- 《圆的面积》的教学设计 推荐度:
- 相关推荐
《圆的面积》的教学设计(通用12篇)
作为一名默默奉献的教育工作者,时常需要编写教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。教学设计应该怎么写才好呢?以下是小编帮大家整理的《圆的面积》的教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。
《圆的面积》的教学设计 篇1
教学目标:
1.通过两次剪圆,感知对圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,知道圆心和半径的作用,会用圆规画圆,提高对圆的认识;通过建构,掌握对圆的认识;通过应用,使学校数学向生活数学延伸,升华对圆的认识。
2.通过欣赏生活中的圆、用圆设计的图案,发现数学美,提高学习的兴趣。
3.通过介绍圆,培养主动建构的能力;通过学生系列的探索活动,培养学生科学的探究态度,发展学生的空间观念。
教学重点:认识圆,掌握圆的特征。
教学准备:
学生:剪刀、彩色纸剪一个平面图形、圆规、直尺、圆形物体一个、一张方格纸
教师:圆规、直尺、一个圆、一根长绳、课件
教学设计思路:
圆在生活中是很常见的`,应用也是非常广泛的。通过举例、欣赏、想象基础上的两次剪圆、套圈基础上的探究活动,实现对生活数学的提炼和向学校数学的过渡;通过用圆形物体画圆、用圆规画圆、用绳子画圆,实现生活数学与学校数学的精密结合;通过设计汽车轮胎、测量实物圆的直径、利用圆设计图案,实现学校数学的提升和向生活数学的延伸。
学生对生活中的圆是认识的,对数学中的圆也是有一定基础的。通过两次剪圆,感知对圆的认识;通过讨论、猜测、验证,理解对圆的认识;通过画圆,提高对圆的认识;通过建构,掌握对圆的认识;通过应用,升华对圆的认识。
教学预设活动:
一、剪圆,感知对圆的认识
师:同学们,这节课我们一起来研究圆,板书圆。你见过圆吗?在哪里见过?
师:放课件,欣赏生活中的圆。
师:请你闭上眼睛在脑子里勾画一下圆的形状.
师:直接剪出你印象中的圆。
师:剪下来的图形跟你印象中的圆完全一样吗?有什么不同?
师:怎样才能剪出你印象中的圆呢?在刚才的基础上剪一剪。
师:通过剪圆,你觉得圆与带来的平面图形的最大区别是什么?
二、探究,理解对圆的认识
师:我有一件礼物,谁先抢到就送给谁,你认为现在这种排列合理吗?为什么?怎么排队最合理?我应该站在哪儿?你怎么跑?哪两个人之间的距离最远?
师:我们把刚才讨论的内容在这个圆中表示出来,分别怎么表示?分别叫什么?
师:直径真的是最长的吗?怎么验证呢?
师:请你猜想一下,圆会有哪些特征?根据学生的猜想教师板书。
师:你能验证这些猜想吗?请你试一试。如果一个人验证有困难可以找人合作。
师:谁愿意说说你是怎么验证的?有补充吗?在验证过程中有新的发现吗?
三、画圆,提高对圆的认识
师:我们知道要剪圆先要画圆,你以前画过圆吗?你是怎么画的?
师:如果想画一个半径是3厘米的圆,借助什么来画会比较方便?你会画吗?
师:谁愿意展示你是怎么画圆的?先说再画。有不同的方法吗?
师:若想改变圆的大小,我们可以怎么做?半径的作用是?
师:若想改变圆的位置,我们可以怎么做?圆心的作用是?
师:你还知道其他画圆的方法吗?
师:我想到操场上画一个很大的圆,你能帮我想个办法吗?谁愿意示范?用这种方法画圆要注意什么?
四、建构,掌握对圆的认识
师:同学们,刚才我们对圆进行了研究,现在请你闭上眼睛回忆一下我们学习的过程,整理一下你的学习收获。睁开眼睛,你能介绍一下你所认识的圆吗?
五、应用,升华对圆的认识
师:如果你是汽车设计师,会把车轮设计成什么形状?说说你的理由?为什么不设计成其它形状呢?
师:其实利用圆还可以设计出非常美的图案,欣赏用圆设计的图案。
师:你能利用圆在方格纸上设计一个漂亮的图案吗?
六、练习。
《圆的面积》的教学设计 篇2
教学内容:
新人教版数学六年级上册第67—68页,圆的面积。
教学目标:
1、理解圆的面积的意义,掌握圆的面积计算公式,并能运用公式解决实际问题。
2、经历圆的面积计算公式的推导过程,体会转化的思想方法。
3、培养认真观察的习惯和自主探究、合作交流的能力。
教学重难点:
1、运用圆的面积计算公式解决实际问题。
2、理解圆的面积计算公式的推导过程。
教学准备:多媒体课件
教学方法:自主探究,合作交流
教学过程:
一、小测验:
1、一个圆的直径是6厘米,这个圆的半径是()厘米,周长是()厘米。
2、一个圆形喷水池的周长是31.4米,这个喷水池的直径是()米,半径是()米。
二、问题引入
1、师:出示图片,小明家门前有一块直径为20米的圆形草坪,每平方米草坪8元。你能根据图中信息提出一个数学问题吗?
2、生:尝试说出一个数学问题。(铺满草坪需要多少元钱?)
3、师:要想求出铺满草坪需要多少元钱,需要先求出圆的面积。今天我们就来学习圆的面积——(板书课题:圆的面积1)
三、探索新知
(一)复习,平面图形面积的计算方法。
(二)探索圆面积的计算方法
1、我们一起来推导圆的面积公式吧!
2、利用多媒体课件展示圆的.面积公式的推导过程。
(1)分别把圆4等分、8等分、16等分、32等分、64等分,拼得近似长方形。
(2)把圆128等分后,说明分的份数越多,拼得的就越像长方形。
3、在图形的拼凑与转化中,同时观察与思考以下问题。
a、拼凑中,圆在转化成什么图形?
b、长方形的长与圆的周长有什么关系?长方形的宽与圆的半径有什么关系?c、拼成的近似长方形的面积和圆的面积有什么关系?
4、教师一边引导学生一起回到,一边板书以下填空:长方形的长是(圆周长的一半),长方形的宽是半径(r)
因为长方形的面积=(长×宽),所以圆的面积=(πr×r)=(r2)
如果用s表示圆的面积,那么圆的面积计算公式就是S= πr2
5、学生齐读公式
S= πr2
教师强调r2= r × r(表示2个r相乘)
(三)应用公式
一个圆的半径是4厘米。它的面积是多少平方厘米?
思考:
1、本题已知什么,要求什么?已知圆的半径,求圆的面积。
2、要求圆的面积,可以直接利用公式把r=4代入计算。分组合作交流计算,
3、指名学生汇报结果,课件展示解答过程。并小结本题属于已知圆的半径求圆的面积,可直接代入计算。
例
1、圆形草坪的直径是20m,每平方米草皮8元,铺满草坪需要多少钱?
