- 相关推荐
奥数行程问题解题方法
奥数行程问题解题方法1
常见解题方法
一、简单的发车问题
这类发车问题都符合我们在“问题简介”里面对发车问题进行的一般化处理,所以大家在碰到这种问题时可以考虑直接运用总结出来的公式,也可以根据相遇、追及问题的情况来解题,当然,之前讲的那五大方法都可以用!
例、某人以匀速在一条公路上行走,公路两端的车站每隔相同的时间开出一辆公共汽车。该行人发现每隔15分钟就会有一辆公共汽车追上他,而每隔10分钟有一辆公共汽车迎面开来。问:车站每隔多少分钟开出一辆公共汽车?(5月22号天天练)
二、复杂的发车问题
复杂的发车间隔问题表面上看与我们之前归纳的发车问题的'一般化有所出入,但是我们解决这类问题的方法还是一样的,同样是将题目中的运动过程分解为同向追及和迎面相遇两部分,转化成行程问题的基本关系来解题!
例、某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出;在第一辆出租汽车开出2分钟后,有一辆出租汽车进场,以后每隔6分钟有一辆出租汽车回场。回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?(5月23号天天练)
奥数行程问题解题方法2
1、信心不足有不少孩子往往一拿到行程问题的题目心里就发怵,没有信心去把题目解决。究其原因,主要是他们在平时做行程问题时选题的难度不适当,对一些基本的题目没能做到熟练掌握。而现在学生们自己从一些参考书上找的练习题难度不一、类型各异。这样的话,孩子自己很难在短期内把行程问题掌握。于是就造成了这样一种现象:感觉学了很长时间,也还是有很多题目不会做。时间一长,自然孩子们就很难建立起足够的自信心。因此,同学们在做行程问题时一定不要盲目的做那些难度很大的题目,从简单的常规题目开始,一步一脚一印,逐步建立自己的信心,相信自己一定能够攻克行程问题。作为家长,在指导孩子学习的时候要多鼓励他们,千万不能急于求成,要谨慎的给孩子安排一些难度大的题目。不要急于给孩子安排做一些竞赛题或导引上的题目。一定要根据自己孩子的程度循序渐进的增加难度。
2、耐心不够行程问题很多题目的文字叙述比较其他题目要普遍的长一些,这样对于小学生来讲,去理解题意也就增加了难度。因而多数孩子都不愿读长题,这样首先从心理上就对题目产生了厌倦感和恐惧感。那么势必造成对题目理解的不够,分析的不透彻。这就是因为孩子在做题时缺乏足够的耐心,急于求成。而做行程问题最重要的前提恰恰是要把题意理解透彻,把过程分析清楚,把这前期工作做好了后,后面解题的过程也就会变得简单了。我们发现往往是老师把题目读完,把相应的过程给孩子分析完之后,他们自己很快就能找到解题的思路和方法。希望同学们在做题时一定要有耐心,一步一步安心思考,逐步把已知条件和所要求的未知条件建立联系。经过这么逐步分析,你一定会找到解题的方法的。家长在这时也可以慢慢提示着帮孩子理解题意,逐步培养他们分析题目的能力。
3、习惯不良有一些孩子做题时不喜欢写步骤和过程,往往是只写答案。有的是写了几个简单的算式而没有相应的文字提示。例如这样一道题:甲乙二人分别从AB两地同时出发,相向而行,他们第一次相遇时距离A地60千米,然后两人继续前行,分别到达BA后调头继续前行。当他们第二次相遇时距离B地30千米。问AB两地的距离是多少?一道非常典型的`迎面相遇问题。我们发现很多孩子都会解这道题,他们能够很快的列出算式。60×3-30=150(千米)但如果你要是问这个算式的含义,就有很多同学回答不上来了。他们往往只是记住了这个解题算式。原因还在于在平时的学习过程中过分重视算式和结果,而忽视了解题思路和方法的掌握。对老师在解题过程中做的分析和讲解没有理解充分,对一些关键的字眼没能做好记录。因而同学们在听课的过程中要注意记录老师对题目所做的文字分析,不明白的要及时询问老师,只有真正把老师所讲题目的解题思路搞懂了才能逐步掌握这类题目的解题方法。如果自己有新的想法,有更好的思路也一定要积极的和老师探讨,以确认方法的正确性。家长们在对孩子的学习进行监督时也不能只看孩子的解题结果,而是要问明白孩子所列算式的来龙去脉,鼓励孩子讲题给你听。相信这样对孩子的学习帮助会更大。
4、做题时不喜欢画图其实,如果能把题目所叙述的过程表现出来,题目的难度自然就会大大降低。因为如果单纯凭空想象一些相遇或追及过程不仅很困难,也很容易出错,尤其是那些多人相遇或追及,多次相遇或追及那就更不可想象了。所以同学们平时做题时一定要养成画图的好习惯,这对你分析解题会起到很大的作用的。所以老师讲题过程中画的图大家一定要记录好。
奥数行程问题解题方法3
1、一只船在河流中
只有一只船在河流中航行时,无论有没有往返,我们只要牢牢抓住流水行船的基本公式就可以解决这类问题!
2、两只船在河流中的相遇、追及
流水行船问题中的相遇与追击:
两只船在河流中的相遇问题:
当甲、乙两船(甲在上游、乙在下游)在河流中相向开出,他们单位时间内开出的路程等于甲、乙两船的速度和。
这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船速度+乙船速度。
这就是说,两船在流水中的相遇问题与在静水中及两车在陆地上得相遇问题一样,与水速没有关系。
同样道理,如果两只船在河流中同向运动,一只船追上另一只船所用的时间,也只与路程和船速有关,与水速无关。
这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速度-乙船速度;
甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速度-乙船速度。
这说明无论同向顺水行驶还是同向逆水行驶,流水中的'追及问题与在静水中的追及问题及两车在陆地上的追及问题性质上是一样的。
3、流水落物
漂流物速度=水流速度,从落物到发现的时间t1=从发现到拾回的时间t2(与船速、水速、顺行逆行无关)。这是因为:
①若顺行:从落物到发现的速度差=船速+水速-水速=船速,路程差=船速×t1;从发现到拾回的速度和=船速-水速+水速=船速,路程和就是之前的路程差,即船速×t1=船速×t2,所以有t1=t2。
②若逆行:从落物到发现的速度和=船速-水速+水速=船速,路程和=船速×t1;从发现到拾回的速度差=船速+水速-水速=船速,路程差就是之前的路程和,即船速×t1=船速×t2,所以有t1=t2。
此结论所带来的时间等式常常非常容易的解决流水落物问题,其本身也非常容易记忆。
【奥数行程问题解题方法】相关文章:
奥数的作文09-28
奥数的乐趣作文11-25
奥数的馈赠作文03-19
奥数课作文11-02
关于奥数的作文11-24
做奥数作文11-11
不要让奥数伤害孩子05-01
高一数学解题方法03-03
TOEFL词汇测试方法与相应的解题思路04-28