日,当德军马上就要占领阵地时,多布林开枪自杀,宁死不当俘虏,年仅25岁。他弟弟克劳德回忆道:“幸运的是,多布林在德军攻占阵地之前,焚烧了身上所有的研究论文,以免落入德军之手。他不能容忍德国人剽窃他的思想。”
欧拉
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。
事情是因为星星而引起的。当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。"
欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?
他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。
在欧拉的年代,对上帝是绝对不能怀疑的`,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。
回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。
爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的.篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。
小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。
父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。
小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。"
父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。
父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
哈代
英国数学家哈代有一次要从丹麦坐船回英国,到了码头才发现已经没有大船了、坐小船穿越北海风险很大,同行的乘客都分分向上帝祈祷平安。而哈代没有祈祷,只是写了一张明信片寄给丹麦数学家波尔(物理学家尼尔斯·波尔的滴滴)。波尔收到信后大吃一惊,信上只写了一句话:“我证明了黎曼猜想。”(黎曼猜想是和哥德巴赫猜想同等级甚至更高的.数学难题)
哈代平安回到应该后,才向波尔解释原因。其实他并没有证明黎曼猜想,但如果他坐的船失事了,鉴于他在数学界的崇高地位,大多数人会相信他证明出了黎曼猜想,只是不幸在随后的海难中逝世。而哈代是一名坚定的无神论者,如果上帝真的.存在,就不会让船失事,让哈代平白获此如此巨大的荣誉。
所以他就开了这个“逆向祈祷”的玩笑。
莱布尼茨
熊庆来(1893—1969)是云南弥勒县人,中国现代数学的先驱,为中国数学事业的发展做出了杰出贡献。
熊庆来的父亲熊国栋,精通儒学,但更喜欢新学,思想很开明,对熊庆来的影响很大。少年时的熊庆来从他父亲那里常听到有关孙中山民主革命的事情,这在幼年熊庆来的心田播下了爱国的种子。
1907年,熊庆来考入昆明的`云南方言学堂,不久又升入云南高等学堂。当时满清王朝已日薄西山,各地的反清斗争风起云涌,抗捐、抗税、罢课、罢市、兵变遍及全国,清政府陷入于风雨飘摇之中。熊庆来由于参加了“收回矿山开采权”的抗法反清的示威游行而遭到学校的记过处分。现实的生活与斗争命命名熊庆来认识到:要使国家富强,必须掌握科学,科学能强国富民。
1913年,熊庆来赴欧留学。1914年,第一次世界大战爆发,他从比利时经荷兰、英国,辗转到了法国巴黎。8年间先后获得高等数学、力学及天文学等多科证书,并获得理学硕士学位。1921年,28岁的熊庆来学成归国,一心想学以致用,救民于水火。1949年6月,国民党反动政府趁熊庆来去巴黎参加国际会议的机会,解散了熊庆来苦心经营12年的云南大学。年近花甲的熊庆来怀着“壮志难酬,报国无门”的心情,决定滞留在法国继续从事函数论的.研究。