2、要求铺满草坪需要多少钱,应先求出什么?先求圆的面积。
3、要求圆的面积,能直接运用圆的面积公式计算吗?不能,应先求出圆的半径。分组合作,完成计算,并汇报计算过程与结果。
4、课件展示解答过程,强调书写格式。并小结本题的关键是先要求出圆的面积,是已知圆的直径,求圆的面积。
(四)知识应用
1、一个圆形茶几桌面的直径是1m,它的面积是多少平方米?已知什么,求什么?首先要求出什么?分组合作解决,并汇报结果。
课件展示解答过程,并让学生说出本题属于已知直径求圆的面积。
2、街心花园中圆形花坛的周长是18。84米。花坛的面积是多少平方米?思考要求花坛的面积,应先求什么?怎么求解呢?分组合作交流完成本题。
3、视情况作适当的提示,展示解答过程。说出本题属于已知圆的周长,求圆的面积。
四、课堂总结:这节课,你有哪些收获?
说出圆面积公式的推导和圆面积公式后,展示圆面积公式的推导过程,并引导学生齐答要求圆的面积,必须先知道圆的半径。
五、作业布置:
教材第71页,练习十五,第1题~第4题。
《圆的面积》的教学设计 篇3
一、学习目标:
1、通过观察、操作、分析和讨论,推导出圆的面积公式。
2、能利用公式进行简单的面积计算,会解决简单的实际问题。
3、渗透转化思想,初步掌握数学的学习方法,通过小组合作交流,提升合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
重点:
圆的面积公式的推导及应用公式计算。
难点:
圆面积公式的推导过程。
二、教学准备:
教学课件
分成不同等份的圆形卡纸、纸板、胶棒
三、教学过程:
(一)、复习铺垫,导入新课:
1、看到老师手中的圆,你能想到有关圆的什么知识?
学生汇报。
2、你们还想知道圆的什么知识?
学生交流。
3、那你知道什么是圆的面积吗?
学习圆的面积的概念。
请学生到台前比划比划。
4、你已经会计算哪些平面图形的面积了?打开练习本写一写。
全班反馈。
师课件出示图形及公式。
5、你还记得平行四边形、三角形、梯形的面积计算公式的推导过程吗?简单说。
学生汇报交流,教师课件演示。
回忆平行四边形面积计算公式的推导过程。
高宽
6、总结方法:这些图形面积公式的推导过程有什么共同点?
预设:生1:都要把它转化为已经学过的图形来推导。生2:都要运用拼凑割补的方法。
师小结方法:说得非常好,我们学习一种新图形的面积时,通常都要运用拼、凑、割、补的方法,把它转化成已经学过的图形,再根据两者之间的关系,推导出新图形的面积公式。那么是否也可以把圆转化成一个已学过的图形来推导出圆面积的计算公式呢?
师板书:转化法
(二)、利用转化,推导公式:
1、下面就请同学们小组合作,动手剪一剪、拼一拼,看可以把圆转化成什么图形?
学生操作。
2、师:谁能告诉老师你们小组把圆转化成了什么图形?
生到台前展示。
预设:生1:我们小组把圆转化成一个近似的长方形。生2:我们小组把圆转化成一个近似的平行四边形。
师:大家真了不起!通过动手操作把圆转化成了这么多近似的图形。
师板书:操作法
3、师:为什么说是一个近似的长方形呢?请看课件(展示课件),同时请同学们思考,如果把圆平均分的份数越多,拼成的图形会怎样呢?
预设:生1:平均分的份数越多,拼成的'图形越接近于长方形。
生2:平均分的份数越多,每一份就会越细,拼成的图形就会越接近于长方形。
4、师:下面请同学们仔细观察、分析拼成的长方形与原来的圆之间有什么关系?带着问题先自己思考在小组讨论交流。
(1)圆同拼成的近似长方形或平行四边形什么变了?什么没变?
(2)拼成的近似长方形或平行四边形各部分相当于圆的哪部分?
(3)你能不能根据它们的以上关系由长方形或平行四边形的面积计算公式推导出圆的面积计算公式吗?
小组同学之间互相说说推导过程。
5、全班演示、汇报:
学生到台前演示交流。
(1)把圆16等分拼成近似的平行四边形。
(2)把圆32等分拼成近似的长方形。
(=(r)
①拼成的平行四边形的高相当于圆的半径,它的底相当于圆周长的一半。
②拼成的长方形的宽相当于圆的半径,长相当于圆周长的一半。
教师课件演示。组织学生进行语言表述。
(三)、认真练习,巩固新知:
1、师:计算圆的面积一定要有什么条件?学生交流。
2、课件出示练习题:
(1)求下面各圆的面积。
r= 3厘米
d= 2分米
C= 12。56米
(2)在草地中间的木桩上栓着一只羊,栓羊的绳子长3米。羊可以吃到草的面积最大是多少?(忽略绳头不计)
(3)圆形花坛的直径20m,它的面积是多少平方米?
拓展练习:
一个长方形的草坪,长25米,宽12米,一头奶牛被主人用5米长的绳子拴在草坪中央的木桩上(接头不计)。
(1)这头奶牛最多可吃掉多大面积的草?
(2)奶牛吃不到的草坪的面积有多大?
四、板书设计:
学习方法:
转化法
长方形面积=长×宽
操作法↓ ↓
圆的面积=圆的周长的一半×圆的半径
化曲为直S = πr × r
平行四边形面积=底×高
↓ ↓
圆的面积=圆的周长的一半×圆的半径
S = πr × r
五、教学反思:
圆的面积公式推导是学生掌握平行四边形、三角形、梯形面积公式推导后的探究。学生有了应用转化的思想来推导面积公式的经验。所以教学设计时,我注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生已有知识出发进行教学设计,为学生的自主探究创造条件。
(一)、重视自主探究,促进合作交流。
让学生回忆一下以前学过的平面图形的面积公式的推导方法,利用多媒体课件直观再现推导过程,学生在回顾旧知识的过程中领悟到这些平面图形面积的推导都是通过拼摆的方法,把要学的图形转化成已经学过的图形来推导的,从而渗透转化的思想,并为后面自主探究推导圆的面积作好铺垫。
引导学生主动探究。学生以小组为单位,通过合作剪、拼、摆,把圆转化成学过的图形,并且在操作过程中,学生要边操作边思考找出拼成的新图形与原来的圆之间的联系,然后得出:圆的面积=圆周长的一半×半径,当得出结论后,我没有直接告诉学生用字母怎么表示圆的面积公式,而是引导学生自己逐步完善公式。在整个公式的推导过程中,学生始终参与到如何把圆转化成其它图形的探索活动中来,学生的思维空间被打开,想象被激活,每个学生的创造个性都得到了充分自由的发展,亲身经历知识的形成过程,体验成功的喜悦。
(二)、运用多媒体手段,激发学生学习兴趣。
在学生实践操作的基础上,我利用多媒体精确演示圆割补拼图的过程,让学生清楚地理解自己推导方法的科学性和准确性,极大地激发了学生们的学习兴趣。
(三)、练习设计适当,由浅入深地巩固新知。
课上及时安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。
《圆的面积》的教学设计 篇4
一、教材内容:
本节课内容是求圆的面积
二、教学目标:
知识目标:
⑴引导学生通过观察了解圆的面积公式的推导过程
⑵帮助学生掌握圆的面积公式,并能应用公式解决实际问题、
能力目标:使学生了解从“未知”到“已知”的转化过程,逐渐培养学生的抽象思维能力。
情感目标:通过实例引入,让学生体验数学来源于生活,又服务于生活;向学生展示生动、活泼的数学天地,唤起学生学习数学的兴趣,使全体学生积极参与探索,在参与中体验成功的乐趣。
三、教学重点难点:
重点:圆的面积公式的推导过程以及圆的面积公式的应用。
难点:在圆的面积公式推导过程中,学生对圆的无限平均分割,“弧长”无限的接近“线段”的理解以及将圆转化为长方形时,长方形的长是圆的周长的一半的理解。
四、教学流程
1、复习迁移,做好铺垫
师问:
(1)长方形面积公式
(2)平行四边形面积公式
师:平行四边形面积公式的求法是借住谁来推导出来的?
