斐波那契数列

时间:2021-10-26 08:34:38 全科知识 我要投稿

斐波那契数列

斐波那契数列

斐波那契数列(斐波那契数列)

斐波那契数列,又称黄金分割数列,指的是这样一个数列:0、1、1、2、3、5、8、13、21、……在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=F(n-1)+F(n-2)(n>=2,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1960年代起出版了《斐波纳契数列》季刊,专门刊载这方面的研究成果。

目录 定义 通项公式 与黄金分割 特性 定义

斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 特别指出:0是第0项,不是第1项。 这个数列从第二项开始,每一项都等于前两项之和。 斐波那契数列的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci),生于公元1170年,卒于1240年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。

通项公式

递推公式

斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式: 显然这是一个线性递推数列。

通项公式

(如上,又称为“比内公式”,是用无理数表示有理数的一个范例。) 注:此时a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3,n∈N*)

通项公式的推导

方法一:利用特征方程(线性代数解法) 线性递推数列的特征方程为: 解得 则 解得: 方法二:待定系数法构造等比数列1(初等代数解法) 设常数r,s。 使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。 则r+s=1, -rs=1。 n≥3时,有。 F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。 F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。 F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。 …… F⑶-r*F⑵=s*[F⑵-r*F⑴]。 联立以上n-2个式子,得: F(n)-r*F(n-1)=[s^(n-2)]*[F⑵-r*F⑴]。 ∵s=1-r,F⑴=F⑵=1。 上式可化简得: F(n)=s^(n-1)+r*F(n-1)。 那么: F(n)=s^(n-1)+r*F(n-1)。 = s^(n-1) + r*s^(n-2) + r^2*F(n-2)。 = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。 …… = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F⑴。 = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。 (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。 =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。 =(s^n - r^n)/(s-r)。 r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。 则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。 方法三:待定系数法构造等比数列2(初等代数解法) 已知a1=1,a2=1,an=a(n-1)+a(n-2)(n>=3),求数列{an}的通项公式。 解 :设an-αa(n-1)=β(a(n-1)-αa(n-2))。 得α+β=1。 αβ=-1。 构造方程x^2-x-1=0,解得α=(1-√5)/2,β=(1+√5)/2或α=(1+√5)/2,β=(1-√5)/2。 所以。 an-(1-√5)/2*a(n-1)=(1+√5)/2*(a(n-1)-(1-√5)/2*a(n-2))=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)`````````1。 an-(1+√5)/2*a(n-1)=(1-√5)/2*(a(n-1)-(1+√5)/2*a(n-2))=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)`````````2。 由式1,式2,可得。 an=[(1+√5)/2]^(n-2)*(a2-(1-√5)/2*a1)``````````````3。 an=[(1-√5)/2]^(n-2)*(a2-(1+√5)/2*a1)``````````````4。 将式3*(1+√5)/2-式4*(1-√5)/2,化简得an=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。 方法四:母函数法。 考察函数Sn(x)=F1 x+F2 x?+F3 x?+……+Fn x^n……………………………① 则 xSn(x)=F1 x?+F2 x?+……+F{n﹣1} x^n+Fn x^(n+1)……………………② x?Sn(x)=F1 x?+……+F{n﹣2} x^n+F{n﹣1} x^(n+1)+Fn x^(n+2)………③ ①﹣②﹣③得(1﹣x﹣x?)Sn(x)=x﹣F{n+1} x^(n+1)﹣Fn x^(n+2)……④ 令1﹣x﹣x?=0(即x=或x=) 于是,④式右边=0即x﹣F{n+1} x^(n+1)﹣Fn x^(n+2)=0 移项,两边同除以x^(n+1),得到…………………………⑤ 将x的两个值分别代入⑤,并作差,得到(x1﹣x2)Fn=﹣ 代入具体数值得到

与黄金分割

关系

有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,后一项与前一项的'比值越来越逼近黄金分割0.618.(或者说后一项与前一项的比值小数部分越来越逼近黄金分割0.618、前一项与后一项的比值越来越逼近黄金分割0.618) 1÷1=1,2÷1=2,3÷2=1.5,5÷3=1.666...,8÷5=1.6,…………,89÷55=1.6181818…,…………233÷144=1.618055…75025÷46368=1.6180339889…... 越到后面,这些比值越接近黄金比.

证明

a[n+2]=a[n+1]+a[n]。 两边同时除以a[n+1]得到: a[n+2]/a[n+1]=1+a[n]/a[n+1]。 若a[n+1]/a[n]的极限存在,设其极限为x, 则lim[n->;;∞](a[n+2]/a[n+1])=lim[n->;;∞](a[n+1]/a[n])=x。 所以x=1+1/x。 即x²=x+1。 所以极限是黄金分割比..

特性

平方与前后项

从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。 如:第二项1的平方比它的前一项1和它的后一项2的积2少1,第三项2的平方比它的前一项1和它的后一项3的积3多1。 (注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如从数列第二项1开始数,第4项5是奇数,但它是偶数项,如果认为5是奇数项,那就误解题意,怎么都说不通) 证明经计算可得:[f(n)]^2-f(n-1)f(n+1)=(-1)^(n-1)

与集合子集

斐波那契数列的第n+2项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

求和

证明: 当n=0时,有f(0) = f(0 + 2) - 1 = f(2) - 1,显然成立。 假设当n=k(k>=0且k为整数)时,等式成立,则有 f(0)+f(1)+f(2)+....+f(k)=f(k+2)-1,两边同时加上f(k+1),得 f(0)+f(1)+f(2)+....+f(k)+f(k+1)=f(k+2)+f(k+1)-1=f(k+3)-1 则此时n=k+1时,等式成立 综上,等式成立

隔项关系

f(2n-2m-2)[f(2n)+f(2n+2)]=f(2m+2)+f(4n-2m) [ n〉m≥-1,且n≥1]

两倍项关系

f(2n)/f(n)=f(n-1)+f(n+1) 与组合数关系

【斐波那契数列】相关文章:

有趣的斐波那契数列日记200字07-11

HDU 4549 M斐波那契数列(矩阵快速幂) -电脑资料01-01

与斐波那契数列有关的恒等式的组合法证明10-18

hdu4549M斐波那契数列(矩阵+欧拉定理) -电脑资料01-01

斐波那契数(C/C++,Scheme) -电脑资料01-01

笔试题(波那其数列)01-01

斐波那契狂想-信息技术校本课程的一次创意尝试07-26

订契(訂契)05-28

薛斐05-25