“……祖国欢迎你,人民欢迎你!欢迎你回来参加社会主义建设的伟大事业……”1957年4月,周总理给熊庆来写信,动员他回国。同年6月,熊庆来在完成了函数论专着稿后,毅然启程,回到了祖国的怀抱。他表示,愿在社会主义的光芒中鞠躬尽瘁于祖国的学术建设事业。在回国后的7年中,他在国内外学术杂志上发表了近20篇具有世界水平的数学论文。还培养了杨乐、张广厚等一批数学人才,为祖国赢得了荣誉,表现了这位七旬老人热爱祖国的赤子之心。
1969年,一代宗师、著名数学家熊庆来先生与世长辞。临终之前他还表示为人民鞠躬尽瘁,死而后已。
柯召
柯召(1910年4月12日~2002年11月8日),字惠棠,浙江温岭人,数学家、中国科学院资深院士、被称为中国近代数论的创始人、二次型研究的开拓者、一代数学宗师。 1933年(中华民国二十二年)毕业于清华大学,1937年(民国二十六年)获英国曼彻斯特大学博士学位,1950年加入九三学社,1955年当选为中国科学院院士。
柯召在英国曼彻斯特大学深造时,在导师Mordell的指导下研究二次型,在表二次型为线性型平方和的`问题上,取得优异成绩。
他还先后担任了四川大学教务长、副校长、校长、数学研究所所长等职,作为学术带头人和学校负责人,他卓有成效地抓了几个重要方面的`工作:努力提高教学质量,积极开展基础理论研究,发展应用数学,培养一批高水平的人才。其研究领域涉及数论、组合数学与代数学。在二次型、不定方程领域获众多优秀成果。
王贞仪
女数学家王贞仪(1768-1797),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来著作可以看出,她是一位从事天文和筹算研究女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状计算工具。一般是竹制或木制一批同样长短粗细小棒,也有用金属、玉、骨等质料制成,不用时放在特制算袋或算子筒里,使用时在特制算板、毡或直接在桌上排布。应用“算筹”进行计算方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”记述,现在所见最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
吴文俊
吴文俊(1919年5月12日-2017年5月7日),1919年5月12日出生于上海,祖籍浙江嘉兴,数学家,中国科学院院士,中国科学院数学与系统科学研究院研究员,系统科学研究所名誉所长。吴文俊毕业于交通大学数学系,1949年,获法国斯特拉斯堡大学博士学位;1957年,当选为中国科学院学部委员(院士);1991年,当选第三世界科学院院士;陈嘉庚科学奖获得者,2001年2月,获2000年度国家最高科学技术奖。
对数学的主要领域—拓扑学做出了重大贡献。他引进的示性类和示嵌类被称为“吴示性类”和“吴示嵌类”,他导出的示性类之间的关系式被称为“吴公式”。他的工作是1950年代前后拓扑学的'重大突破之一,成为影响深远的`经典性成果。1970年代后期,他开创了崭新的数学机械化领域,提出了用计算机证明几何定理的“吴方法”,被认为是自动推理领域的先驱性工作。他是我国最具国际影响的数学家之一,他的工作对数学与计算机科学研究影响深远。
许宝騄
许宝騄(1910.9.10一1970.12.18)是中国数学家,生卒于北京。他出身于名门世家,从小就受中国传统教育的影响,父亲聘请教师讲授四书五经,到14岁才入北京汇文中学念高一。1928年考入燕京大学化学系,因对数学有强烈的爱好,次年转学入清华大学数学系,从一年级读起。1933年在清华大学以理学士毕业,考上了留英的名额,因体重太轻不合格未能成行。休养一年后在北京大学任助教。1936年再次考取留英名额,派往伦敦大学Galton实验室和统计系攻读学位。1938年得英国哲学博士,1940年得英国科学博士。毕业后返回祖国在西南联大任教授。1945年赴美,先后在哥伦比亚、伯克莱和北卡罗莱纳大学任访问教授。1947年北京解放前夕,回国在北京大学任教授,直到1970年去世。解放后,他是第一批当选的学部委员。
许宝騄是中国概率统计领域内享有国际声誉的第一位数学家。他的主要工作是在数理统计和概率论两个方面。