2、创设情景,引入课题
用多媒体出示:一只小牛被它的主人用一根长2米的绳子栓在草地上,问小牛能够吃草的'面积有多大?
问题:
(1)小牛能够吃草的最大面积是一个什么图形?
(2)如何求圆的面积呢?
3、师生互动,探索新知
(1)师:平行四边形面积可以转化成长方形面积,那么圆的面积该怎么办呢?
(2)让学生动手操作:
教师将课前准备好的圆分给各小组(前后四人为一组)。请同学们试试看,将圆转是否可以化成我们已学过的图形,并求出它的面积。
(3)让学生转化的过程进行展示。(略)(多组学生展示)
(4)用多媒体进行验证。
让学生闭起眼睛想一想是不是分得的份数越多拼成的图形越接近于长方形。
师:若把圆平均分得的份数越多,拼成的图形就越接近于一个长方形,它的面积也就越接近了这个长方形的面积。
(5)引导归纳:
思考1:既然圆的面积无限接近于长方形。那么我们如何根据长方形的面积来推导圆的面积公式呢?
思考2:长方形的长、宽与圆有什么关系呢?
再次多媒体展示动画。
师:若圆的半径为r,则圆的周长为2πr,从而得出长方形长=πr,宽=r,
即:圆的面积=长方形的面积=长×宽=πr×r
得到:s圆=πr×r
师:要求圆的面积必须知道什么条件?若不知半径必须先求出半径再求出圆的面积。
4、实际应用,强化新知
(1)利用公式解决实际问题:求小牛吃草的最大面积是多少?
师:强调书写格式:a写出公式b代入数字c计算结果d写出单位。
(2)出示例题:
例题1:已知一个圆的直径为24分米,求这个圆的面积?
a、让学生独立练习,b、指名板演,c、师生评议。
例2、一个圆形花坛,周围栏杆的长是25、12米,这个花坛的种植面积是多少?(π≈3、14)
a、学生独立练习,b、指名板演,c、师生订正。
师:引导学生对三道题进行分析比较,归纳出求圆的面积方法。
5、巩固练习,深化新知
1、判断题
(1)圆的半径扩大到原来的3倍,圆的面积也扩大到原来的3倍。()
(2)半径为2厘米的圆的周长与面积相等。()
2、把边长为2厘米的正方形剪成一个最大的圆,求这个圆的面积。
3、一块直径为20厘米的圆形铝板上,有2个半径为5厘米的小孔,这块铝板的面积是多少
6、课内总结,梳理新知
师:(1)本节所学的主要公式是什么?
(2)如果求圆的面积,必须知道什么量?
(3)已知圆的周长、圆的直径是否也可以求圆的面积呢?如何求。
7、布置作业
《圆的面积》的教学设计 篇5
一、教学内容:
《圆的面积》
二、教材分析
圆的面积是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。而圆这样的曲边图形的面积计算,学生还是第一次接触到,如果学生完全自主地探索如何把圆转化成长方形或其他平面图形是有很大难度的,所以教材首先出示了估算图,再让学生利用学具进行操作,让学生自主发现圆的面积与拼成的长方形的面积的关系,推导出圆的面积计算公式。所以本课的教学活动将化曲为直和极限的数学思想纳入到学生原有的认知结构之中,从而完成新知的构建。
三、学情分析
学生从认识直线图形发展到认识曲线图形,是一次飞跃,但是从学生思维特点的角度看,六年级学生以抽象思维为主,已具有一定的逻辑思维能力,已经有了许多机会接触到数与计算、空间图形等较丰富的数学内容,已经具备了初步的归纳、类比、推理的数学经验,并具有了转化的数学思想。所以在教学中应注意联系现实生活,组织学生利用学具开展探究性的数学活动,注重知识发现和探索过程,使学生从中获得数学学习的积极情感体验和感受数学的价值。
四、教学目标
1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆的面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积的知识解决一些简单的实际问题。
3、在估一估和探究面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
五、教学重难点
教学重点:圆面积计算公式的推导和应用
教学难点:理解把圆转化为平行四边形,长方形推导出圆的面积的计算公式的过程。
六、教具准备:多媒体课件,等分好的圆形纸片。
七、教学流程
(一)创设情境,激发兴趣。
师:红岸公园为了减轻工人们的负担,在公园的草坪上安装了许多个自动喷水头,它喷射的距离为5米,喷水头转动一周是什么图形?
(生回答:圆形)
师:喷水头转动一周可以浇灌多大的面积呢?(课件演示喷射的过程)
这个面积就是谁的面积?(圆的面积)
(板书:定义:我们把圆所占平面的大小叫做圆的面积)
同学们会求圆的面积吗?这节课我们就来研究这个问题。(板书:圆的面积)
[设计意图:创设问题情境让学生在生活中发现问题,激发学生探究新知的兴趣、欲望,从而主动自觉地学习新知]
(二)尝试估算、探究思考。
师:这个圆的面积到底有多大呢?我们先来估算一下这个圆的面积。
(课件出示16页图,将这个圆置于边长是10米×10米的正方形中)请同学们仔细观察,先试着估算一下这个圆的面积。
学生独立思考,师巡视。
学生交流估算的方法:
1。利用正方形的面积估算,大的正方形的面积是100平方米,小正方形的面积是50平方米,圆的面积在大正方形和小正方形的面积之间,即50平方米<圆的面积<100平方米。
2、利用数格子的方法估算,先数出 四分之一个圆的面积约是20平方米,整个圆的面积约是80平方米。
我们估计了半天,也没有得到精确的数值,那么,它一定有一个具体的计算方法,就像圆的周长= dπ 或2π r一样,我们继续往下探究。
[设计意图:让学生通过独立思考,初步尝试解决的方法,为后面的深入探究作好辅垫]
(三)合作交流,探索规律
1、由旧知引入。
师:同学们还记得我们在学习的平行四边形、梯形面积时是怎样推导公式的吗?我们利用的就是把新的图形经过分割、拼合等方法转化成我们所熟悉的图形。那么,我们能否也用同样的方法推出圆面积的计算公式。
[设计意图:让学生回忆旧知,引导学生利用旧知类比迁移。为学生打开思路,找到了继续往下探究的方向,对由直线图形过度到曲线图形有了初步的感知。]
2、探究公式
(1)学生操作:
师:请大家拿出圆片,把它等分成8份,再分成16份,然后和组内成员剪一剪、拼一拼,看看能拼成什么图形。思考:拼成的图形和圆形有什么关系?
学生操作,教师巡视。
(2)学生汇报:可拼成平行四边形、长方形、梯形。(3)以长方形和平行四边形为例:师一边倾听一边课件演示拼的过程。
(4)操作思考:
学生接着剪拼32等分的圆形,边拼边观察和16等分的圆拼成的图形进行比较,你发现了什么?(生回答:更接近的平行四边形和长方形)
(课件演示拼的过程,再现等分16份的圆拼成的图形)
(5)如果把圆等分为64份,128份……大家想拼成的图形会怎么样?
(生:分的分数越多拼成的`图形越接近长方形)
(6)观察思考:请同学们看大屏幕,接成的近似长方形的长和宽和圆的哪部分相等。
(学生观察、思考,小组交流一下。)
生:长方形的长相当于圆周长的一半(π r),长方形的宽相当于圆的半径(r)。
师:长方形的面积公式为s=长×宽,那么圆的面积公式应怎样写?
生:s=长×宽
= π r×r= π r2
师:π r2 中r2表示r×r即2个r相乘。
师:我们终于找到了圆的面积和半径的关系。
[设计意图:教师放手让学生自己拼剪,为学生提供了解决问题的方法和途径,并面向全体学生,促进不同层次的学生在原有水平上得到不同程度的发展与提高,培养了学生的空间想象力。]
四、巩固强化,应用拓展。
1、计算喷水头转动一周浇灌的面积是多少?
(学生利用公式进行计算,师巡视)(强调估算的作用)
2.已知圆的直径0.2分米,求圆的面积。
3.北京天坛公园的回音壁是闻名世界的声学奇迹,它是一道圆形围墙。圆的直径为65.2米,周长与面积分别是多少?
4.有一圆形蓄水池。它的周长约是31.4米,它的占地面积约是多少?
5.教材19页第5题。
[设计意图:让学生灵活掌握圆的面积教师大胆放手,让学生独立解答,经过尝试,他的观察力,动手操作能力想象力都会得到进一步的发展。]
五、总结收获,激励结束(略)
《圆的面积》的教学设计 篇6
一、教学目标:
1、通过操作、观察、引导学生推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2、培养学生观察分析,推理和概括的能力,发展学生空间理念,并渗透极限,转化的数学思想。
3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实际和数学交流的能力,体验数学探究的乐趣。
二、教学重点:
圆的面积公式的推导及应用公式计算。
三、教学难点:
圆面积公式的推导。
四、教学关键:
转化前后各部分间的对应关系。
教学过程
一、导入新课:
提出问题:
在一广阔草地上,用绳子拴着一只羊,可移动的绳长是10米,这只羊可活动的范围最大是多少平方米?
请大家画出羊活动范围的示意图,请两位同学到黑板上画。(一位画的是周长,另一位画的是面积。)
思考:
要求羊活动的范围就是求此圆的周长还是面积?谁画的正确,为什么?什么是圆的面积?(先说,再看书自学。)
生读,教师板书:圆的面积
大家会求这只羊的活动范围吗?怎么求?下面我们就探讨这个公式的推导过程,大家想知道吗?
二、探索新知:
(一)、先自学课本,小组探讨如下两个问题:(电脑出示)
1、在推导的过程中你发现圆的什么变了?(板书:形状)
2、在推导的过程中你发现圆的什么没变?(板书;面积)
(二)、探讨第一问:
A:多媒体出示16等份圆。
1、多媒体演示:把一个圆平均分成16等份,拼成一个近似平行四边形。
2、学生小组操作。
3、你会把它变成一个近似长方形吗?学生小组尝试操作。
4、多媒体演示:把等份的第一等份平均2份,移拼成一个近似长方形。
5、学生展示操作成果。
B:多媒体出示8等份圆。
1、请同学们猜想并且讨论:如果把同样一个圆平均分成8份,象上面这样拼,得到的图形谁更接近长方形?
2、学生汇报讨论结果。
3、媒体演示8等份。
C:多媒体出示32等份
1、再请同学们猜想一下:如果把同样一个圆平均分成32份,象上面这样拼,得到的.图形谁更接近长方形。
2、眼睛微闭想一想。
3、媒体演示32等份。
D:多媒体演示三幅图综合画面。
1、让学生仔细观察后问:哪一等份更接近长方形?
2、为什么,等份的份数越多就能拼出越接近的长方形。
F:如果要想把圆变成长方形你觉得要分成多少份?学生把眼睛闭起想一想
学生讨论。
(三)探讨第二问:
A:1、把圆在剪拼的过程中变成长方形,圆的面积为什么没有变化?
2、长方形的面积就是谁的面积?(教师板书)
3、长方形的面积等于圆的面积,我们知道长方形面积等于长乘以宽。那么,圆的面积等于什么?(学生结合自己拼的图思考)
板书:长方形面积=长×宽
圆的面积=圆周长的一半×半径
B:仔细观察多媒体演示问:
1、长方形的长就是圆的什么?怎么求?用字母怎么表示?(教师板书)
2、长方形的宽就是圆的什么?怎么求?用字母怎么表示?(教师板书)
C:推导出圆的面积并且用字母表示。(教师板书)
D:再出示前面的导入题,问:我们现在知道为什么可以这样计算了吗?
三:课堂练习
1、同座互增一个画好半径的圆,求其面积。
问:先要知道什么条件,再怎样求?
2、求一元硬币的面积。最好先量出硬币的直径还是半径?为什么?
3、实践题:每人准备一段绳子并求此绳围成最大圆的面积。学生讨论如何
解决此问题?
4、根据下面条件,求出各圆的面积。
C=6。28米r=1分米d=20毫米
5、一个正方形的面积是100平方厘米,在圆内画一个最大的圆,求圆的面积。
课堂延伸
学生讨论:把一个圆分成若干等份后,拼成一个近似长方形,这个长方形的周长与圆的周长相等吗?为什么?
练习:把一个圆拼成一个近似的长方形,长方形的周长是16。56厘米,求此圆的面积。
四、课堂小结
通过今天的学习,同座位互相谈一谈是怎样推导出圆面积计算公式的?知道哪些条件可以求出圆的面积?
《圆的面积》的教学设计 篇7
一、教学内容
北京市义务教育课程改革实验数学教材第11册二、教学目标:
1.知识与技能:使学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括的能力以及逻辑推理能力。
2.过程与方法:引导学生学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;渗透极限、转化、化曲为直等数学思想方法。
3.情感态度价值观:培养学生认真观察、深入思考,积极合作的良好品质。
三、教学重点:通过合作探究活动,推导出圆面积公式。
四、教学难点:理解转化后的图形各部分与圆各部分的关系。
五、教具学具准备:圆形纸片多媒体
六、教学过程:
(一)情境导入
出示:圆桌照片
师:通过前几节课的学习,我们对圆已经有了一些认识,在我们的生活中圆也有着广泛的应用,请看老师家里就有这样一个圆桌,看到这个圆桌你能提出哪些与圆有关的数学问题?
生:圆桌一圈的长度是多少?圆桌桌面的面积是多少?
师:圆桌一圈的长度就是圆的周长,怎样求圆的周长?
怎样计算圆桌桌面的面积呢?这节课我们就一起来研究这个问题。
【设计意图:根据“问题驱动式”教学模式的第一环节:创设情境,质疑激趣。教师创设了“看到这个圆桌你能提出哪些与圆有关的数学问题?”的情境引发学生提出问题,根据学生所提问题,明确本节课的.学习任务】
(二)合作探究
1、复习转化方法:
师:想一想,我们都学过了哪些平面图形的面积公式?(长方形、正方形、平行四边形、梯形、三角形)
师:我们以平行四边形为例,你还记得平行四边形面积公式的推导过程吗?(指名说、师投影演示)
师:在推导过程中,我们是根据以前学过图形的面积公式推导出新图形面积公式,这种方法对我们今天的学习有没有帮助呢?