数理统计方面,在1938年到1945年这一期间,他对Ney-man—Pearson理论作出了重要的贡献,他得到了一些重要的非中心分布,论证了F检验在上述理论中的优良性,这些都是奠基性的工作;同时他对多元统计分析中的精确分布和极限分布得到了重要的结果,导出正态分布样本协方差矩阵特征根的联合分布和极限分布,这些结果是多元分析中的基石。以上这两方面的工作确立了他在数理统计中的国际上的地位。晚年,他致力于组合设计的构造,也有重要的``工作。
概率论方面,在1945—47年间,他潜心于独立和的极限分布的研究,由于消息闭塞,所得结果大部分与Kolmogorov的工作相重,但使用的方法是不同的。50年代他对马氏过程发生了兴趣,在这一方向写了几篇重要的论文。
以上提到的工作,除独立和这一部分外,都收集在Springer出版社1983年出的《许宝騄全集》(英文版)中。
丘成桐
丘成桐(Shing-TungYau),原籍广东省蕉岭县,1949年出生于广东汕头,同年随父母移居香港,美籍华人,国际知名数学家,菲尔兹奖首位华人得主,美国国家科学院院士、美国艺术与科学院院士、台湾中央研究院院士、中国科学院外籍院士、香港科学院名誉院士。现任香港中文大学博文讲座教授兼数学科学研究所所长、哈佛大学WilliamCasperGraustein讲座教授、清华大学丘成桐数学科学中心主任、北京雁栖湖应用数学研究院院长。
菲尔兹奖首位华人得主,丘成桐证明了卡拉比猜想、正质量猜想等,是几何分析学科的奠基人,以他的名字命名的卡拉比-丘流形,是物理学中弦理论的基本概念,对微分几何和数学物理的发展做出了重要贡献。是第一位获得这项被称为“数学界的.诺贝尔奖”的'华人,也是继陈省身后第二位获得沃尔夫数学奖的华人。
陈省身
陈省身1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪世界级的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。
陈省身9岁考入秀州中学预科一年级。这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。第二年,他进入离家较近的扶轮中学(今天津铁路一中)。陈省身在班上年纪虽小,却充分显露出他在数学方面的`才华。陈省身考入南开大学理科那一年还不满15岁。他是全校闻名的少年才子,大同学遇到问题都要向他请教,他也非常乐于帮助别人。一年级时有国文课,老师出题做作文,陈省身写得很快,一个题目往往能写出好几篇内容不同的文章。同学找他要,他自己留一篇,其余的都送人。到发作文时他才发现,给别人的那些得的分数反倒比自己那篇要高。
他不爱运动,喜欢打桥牌,且牌技极佳。图书馆是陈省身最爱去的地方,常常在书库里一呆就是好几个小时。他看书的`门类很杂,历史、文学、自然科学方面的书,他都一一涉猎,无所不读。入学时,陈省身和他父亲都认为物理比较切实,所以打算到二年级分系时选物理系。但由于陈省身不喜欢做实验,既不能读化学系,也不能读物理系,只有一条路——进数学系。
数学系主任姜立夫,对陈省身的影响很大。数学系1926级学生只有5名,陈省身和吴大任是全班最优秀的。吴大任是广东人,毕业于南开中学,被保送到南开大学。他原先进物理系,后来被姜立夫的魅力所吸引,转到了数学系,和陈省身非常要好,成为终生知己。姜立夫为拥有两名如此出色的弟子而高兴,开了许多门在当时看来是很高深的课,如线性代数、微分几何、非欧几何等等。二年级时,姜立夫让陈省身给自己当助手,任务是帮老师改卷子。起初只改一年级的,后来连二年级的都让他改,另一位数学教授的卷子也交他改,每月报酬10元。第一次拿到钱时,陈省身不无得意,这是他第一次的劳动报酬啊!
考入南开后,陈省身住进八里台校舍。每逢星期日,他从学校回家都要经过海光寺,那里是日本军营。看到荷枪实弹的日本鬼子那副耀武扬威的模样,他心里很不是滋味,不禁快步走开。再往前便是南市“三不管”,是个乌烟瘴气的地方,令他万分厌恶。从家返回学校时,又要经过南市、海光寺,直到走进八里台校园,他才感到松了口气。
陶哲轩