师:如果有的话,你打算把圆转化成什么图形呢?到底行不行呢?下面我们小组合作探究,请看活动要求:
1、圆转化成了什么图形?2、转化后图形的各部分与圆的各部分有什么关系?3、根据转化后图形面积公式试着推导出圆的面积公式。
2、小组合作探究,师巡视,指导。
【设计意图:根据“问题驱动式”教学模式的第二环节:问题驱动,自主探究。
教师让学生带着3个问题进行自主探究的活动】
3、汇报展示
预设:
学生方法1:将圆等分成(8份、16份、)拼成一个近似的平行四边形,平行四边形的底相当于圆周长的一半,上面的底就是圆周长的另一半。平行四边形的高相当于圆的半径。圆周长的一半乘半径就是圆面积的公式:∏r2。
学生方法2:将圆等分成若干份,拼成一个梯形或三角形。
学生方法3:用圆的一部分推出面积公式。(一个近似三角形的面积×份数)
板书:学生汇报的思路,即转化后图形各部分与圆各部分的关系,让学生的理解更清晰。
【设计意图:根据“问题驱动式”教学模式的第三环节:碰撞交流,研讨辩论。教师让学生在汇报过程中注意倾听同伴的发言,如果有问题,让学生再重复一遍,让学生发现同学在汇报中存在的问题,互相提问、质疑、解决问题。】
4、课件演示,体验极限、化曲为直等数学思想。
5、资料介绍,感受数学文化,
师:现在我们已经知道了圆面积的计算公式,根据老师给你的数学信息,现在你能算一算这个圆桌面的面积了吗?(出示圆桌的照片,并给出圆桌的半径是40厘米)
生:一人板书,其他学生本上练习。集体订正。
6、知识性小结:
师:如果我们想计算圆的面积,必须知道什么条件?
生:半径。
师:还可以知道什么,也能求出圆的面积?
生:圆的直径或圆的周长?
师:怎么求?
【设计意图:根据“问题驱动式”教学模式的第四环节:总结提升,纳入认知。
教师根据本节课所学内容提出了第一个问题“如果我们想计算圆的面积,必须知道什么条件?”根据学生的回答,教师又适时地提出了第二个问题“还可以知道什么,也能求出圆的面积?”通过两个问题的提出,让学生不仅明确知道半径可以求圆的面积,知道圆的直径、周长也可以求圆的面积,进一步丰富学生计算圆面积的方法,提升学生的认知。】
(三)解决问题:
1、口算下面各圆的面积。
2填写下表。
半径直径周长面积
2厘米
6厘米
6.28厘米
3.某公园里有一个边长是10米的正方形嬉水池,正中间有一个人工喷泉,设计要求喷出的水不能落到水池以外。这个喷泉的喷水面积最大是多少平方米?(四)、全课总结
板书设计:圆的面积
转化平行四边形面积=底×高
联系圆的面积=×r=×r
=πr×r=πr2
公式S=πr2
《圆的面积》的教学设计 篇8
教学目的
1.通过教学建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式;
2.能正确地应用圆面积的计算公式进行圆面积的计算并能解答有关圆面积的实际问题。
教学重点:圆面积计算
教学难点:公式以及推导。
教学过程
一、复习并引入课题。
1.口算:2π 9.42÷π 12.56÷π
2.已知圆的半径是2.5分米,它的周长是多少?
3.一个长方形的长是6.2米,宽是4米,它的面积是多少?
4.说出平行四边形的面积公式是怎样推导出来的?
5.出示场景图:这个圆形草坪的占地面积是多少平方米,你们会计算吗?
课题引入:我们已经学会的圆周长的有关计算,这节课我们要学习圆的面积的有关知识。
二、新课讲授
1.圆的面积的含义。
问题:同学们还记得面积所指的是什么?(物体的表面或围成的平面图形的大小,叫做它们的面积。)以前学过长方形面积的含义是指长方形所围成平面的大小。那么,圆的面积的是指什么?(圆所围成平面的大小,叫做圆的面积。)
2.圆的面积公式的推导。
问题:怎样求圆的面积呢?(学生提出办法,老师引导学生一起分析)
问题:我们用面积单位直接去度量显然是行不通的。那么我们怎么办呢?我们可以仿照求平行四边形面积的方法——也就是割补法,把圆的图形转化为已学过的图形。怎样分割呢?(教师出示场景图)问题:这三位同学是怎样分割的?你知道他们的做法吗?(学生回答,老师给予肯定。)
教师拿出圆的面积教具进行演示:
先把一个圆平均分成二份,再把每一个等份分成八等份,一共16份,每份是一个近似等腰三角形,并写上号数,然后把这16份拼成一个近似的平行四边形。(学生试操作,把学具圆拼成一个平行四边形。)再把第1份平均分成2份,拿出其中的1份(即原来的半份)移到平行四边形的右边,这样就拼成一个近似长方形。
强调:如果分的等份越多所拼的图形就越接近长方形。
问题:拼成的长方形的长和宽和圆的半径周长有什么关系呢?(学生回答,教师板书)
引导:这样这个长方形的面积就是圆的面积,你能求出这个圆的面积吗?
学生独立完成圆面积公式的推导:
总结:我们用S表示圆的面积,那么圆面积的大小就是:
再次强调:
(1)拼成的图形近似于什么图形?
(2)原来圆的面积与这个长方形的面积是否相等?
(3)长方形的长相当于圆的哪部分的长?
(4)长方形的宽是圆的哪部分?
(5)用S表示圆的面积,那么圆的面积可以写成:S=πr
2 3.圆面积公式的应用。
师:我们回头看刚才的问题,圆形花坛的直径是20m,这个花坛占地多少平方米?
学生读题,问:这里要求圆形花坛的面积,条件是否具备?我们该怎样列式呢?
(学生独立完成,教师巡视,对有困难的学生给予辅导。)
教师板演计算过程。
出示例2:光盘的银色部分是一个圆环,内圆半径是2cm,外圆半径是cm,它的面积是多少?
问题:你能利用内圆好外圆的面积求出环形的`面积吗?
学生读题,引导学生思考:要求圆环的面积我们可以怎么办?题目中给出的条件是否具备?怎样列式?(学生独立完成,老师选代表回答问题,在黑板上演示计算方法,集体纠错。)
三、巩固练习。
1.根据下面所给的条件,求圆的面积。
半径2分米。
直径10厘米。
(1)先提问:题目只告诉圆的直径,你能求出圆的面积吗?怎样算?)
(2)强调书写格式,运算顺序与单位名称。
总结:通过这节课学习理解圆面积计算公式的推导,掌握了圆面积计算公式,并知道要求圆的面积必须知道半径,如果题目只告诉直径也就先求出半径再按公式S=πr2计算。
四、课堂小结
总结:在日常生活和工农业生产中经常需要求圆的面积,譬如说:蒙古包做成圆形的是因为可以最大化地利用居住面积,植物根茎的横截面是圆形的,也是因为可以最大化地吸收水分。我们还可以再举出其他的一些例子,如装菜的盘子为什么要做成圆形的,杯子的横截面为什么是圆形的?大家需要多看多想!
另外,我们在前面也学习了如何求圆的周长,需要注意的是:
(1)圆的面积是指圆所围平面部分的大小,而圆的周长是指圆一周的长度。前者是二维的概念,而后者是一维的概念。
(2)求圆面积的公式是S=πr2,求圆周长的公式是C=πd或C=2πr;
(3)计算圆的面积用面积单位,计算圆的周长用长度单位。板书圆的面积
长方形的面积=长×宽圆的面积=周长的一半×半径S=πr×r S=πr
教学反思
圆的面积是学生在学习了圆的基本特征、圆周长的探讨、应用后学习的,因为学生在学习圆的周长公式探讨的时候已经明白了“化曲为直”的数学思想,所以在探讨圆的面积公式时,在这个基础上再渗透“数学的极限思想”,学生在这样的情况下,学习的圆的面积计算,有利于学生知识的迁移,这样,也是学习上的一次飞跃,所以,在教学过程中,我注重了以下几个环节的教学:
一、从圆的周长到圆的面积体验其中不同
本课开始,先与圆的周长与圆的面积比较不同,接着结合回忆平行四边形的探究方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、大胆猜测,激发探究
在凸现圆的面积的意义以后,我让学生猜测圆的面积可能与什么有关,让学生进行估测。当学生猜测出圆的面积可能与圆的半径有关系时,设计实验验证:以正方形的边长为半径画一个圆,用数方格的方法计算出圆的面积,探索圆的面积大约是正方形面积的几倍。这一内容是旧教材所没有的。学生的好奇心、求知欲被充分调动起来,而这些,又正好为他们随后进一步展开探究活动作好了“预埋”。
三、演示操作,加深理解当学生通过估测后,让学生来做个实验讨论。每个同学手中都有一个圆,现在平均分成16份,自己拼拼看,能拼成什么图形?并想想它与圆有怎样的关系。这样,通过学生操作学具,把抽象思维物化为动作形象思维,让学生多种感官参与,符合学生的认知水平。通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形(三角形、梯形)的探索活动中来。学生思维在交流中碰撞,在碰撞中发散,在想象中得以提升。思维的能动性和创造性得到充分激发,探索能力、分析问题和解决同题的能力得到了提高。在教学过程中,由于教学量的加大,对于圆的面积公式还应让学生多点时间去思考,去推导。细节的设计还要精心安排。特别是学生在口述推导的过程中,导出的太快,公式推导不明显,怎样出来的结果演示太快,学生不易消化。这个问题在以后的教学过程中要注意细化。
四、引导学生主动参与知识的形成过程。
五、存在和改进的地方有:
1、学生在知识技能形成的过程中,有个别学生没有积极思考,不懂得如何灵活运用知识解决一些实际问题;
2、学生的计算有待加强,在上课过程中发现学生的计算速度比较慢,学生还没有达到要求,特别是当半径等于一个小数时,学生很多就犯错了!如:r=0.3厘米,求圆的面积,有部分学生会把0.3的平方算成是0.9,结果就出错,这在以后的计算练习中引导学生认真计算,培养学生认真审题的良好习惯!
《圆的面积》的教学设计 篇9
教学目标:
1.知识与技能:认识圆的面积,通过操作,引导学生探索推导出圆面积的计算公式,并能运用公式解答一些简单的实际问题。
2.过程与方法:在探究圆面积计算公式的过程中,通过大胆猜想、动手操作等活动,激发学生参与整个课堂教学活动的学习兴趣, 培养学生的合作意识和探究精神;通过学生讨论交流,培养学生的分析、观察和概括能力,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。
3.情感态度与价值观:通过应用,让学生体会数学的应用价值,体验数学与生活的密切联系,渗透转化的数学思想和极限思想。
教学重点:推导圆面积计算公式,运用圆面积计算公式解决实际问题。
教学难点:理解圆的面积公式的推导过程。
教学准备:课件、圆形白纸、剪刀。
教学过程
一、创设情景,引入新课
1、出示主题情景图:
①从图中你获得哪些数学信息?
②提问:“这个圆形草坪的占地面积是多少平方米?” “占地面积”指什么?
2、说一说:什么叫圆的面积?
3、揭示课题:今天我们就来研究圆的面积。(板书课题:圆的面积)
【设计意图】:出示情境图,把教学内容与生活有机结合起来,使学生从具体问题情境中抽象出数学问题,提高学生学习的积极性。
二、合作交流,探索新知
1、回顾旧知:
回顾以前学过的平面图形面积公式是如何推导出来的?
指出:转化的方法是我们学习数学新知识的一种很好而且很有用的思想和方法。转化的目的是为了——将没学过的图形转化成已学过的图形。
【设计意图】:通过知识回顾,激发学生学习的求知欲,强化数学学习的生活化。
2、思考:那么能不能把圆也转化成已学过的图形来计算它的面积呢?
3、合作探究:
(1)猜想
(2)动手操作,验证猜想。
(3)汇报交流,展示成果(分层展示学生研究成果)。
【设计意图】:通过活动,调动学生动手、动脑等多种感知觉参与活动,调动学生积极性、自觉性,培养学生观察,比较和判断思维的能力,培养学生合作交流的意识,应用知识间的转化和联系,进一步体会转化的数学思想和方法,培养学生的迁移能力,发展学生的空间观念。
4、借助网络画板制作的动态课件展示圆面积的.推导过程。
展示不同的等份数拼成不同的平行四边形,感受极限的思想。
【设计意图】:通过对圆切拼的动画演示,观察不同等份数拼成的不同图形,发现规律,让学生感受极限思想。
5、推导圆面积公式。
①比较转化后的图形与圆,你发现了什么?
②全班交流,根据学生叙述板书:
长方形面积= 长 × 宽
圆的面积 =圆周长的一半 × 半径
=Лr × r
=Лr
6、小结:圆的面积计算公式: S =Лr
【设计意图】:通过转化和对比,让学生参与获取知识的过程,在开放的学习氛围中积极主动地投入到观察、讨论的学习交流,从而把发现知识的过程交给学生,动静结合的呈现方式有利于学生的理解,有利于突破教学难点,对学生空间观念的形成起到了十分重要的作业,有利于发展学生的空间想象能力。
7、知识应用、内化提高
(1)、 求下列圆的面积。(只列式不计算)
r=3cm
(2)、出示例1:例1:圆形花坛的直径是20m,它的面积是多少平方米?
(1)认真读题,理解题意。
(2)你认为怎样解决这个问题?
(3)学生尝试独立计算。
(4)汇报解答过程及结果,集体评价。
【设计意图】:让学生运用新知识解决生活中的实际问题,体验成功的喜悦。
四.联系生活、拓展延伸
1、公园草地上一个自动旋转喷灌装置的射程是10米,它能浇灌的面积是多少?
2、把一个周长为18.84cm的长方形改围成一个圆,围成圆的面积是多少?
3、求下列圆的周长和面积。
r=2cm
4、求半圆的面积。
r=4cm
【设计意图】:拓展延伸,让学生体会到生活中处处有数学,真正体会数学的实用性。
5、回顾整理,全课总结
今天我们学到了哪些新知识?你有哪些收获?