陶哲轩(TerenceChi-ShenTao),1975年7月17日出生于澳大利亚阿德莱德,华裔数学家,菲尔茨奖获得者、英国皇家学会院士、美国国家科学院外籍院士、美国艺术与科学学院院士,美国加州大学洛杉矶分校James and Carol Collins讲席教授、博士生导师。
陶哲轩13岁获得国际数学奥林匹克竞赛数学金牌;16岁获得弗林德斯大学学士学位;17岁获得弗林德斯大学硕士学位;21岁获得普林斯顿大学博士学位;24岁起在加利福尼亚大学洛杉矶分校担任教授;2006年31岁时获得菲尔茨奖、拉马努金奖和麦克阿瑟天才奖;2008年获得艾伦·沃特曼奖;2009年12月作为第二届“丘成桐中学数学奖”的评审总决赛的面试主考官来到中国;2015年获得科学突破奖—数学突破奖。
陶哲轩的专业横跨多个数学领域,包括调和分析、非线性偏微分方程和组合论。
作为当代最年轻的著名华裔数学家,任教于美国加州大学洛杉矶分校(UCLA)数学系,是继丘成桐之后获此殊荣的.第二位华人。是调和分析、偏微分方程、组合数学、解析数论、算术数论等接近10个重要数学研究领域里的大师级数学家,被誉为“数学界莫扎特”。
美国出版的'《探索》杂志评选出美国20位40岁以下最聪明的科学家,有两名华裔科学家入选。其中,数学家陶哲轩位居榜首。
赵爽
三国时期东吴的数学家。曾注《周髀算经》,他所作的《周髀算经注》中有一篇《勾股圆方图注》全文五百余字,并附有数幅插图(已失传),这篇注文简练地总结了东汉时期勾股算术的'重要成果,最早给出并证明了有关勾股弦三边及其和、差关系的二十多个命题,他的证明主要是依据几何图形面积的换算关系。
赵爽还在《勾股圆方图注》中推导出二次方程x2+ax=A(其中a>0,A>0)的求根公式。
在《日高图注》中利用几何图形面积关系,给出了重差术的`证明。(汉代天文学家测量太阳高、远的方法称为重差术)。
沈括
沈括在我国北宋时代,有一位非常博学多才、成就显著的科学家,他就是沈括——我国历史上最卓越的科学家之一。他精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的`地位。《梦溪笔谈》是中国科学史上的坐标,是沈括一生社会和科学活动的总结,内容极为丰富,包括天文、历法、数学、物理、化学、生物、地理、地质、医学、文学、史学、考古、音乐、艺术等共600余条。其中200来条属于科学技术方面,记载了他的许多发明、发现和真知灼见。
沈括在数学方面也有精湛的研究。他从实际计算需要出发,创立了“隙积术”和“会圆术”。沈括通过对酒店里堆起来的酒坛和垒起来的棋子等有空隙的堆体积的研究,提出了求它们的总数的正确方法,这就是“隙积术”,也就是二阶等差级数的求和方法。沈括的研究,发展了自《九章算术》以来的等差级数问题,在我国古代数学史上开辟了高阶等差级数研究的方向。此外,沈括还从计算田亩出发,考察了圆弓形中弧、弦和矢之间的关系,提出了我国数学史上第一个由弦和矢的长度求弧长的比较简单实用的近似公式,这就是“会圆术”。这一方法的创立,不仅促进了平面几何学的发展,而且在天文计算中也起了重要的作用,并为我国球面三角学的发展作出了重要贡献。
秦九韶
秦九韶,是我们耳熟能详的数学家。然而,他的贡献远不止小学初中课本里那么简单。今天,在一个特殊的日子里,让我们重新走近一个“年轻有为”的秦九韶。
1247年完成著作《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献,表述了一种求解一元高次多项式方程的'数值解的算法——正负开方术。
当我们惊叹于秦九韶的数学成就时,殊不知,他还精研了星象、音律、诗词、营造之术,就连弓、剑、营造之术也有不浅的造诣!可以说,传统“六艺”中除了礼,他基本占全了!
秦九韶18岁时就“在乡里为义兵首”,确实是年少气盛。他天资聪颖,兴趣广泛并且乐学好问!其父担任工部郎中(掌管营建)和秘书省官员(掌管图书)这两段时间,正给了他精研营造之术还有涉猎各类图书的机会。除了阅读丰富的典籍,他还去拜访了天文历法、建筑等方面的专家,并且有时还深入到一线工地,了解实际的施工情况;曾向著名词人李刘学习骈俪诗词,并有一定的造诣。有意思的是,他的数学是向一位精通数学的隐士学习的。正是有了这种好奇心、兴趣还有爱请教的珍贵品质,为秦九韶能在数学上有如此造诣打下了坚实的基础!
梅文鼎
历法的制定和修改离不开测算,历理更需要用数学原理来阐明。梅文鼎为研究天文历法的需要,对数学进行了深入的研究,取得了重大成就。
梅文鼎的第一部数学著作是《方程论》,撰成于康熙十一年(1672年)。当时正是杨光先“历讼”失败客死他乡(1669年)后不久,西洋教士趾高气扬,蔑视中国传统文化。梅文鼎抓住“方程”这一“非西法所有”的中国传统数学精华首先发论,来显示中华数学的骄傲,是颇有爱国情怀的。他在书成后给数学家、桐城人方中通的书信中透露了这一思想。他说:“愚病西儒(指传教士)排古算数,著《方程论》,谓虽利氏(指利玛窦)无以难。”
但他对于西算却能采取正确的.态度,主张“去中西之见,以平心观理”。他在发掘整理中国古算的同时,潜心研读《几何原本》等西算书籍,力求会通中西算法。他把所著26种数学书统名之曰《中西算学通》,以此来实践他的主张。
梅文鼎的《笔算》、《筹算》和《度算释例》分别介绍西方的写算方法,纳皮尔(N印沁r)算筹和伽利略(Galile。)比例规。他研究了正多面体和球体的互容关系,订正了《测量全义》中个别资料的错误,独立研究了他名之为“方灯”和“圆灯”的两种半正多面体。他又引进了球体内容等径小球问题,并指出其解法与正多面体和半正多面体构造的关系。他在《方圆幂积》中讨论了球体与圆柱、球台及球扇形等立体的`关系。对于当时一般学人感到困难的三角学,梅文鼎不但有《平三角举要》和《弧三角举要》介绍基本的性质、定理和公式,而且有《堑堵测量》和《环中黍尺》这两部分别借助多面体模型和投影法来阐述相关算法的优秀作品。
《勾股举隅》《勾股举隅》为梅文鼎研究中国传统勾股算术的著作,全书一卷,其中的主要成就,是对勾股定理的证明和对勾股算术算法的推广。书中首列“和较名义”,其次以两幅“弦实兼勾实股实图”来说明勾股定理,其论说的根据是出入相补原理, 在内容上,本书大致上可分作两部分,一为勾股算术,另一主要为勾股测量。前者梅文鼎对其评价很高,他认为此式“乃立之根也。而其理皆具古图(“古图”指的即是赵爽注《周髀算经中》之“勾股圆方图”)中,学者所宜深玩。对此式的证明也是利用此图来完成的。
“弦与勾股和求勾股用量法”一题中所用的尺规作图之方法,与徐光启《勾股义》中“勾股求容圆”来作比较,梅文鼎在尺规作图的概念已相当正确,显示梅文鼎对《几何原本》有一定深度的了解。另外,从梅文鼎在测量问题上所使用的出入相补法来看,其内容相当贴近杨辉乃至於刘徽的作法,有别於明末西方传入的测量方法,梅文鼎的作法是采用传统的勾股方法来解《几何原本》前六卷的部分命题,其中,梅文鼎花了相当多的篇幅说明“理分中末线”(即黄金比例),其曰:“几何不言勾股,然其理并勾股也,故其最难者以勾股释之则明。惟理分中末线似与勾股异源。今为游心立法之初,而仍出於勾股。”由此,可见梅文鼎对传统勾股术的重视。
梅文鼎在数学方面写了20多种著作。将中西方的数学进行了融会贯通,对清朝数学的发展起了推动作用。逝世之后,后人将其历法、数学著述汇为《梅氏丛书辑要》(62卷)。
徐光启
徐光启是明朝末年有名的科学家,他将番薯引进中国,解决了当时的粮食产量问题;在天文学上,他编篡了《崇祯历书》,第一次精准解决了时刻换算的问题;他极力主张多造西洋大炮,称得上是中国军事技术史上提出火炮在战争中应用理论的第一人。但是你知道吗?徐光启更是中国历史上一位伟大的数学家。
徐光启从小爱读书,聪明好学,十几岁就考中了秀才。但是他却一生坎坷,直到不惑之年才中进士。后来,一次科举,他认识了欧洲来的传教士利玛窦,在利玛窦这里,他听了很多从没有听说过、在古书上也没有读到过的科学知识,从此就爱上了西方科学。也是在和利玛窦交往的过程中,徐光启开启了一生传奇的科学经历。
要说数学,徐光启最重要的贡献就在于《几何原本》的翻译。中国古代也有关于图形关系变换的学说,但是被称作“形学”。而“几何”的原意,也是一个虚词,《短歌行》中就有两句诗,“对酒当歌,人生几何”,也就是“多少”的意思。将这样的“几何”来作为度量长短、数量的专有名词,妙不可言。同时,一系列数学相关的名词,比如“点、线、面、角”等,也随之被创造出来,并且流传甚广,被沿用至今。
《几何原本》的意义,不只是数学上的,更重要的在于思想。《几何原本》所代表的逻辑推理方法,再加上科学实验,是世界近代科学产生和发展的重要前提。可以说,《几何原本》译本的'出现,推动了中国近现代科学思想的萌芽。就像徐光启自己所说:“此书为益,能令学理者祛其浮气,练其精心,学事者资其定法,发其巧思,故举世无一人不当学。……能精此书者,无一事不可精,好学此书者,无一事不可学。”
而在他的《几何原本杂议》中,还写有这么一句话:“此书为用至今,在此时尤所急需,百年之后必人人习之”,数百年后的今天,几何学已经走入了中小学的课堂,徐光启的高瞻远瞩令人惊叹!