【设计意图】:引导学生回顾学习过程,培养反思习惯,重视学生数学思想、方法的培养。
《圆的面积》的教学设计 篇10
一、教材分析
《圆的面积》,是北师大版六年制小学数学第十一册第一单元中的内容,这是一节推导与计算相结合来研究几何形体的教学内容,它是在学生学习了平面图形的面积计算和圆的初步认识以及圆的周长的基础上进行教学的。是几何知识的一项重要内容,为以后学习圆柱、圆锥等知识作了铺垫。
二、学情分析
在学习本课内容前,学生已经认识了圆,会求圆的周长,在学习长方形、平行四边形、三角形、梯形等平面图形的面积时,已经学会了用割、补、移等方式,把未知的问题转化成已知的问题,因此教学本课时,可以引导学生用转化的方法推导出圆的面积公式。
三、教学目标(课件)
(1)理解圆的面积含义,推导出圆面积计算的公式,并会用公式计算圆的面积。
(2)进一步培养学生树立和运用转化的思想,初步渗透极限思想,培养学生的观察能力和动手操作能力。
(3)注重小组合作培养学生互相合作、互相帮助的优秀品质及集体观念。
基于以上的教学目标确定教学重点:掌握圆面积的计算公式;弄清拼成的图形各部分与原来圆的关系。
教学难点:是圆面积计算公式的推导和极限思想的渗透;
四、学情分析
为了突出重点、突破难点,培养学生的探究精神和创新精神,本课教学以“学生发展为本,以活动探究为主线,以创新为主旨”:主要采用了以下4个教学策略:
1、知识呈现生活化。以草坪中间的自动喷灌龙头为草坪喷水为主线,让学生提出问题让生活数学这一条主线贯穿于课的始终。
2、学习过程活动化。让学生在操作活动中探究出圆的面积计算公式。
3、学生学习自主化。让学生通过动手操作、自主探究、合作交流的学习方式去探究圆的面积计算公式。
4、学习方法合作化。在探究圆的面积计算公式中采用4人小组合作学习的方法。从而真正实践学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。
五、教学过程
本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想,我将教学过程拟订为“创设情境,激趣引入——引导探究,构建模型——分层训练,拓展思维——总结全课,布置作业”四个环节进行,努力构建自主创新的课堂教学模式。
(一)创设情境,激趣引入
数学来源于生活,有趣的生活情境,能激发学生好奇心和强烈的求知欲,让学生在生动具体的情境中学习数学,从而使教材与学生之间建立相互包容、相互激发的关系。让学生既认识了自身,又大胆而自然地提出猜想。在课的一开始,我设计了“自动喷水头浇灌草地得出一个半径是5米的'圆”这一情境(课件),让学生在情境中寻找有用的数学信息并提出数学问题(课件),在思考“喷水头转动一周可以浇灌多大面积”的过程中,让学生在具体情境中了解圆的面积的含义,体会计算圆的面积的必要性,并引发研究圆的面积的兴趣,为下一环节做好铺垫。
(二)引导探究,构建模型
第二环节是课堂教学的中心环节,为了做到突出重点,突破难点,我安排了启发猜想,明确方向————化曲为直,扫清障碍————实验探究,推导公式————展示成果,体验成功————首尾呼应,巩固新知五大步进行:
第一步:启发猜想,明确方向。
鼓励学生进行合理的猜想,可以把学生的思维引向更为广阔的空间。因此,在第一步:启发猜想,明确方向中。我启发学生猜想(课件):“比较两个圆谁的面积大,你觉得圆的面积和哪些条件有关?怎样推导圆的面积计算公式呢?”对于第一个问题,学生通过观察比较,很自然的会作出合理猜想。但对于怎样推导圆的面积计算公式这个问题,学生根据已有知识,或许能想到将圆转化为以前学过的图形,再求面积。至于如何转化,怎样化曲为直,因受知识的限制,学生不能准确说出。我抓住这一有力契机,进入下一步教学。
第二步:化曲为直,扫清障碍。
首先借助多媒体课件将大小相等的圆分别沿半径剪开,先分成8等份、然后拉直,再分成16等份拉直、最后分成32等份,再拉直,让学生通过观察比较,发现平均分的份数越多,分成的近似等腰三角形的底就越接近于线段(课件)。这一规律的发现,不仅向学生渗透了极限的思想,更重要的是为学生彻底扫清了“转化”的障碍。这时我适时放手,进入下一步教学。
第三步:实验探究,推导公式。
首先提出开放性问题:你能不能将圆拼成以前学过的图形,试着剪一剪,拼一拼,想一想,议一议拼成的图形的各部分与原来的圆有什么关系?能不能推导出圆的面积计算公式?这里,我没有硬性规定让学生拼出什么图形,而是放开手脚让学生拿出已分成16等份的圆形卡纸小组合作去剪,去拼摆,并鼓励学生拼摆出多种结果,从而培养了学生的发散思维和创新能力。
第四步:展示成果,体验成功。
在学生小组讨论后,引导学生进入第四步教学,为学生创设一个展示成果,体验成功的机会。让学生向全班同学介绍一下自己是如何拼成近似的平行四边形或长方形或三角形或梯形的,如何推导出圆的面积计算公式的。然后由学生自己,同学和教师给予评价。同时对拼成近似长方形的情况,教师再结合多媒体的直观演示,并结合板书。
(课件)首先让学生明确圆周长的一半相当于这个近似长方形的长,半径等于宽,圆的面积等于长方形的面积,这是教学的关键,再此基础上进行推导(课件),得出圆面积等于周长的一半乘半径,再让学生弄清圆周长的一半等于πr,从而得到圆的面积计算公式化简后用字母表示为S=πr2。
第五步:首尾呼应,巩固新知
在学生获得圆的面积计算公式后,“龙头最多能喷灌多大草坪呢”?求出它的面积。从而达到了对新知的巩固。
四、分层训练,拓展思维
为了深化探究成果,在第三环节:分层训练,第一层:基本性练习,第二层:综合性练习,第三层:发展性练习。实现层层深入,由浅入深。逐步训练学生思维的灵活性和深刻性,并使学生深刻体会到“数学来源于生活,并为生活服务”的道理。
第一层:基本性练习
1、求下面各个圆的面积。(课件出示)
(1)半径为3分米;
(2)直径为10米。
(3)周长为13厘米。
第二层:综合性练习
2、一张圆桌的桌面直径是1。5米,油漆师傅要在圆桌面的边上贴一圈铝合金,并在正面漆上油漆。请问,油漆师傅要买多长的铝合金,油漆的面积有多大?
第三层:发展性练习
3、王大伯想用31。4米长的铁丝在后院围一个菜园,要使面积大一些,该围成正方形好还是圆形好呢?你能当回小参谋吗?
4、一块正方形草坪,边长10米.草坪中间的自动喷灌龙头的射程是5米。
(1)这个龙头最多可喷灌多大面积的草坪?
(2)喷灌后至少可剩下的面积有多大?