此外,徐光启还详细论述了中国数学在明代落后的原因,论述了数学应用的广泛性及重要意义等,撰写了《勾股义》和《测量异同》两书。在当时,可谓是名副其实的大数学家。
之后,徐光启对于科学越发有了兴趣,他的科学研究也涉猎很多方面。《几何原本》翻译完成以后,徐光启又同利玛窦和另外一个传教士熊三拔合作,翻译了测量、水利等方面的科学著作。徐光启在利玛窦那里学到了不少天文学方面的知识,他把中国古代历法与西方的天文科学结合起来,进行了深刻的研究,得到了很大的提高。
父亲病死那年,徐光启回到上海奔丧守孝。这年江南遭遇了大水灾,庄稼全被淹了。水退下去以后,他帮助老百姓从福建引来一批甘薯秧苗,要大家栽种,自己还在荒地上带头试种,结果收获丰硕。他看甘薯不仅福建沿海能够种植,上海也可以种植,于是就编了一本小册子,介绍如何种植甘薯。后来甘薯的种植就从福建推广到浙江一带,又很快推广到江淮流域,很大程度上缓解了当时中国的粮食问题。
徐光启不仅研究科学,对国事也非常关心。对抗后金侵略时,他自愿承担训练新兵的重任。但终因朝廷各部门的腐败,壮志未酬。而后在国家危亡之时,他又上奏朝廷,极力主张多造西洋大炮,却仍然被排挤下来。
徐光启辞官回乡时,已是年过花甲的老人。由于他本来就喜欢研究农业科学,回乡后,就在自家田里干农活,同时做些试验,经过长期的研究记录,写成了一部很有名的著作,叫《农政全书》。
1633年,徐光启病逝于任上,享年71岁。这位大器晚成的科学家,直到42岁考取进士,才得以舒展身手,开始科学研究,为富国强兵利民而努力。他的前半生是在科举和教书中度过,但是后半生却实实在在地做出了卓越的贡献。一位老者尚可用勤奋与坚毅造就自己,我辈年轻人,更当奋发图强!
从这些古代数学家的身上,我们亦能看到青年人的使命与担当,他们心系国家命运,努力钻研科学,力求将全部精力贡献给自己的祖国。作为新时代的青年,我们也要学习他们的精神品质,努力学好专业知识,培养专业技能,关心国家社会发展,关注科学进步!