六、评价和反思
这节课紧紧抓住了教学重点,通过多媒体课件的演示,以及学生的动手操作,把一个圆通过分、剪、拼等过程,转化为一个近似的长方形,从中发现圆和拼成的长方形的联系,这种从多角度思考的教学理念,既沟通了新旧知识的联系,又激发了学生的求知欲,并培养了学生探索问题的能力。
《圆的面积》的教学设计 篇11
教学内容:
义务教育课程标准实验教科书六年级上册P67-68
教学目标:
1、让学生经历猜想、操作、验证、讨论和归纳等数学活动的过程,探索并掌握圆的面积公式,能正确计算圆的面积,并能应用公式解决简单的相关问题。
2、经历圆的面积公式的推导过程,进一步体会“转化”和“极限”的数学思想,增强空间观念,发展数学思考。
3、感悟数学知识内在联系的逻辑之美,体验发现新知识的快乐,增强学生的合作交流意识和能力,培养学生学习数学的兴趣。
教学重点:掌握圆的面积计算公式,能够正确地计算圆的面积。
教学难点:理解圆的面积计算公式的推导。
教学过程:
一、回忆旧知、揭示课题
1、谈话引入
前些日子我们已经研究了圆,今天咱们继续研究圆。
2、画圆
首先请同学们拿出你们的圆规在练习本上画一个圆。
3、比较圆的大小
请小组内同学互相看一看,你们画的圆一样吗?为什么有的同学画的圆大一些,有的同学画的圆小一些?看来圆的大小与什么有关?
4、揭示课题
我们把圆所占平面的大小叫做圆的面积。(出示课题)
二、动手操作,探索新知
1、确定策略,体会转化
(1)明确研究问题
师:同学们都认为圆的面积与它的半径有关,那么圆的面积和半径究竟有怎样的关系呢?这就是我们这节课要研究的问题。
(2)体会转化
怎么去研究呢?这让我想起了《曹冲称象》的故事。同学们听过曹冲称象的故事吗?谁能用几句话简单地概括一下这个故事?曹冲之所以能称出大象的重量,你觉得关键在于什么?(把大象的重量转化成石头的重量)
其实在我们的数学学习中我们就常常用到转化的方法。请同学们在大脑中快速搜索一下,以前我们在研究一个新图形的面积时,用到过哪些好的方法?
预设:
学生回忆平行四边形、三角形、梯形的面积推导方法。
当学生说不上来时,老师提醒:比如,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?(割补法)
三角形和梯形的面积计算公式又是怎么推导出来的呢?(用两个完全一样的三角形或梯形拼成平行四边形)(课件演示推导过程)
小结:
你们有没有发现这些方法都有一个共同点?
(3)确定策略
那咱们今天研究的圆是否也能转化成我们已经学过的图形呢?(……)
如果我们也像推导三角形、梯形面积那样用两个完全相同的圆形拼一拼,你认为可能转化成我们学过的.图形吗?那怎么办呢?(割补法)怎么剪呢?
①引导学生说出沿着直径或半径,把圆进行平均分;
②师示范4等份、8等份的剪法和拼法;
2、明确方法,体验极限
(1)学生动手操作16等份的拼法;
(2)比较每一次所拼图形的变化;
(3)电脑演示32等份、64等份、128等份所拼的图形,让学生体验分成的份数越多,拼成的图形就越接近长方形。
3、深化思维,推导公式
(1)请同学们仔细观察转化后的长方形,它与原来的圆有什么联系?(请同学们在小组内互相说一说)
(2)交流发现,电脑演示圆周长和长,半径和宽的关系。
(3)多让几个学生交流转化后的长方形和原来圆之间的联系。
(4)根据长方形的面积公式推导圆的面积计算公式。
三、运用公式,解决问题
1、现在要求圆的面积是不是很简单了?知道什么条件就可以求出圆的面积了?
出示主题图求面积:这个圆形草坪的半径是10m,它的面积是多少平方米?
2、判断对错:
(1)直径是2厘米的圆,它的面积是12.56平方厘米。( )
(2)两个圆的周长相等,面积也一定相等。( )
(3)圆的半径越大,圆所占的面积也越大。( )
(4)圆的半径扩大3倍,它的面积扩大6倍。( )
3.知道了半径就可以求出圆的面积,那知道圆的周长能求出圆的面积吗?
四、总结新知,深化拓展
1.小结:
通过刚才的研究同学们推导出了圆的面积计算公式,更重要的是大家运用转化的方法把圆这个新图形转化成了我们已经学过的平行四边形和长方形,以后大家遇到新问题都可以用转化的方法尝试一下。
2、拓展
在剪拼长方形的过程中,有同学产生了疑问,能不能把剪下来的小扇形拼成三角形或者是梯形呢?让我们一起来看一下。(课件出示拼的过程)
那利用拼成的三角形和梯形又能推导出圆的公式吗?有兴趣的同学可以课后去剪一剪、拼一拼、想一想、算一算,相信你一定会有更多的收获。
《圆的面积》的教学设计 篇12
【教学目标】
1.学生通过观察、操作、分析和讨论,推导出圆的面积公式。
2.能够利用公式进行简单的面积计算。
3.渗透转化思想,初步了解极限思想,培养学生的观察能力和动手操作能力。
【教、学具准备】
1.CAI课件;
2.把圆8等分、16等分和32等分的硬纸板若干个;
3.剪刀若干把。
【教学过程】
一、尝试转化,推导公式
1.确定“转化”的策略。
师:同学们,你们想一想,当我们还不会计算平行四边形的面积的时候,是利用什么方法推导出了平行四边形的面积计算公式呢?
师:对了,我们将平行四边形、三角形“转化”成其它图形的方法来推导出它们的面积计算公式。
2.尝试“转化”。
师:那么,怎样才能把圆形转化为我们已学过的其它图形呢?(板书课题:圆的面积)
师:如果我们用这些近似三角形重新拼组,就可以将这个圆形“转化”成其它图形了。同学们,老师为你们每个小组都准备了一个已经等分好了的圆形,请你们动手拼一拼,把这个圆形“转化”成我们已学过的其它图形,开始吧!
3.探究联系。
师:同学们,“转化”完了吗?好,请大家来展示一下你们“转化”后的图形。
师:谁来告诉大家,它们的'面积有没有改变?
师:是的,没有改变,就是说:这个近似的长方形的面积=圆的面积。
4.推导公式。
师:现在我们就来看这个长方形。同学们,如果圆的半径为r,你们知道这个长方形的长和宽分别是多少吗?现在请小组为单位进行讨论讨论。
师:好,谁能首先告诉老师,这个长方形的宽是多少?
师:现在我们已经知道了这个长方形的长和宽,它的面积应该是多少?那圆的面积呢?
二、运用公式,解决问题
1.教学例1。
师:同学们,从这个公式我们可以看出,要求圆的面积,必须先知道什么?(出示例1)如果我们知道一个圆形花坛的直径是20m,我们该怎样求它的面积呢?请大家动笔算一算这个圆形花坛的面积吧!
2.完成做一做。
师:真不错!现在请同学们翻开数学课本第69页,请大家独立完成做一做的第1题。(订正。)
3.教学例2。
师:(出示例2)这是一张光盘,这张光盘由内、外两个圆构成。光盘的银色部分是一个圆环。请同学们小声地读一读题。开始!
师:怎样求这个圆环的面积呢?大家商量商量,想想办法吧!
师:找到解决问题的方法了吗?
师:好的,就按同学们想到的方法算一算这个圆环的面积吧!交流,订正。
三、课堂小结
师:同学们,通过这节课的学习,你有什么收获?
四、课堂作业。
【《圆的面积》的教学设计】相关文章:
圆的面积教学设计教学设计04-25
《圆的面积》教学反思04-22
圆的面积教学反思04-03
《圆的面积》教案04-25
圆的面积教案05-08
圆的面积教案04-28
《面积和面积单位》教学设计04-29
圆的面积推导反思03-09
数学圆的面积教案02-14