张衡
《后汉书》提到,张衡曾写过一部《算罔论》。此书迟到唐代已经失传,以至唐代的章怀太子李贤怀疑张衡没写过这部书,而是因为《灵宪》是网络天地而算之,故称《灵宪算罔论》。
从《九章算术·少广》章第二十四题的刘徽注文中得知有所谓“张衡算”,因此,张衡写过一部数学著作是应该肯定的。从刘徽的这篇注文中可以知道,张衡给立方体定名为质,给球体定名为浑。他研究过球的外切立方体积和内接立方体积,研究过球的`体积,其中还定圆周率值为10的开方,这个值比较粗略,但却是中国第一个理论求得π的值。另外,如果按照钱宝琮对《灵宪》的校勘:“(日月)其径当天周七百三十分之一,地广二百三十二分之一”,则当时π值等于730/232=3.1466,较10的'开方有精密了。但钱宝琮所作的校勘似乎未必都符合张衡的原来数字。
李冶
李冶(1192年—1279年),原名李治,字仁卿,自号敬斋,真定栾城(今河北省石家庄市栾城区)人。金元时期的数学家。金正大末进士,辟知钧州。
李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。
和秦九韶一样,李冶并不认为算学是“九九贱技”,认为“小数之假所以为大道所归”,也就是说“道”既来源于“小数”(技艺),又借“小数”而体现。他曾经在《益古演段》序中说过:“安知轩隶之秘不于是乎始?”(谁知道轩辕隶首得道的秘诀不是始于数学呢?)也许通过对数学这种“小数”的追求也可以达到“技进乎道”的境界。
李冶对当时基于道教和理学的..数学神秘主义不以为然。在《测圆海镜》的序文中,李冶认为自然之数(数字)虽然不可穷尽但数学的道理(自然之理)是可以推导的,而数学的道理如同黑暗中的光亮一般,只要明白了道理,就可以明白数学的奥妙。
贾宪
贾宪,北宋人,约于1050年左右完成《黄帝九章算经细草》,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因此传世。杨辉《详解九章算法》(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。《详解九章算法》同时录有贾宪进行高次幂开方的“增乘开方法”。
贾宪的老师楚衍是北宋前期著名的天文学家和数学家,“于《九章》《缉古》《缀术》《海岛》诸算经尤得其妙”。当时人王洙(997—1057)有记载:“世司天算,楚,为首。既老昏,有,子贾宪、朱吉著名。宪今为左班殿直,吉隶太史。宪运算亦妙,有书传于世。”根据《宋史·艺文志》记载贾宪著有《黄帝九章算经细草》九卷,又据《明焦竑国史·艺文志》记载,著有《算法斅古集》二卷[1]及《释锁》,可惜均已失传。杨辉著《详解九章算法》(1261年)中曾引用贾宪的'“开方作法本源”图(即指数为正整数的二项式展开系数表,现称“杨辉三角形”)和“增乘开方法”(求高次幂的正根法)。前者比帕斯卡(PascalBlaise,1623—1662)三角形早600年,后者比霍纳(William Geoge Horner,1786—1837)的.方法(1819年)早770年。此外,“立成释锁开方法”的给出,“勾股生变十三图”的完善,以及“增乘方求廉法”的创立,都表明贾宪对算法抽象化、程序化、机械化作出了重要贡献。
张邱建
张邱建,北魏清河(今邢台市清河县)人,约公元5世纪,著名的数学家。他从小聪明好学,喜欢算术。一生从事数学研究,造诣很深。“百鸡问题”是中古时期,关于不定方程整数的典型问题,邱建对此有精湛和独到的见解。著有《张邱建算经》3卷。后世学者北周甄鸾、唐李淳风相继为该书作了注释。算经的体例为问答式,条理精密,文词古雅,是中国古代数学史上的杰作,也是世界数学资料库中的一份遗产。
《张丘建算经》现传本有92问,比较突出的成就有最大公约数与最小公倍数的计算,各种等差数列问题的解决、某些不定方程问题求解等。“百鸡问题”是《张邱建算经》中的.一个世界著名的不定方程问题,它给出了由三个未知量的两个方程组成的不定方程组的解。
计算也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。
《张邱建算经》中的“百鸡问题”是世界上首次提出的三元一次不定方程及其一种解法,它是我国乃至全世界古代数学史中的一个奇葩。这比欧州发现和研究这个问题要早一千多年。
李善兰
李善兰(1811—1882),名心兰,庠名善兰,字竟芳,号秋纫,别号壬叔,海宁硖石人。自幼聪颖好学,从陈奂治经学,但偏嗜数学。9岁自学通《九章算术》,14岁通欧几里得《几何原本》前6卷。后到杭州参加科举考试,得《测圆海镜》、《勾股割圆记》等书,带回家中,潜心钻研,造诣日深。在中国传统数学垛积术和极限方法基础上,发明了“尖锥术”,并据此提出“对数论”。这一独创成果受到西方学者的高度评价。清道光二十四年(1844),住在嘉兴陆家,期间结识江浙一带数学家顾观光、张文虎、汪日桢等,经常聚集研究数学问题。并频频与外地的数学家罗士琳、徐有壬等通信,切磋学术。咸丰二年(1852),到上海墨海书馆,结识英国学者伟烈亚力、艾约瑟、韦廉臣等,共同探讨数学。与伟烈亚力合作(伟口述,李笔录)翻译了《几何原本》后9卷、棣么甘《代数学》(我国第一部符号代数学的译本)以及罗密士《代微积拾级》,对西方近代数学作了系统介绍。与此同时,翻译了《重学》、《谈天》、《植物学》,第一次向我国介绍西方近代物理学、天文学、植物学的最新成就。在历时8年的'翻译过程中,尽心竭力,译文达七八十万字,其中大量科学名词无先例可参考,善兰反复衡量,仔细斟酌,创译了一大批科学名词,如:代数、函数、指数、微分、积分、轴、坐标、切线、方位、自行、摄动、光行差、分力、合力、质点、细胞等等,一直沿用至今。为我国近代科学的传播和发展作出了贡献。
十一年,应曾国藩之邀入安庆军械所,后又至南京主持金陵书局,积极从事与洋务新政有关的科技学术活动。同治三年(1864)七月,向曾国藩提出刻印自己的译著和所有数学书籍的要求,得到允诺。次年由曾国藩亲自书签,《几何原本》在南京出版。翌年,又由曾国藩资助,将所有手稿尽数付印,出版《则古昔斋算学》。在安庆曾国藩军中,善兰还得以安心写作《火器真诀》(我国第一部弹道学著作)。七年,经广东巡抚郭嵩焘推荐,赴京任同文馆天文算学总教习,官至户部郎中、总理衙门章京。十年,发表了我国第一篇关于素数的论文《考根数法》,不仅证明了费尔马定理,而且指出了它的`逆定理之不存在。在《垛积比类》中,为解决三角自乘垛的求和问题提出了一个恒等式,后被国际间命名为“李善兰恒等式”。对于“李善兰等式”,著名数学家华罗庚十分推崇,并在《数学归纳法》中加以引用。善兰是我国教育史上第一位数学教授,在同文馆任教的10余年间,悉心培育了100多位科学人才。
李善兰毕生醉心科学。年轻时,洞房花烛之夜,独自一人悄悄登上0进行每天例行的天象观察,至今传为美谈。光绪八年(1882)逝世前几个月,还着手编著《级数勾股》。李善兰对训阕词章也有研究,善诗、嗜酒,年轻时常与“鸳湖吟侣”诗友们相唱和。道光二十二年(1842),英国侵略军攻陷乍浦,善兰满怀悲愤写下了控诉侵略者的诗篇《乍浦行》、《刘烈女》、《汉奸谣》等,表达了其爱国热忱。有《则古昔斋遗诗》1卷。李善兰的墓在海宁牵罾桥东北。故居尚存。1982年10月,中国科学技术史学会在杭州举行学术讨论会,纪念李善兰对中国近代科学发展作出的杰出贡献。
杨辉
杨辉(生卒年未详),字谦光,宋钱塘县(今杭州)人。精研数学,被列为宋元四大数学家之一。宋景定二年(1261),著《详解九章算法》,后附《纂类》,共12卷。内有“开方作法本源图”,即二项式定理系数表。这一方法出于北宋贾宪著《释锁算书》,已失传。杨辉在书中不仅记录下来,还作了详尽阐述。这个外形很像一个三角形,后人称之为“杨辉三角”。
欧洲著名的“巴斯加三角”与之相同,但比杨辉迟300余年。景定三年,著《日用算法》2卷,把复杂的乘除法改为简便的.`加减法,非常实用。为适合初学,还编有诗话13首,立图草66问。又采摘古今算术,于咸淳十年(1274)撰《算法通变本末》,分上、中、下3卷。上、中两卷又名《乘除通变算宝》,书内列有“九归”口诀,介绍筹算乘除的各种简捷算法。下卷又名《法算取用本末》,系与史仲荣合撰。十一年,撰《田亩比类乘除捷法》2卷,《续古摘奇算法》2卷。以上7卷,合称《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。他还曾论证过弧矢公式,时人称为“辉术”。杨辉对中国和世界数学史都作出了杰出贡献。
【数学家的小故事】相关文章:
数学家的故事50字(通用12篇)02-27
关于诚信的小故事10-10
古代道德的经典小故事10-18
感人的亲情小故事02-23
著名的科学小故事10-10
古人智慧小故事11-24
关于竞争的寓言小故事04-28
古代武则天的小故事12-29
古代有关礼仪的小故事02-27