高一数学公式

时间:2024-03-13 01:46:42 好文 我要投稿

高一数学公式大全集锦(9篇)

高一数学公式大全1

  集合与函数

高一数学公式大全集锦(9篇)

  内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。

  函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;

  正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;

  求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,

  奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

  三角函数

  三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。

  同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;

  中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,

  顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,

  变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,

  将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,

  余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。

  计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

  逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。

  万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;

  1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;

  三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;

  利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;

  高一数学学习方法

  1、很多高一学生都在抱怨,为什么努力了那么久,数学成绩还没有提升呢?在他们的眼中,努力就是按时完成作用,好好做题,但是成绩却没有提升。但是,这是因为他们没有分清“视力和视野”有什么区别。很多高一学生只跟着老师的思路,老师安排什么任务,她就做什么。没有自己的学习计划,这样是学不好数学的。

  2、记好课堂笔记。不要以为记笔记是文科科目的专利,数学也是需要做笔记的。高一学生要清楚做笔记的意义。高中课堂每节课只有45分钟,在这45分钟里并不能每个知识点都能记住和掌握的,这个时候就需要高一学生把自己没有理解的知识记下来,等到下课的时候再去研究。而且,做笔记也是一个总结整理的过程,也是再次学习的过程。

  3、学好课本知识。对于高一学生来说,大部分数学知识都是来源于课本的.,只有少部分是来自课外拓展。高一学生想要学好数学,就要利用好课本,把课本上的知识点都理解掌握了。平时做题的时候,也应该以课本为重,高一学生可以把数学课本上的习题都做好了,再做其他的题。

  4、做题后反思。高一学生一定要明确一点,就是现在做的题不等于考试的题目。高一学生做题的目的是为了学习正在做的题目的解题思路和方法。因此,高一学生要学会把自己做的每道题都加以反思,总结自己的收获。

高一数学公式大全2

  抛物线

  1、抛物线:y=ax_+bx+c就是y等于ax的平方加上bx再加上c。

  a>0时,抛物线开口向上;a<0时抛物线开口向下;c=0时抛物线经过原点;b=0时抛物线对称轴为y轴。

  2、顶点式y=a(x+h)_+k就是y等于a乘以(x+h)的平方+k,-h是顶点坐标的x,k是顶点坐标的y,一般用于求最大值与最小值。

  3、抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)。

  4、准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程:y^2=2pxy^2=-2p_^2=2pyx^2=-2py。

  圆的公式

  1、圆体积=4/3(pi)(r^3)

  2、面积=(pi)(r^2)

  3、周长=2(pi)r

  4、圆的标准方程(x-a)2+(y-b)2=r2【(a,b)是圆心坐标】

  5、圆的'一般方程x2+y2+dx+ey+f=0【d2+e2-4f>0】

  椭圆公式

  1、椭圆周长公式:l=2πb+4(a-b)

  2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.

  3、椭圆面积公式:s=πab

  4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

高一数学公式大全3

  抛物线公式

  y = ax^2+bx+c就是y等于ax的平方加上b

  a > 0时开口向上

  a < 0时开口向下

  c = 0时抛物线经过原点

  b = 0时抛物线对称轴为y轴

  抛物线标准方程:y^2=2px

  它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0)准线方程为x=—p/2

  由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=—2px x^2=2py x^2=—2py

  面积公式

  圆的体积公式4/3(pi)(r^3)

  圆的面积公式(pi)(r^2)

  圆的周长公式2(pi)r

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径

  余弦定理b2=a2+c2—2accosB注:角B是边a和边c的夹角

  圆的标准方程(x—a)2+(y—b)2=r2注:(a,b)是圆心坐标

  圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2—4F>0

  抛物线标准方程y2=2px y2=—2px x2=2py x2=—2py

  直棱柱侧面积S=c_h斜棱柱侧面积S=c'_h

  正棱锥侧面积S=1/2c_h'正棱台侧面积S=1/2(c+c')h'

  圆台侧面积S=1/2(c+c')l=pi(R+r)l球的'表面积S=4pi_r2

  圆柱侧面积S=c_h=2pi_h圆锥侧面积S=1/2_c_l=pi_r_l

  弧长公式l=a_r a是圆心角的弧度数r>0扇形面积公式s=1/2_l_r

  锥体体积公式V=1/3_S_H圆锥体体积公式V=1/3_pi_r2h

  斜棱柱体积V=S'L注:其中S'是直截面面积L是侧棱长

  柱体体积公式V=s_h圆柱体V=pi_r2h

  椭圆周长计算公式

  椭圆周长公式:L=2πb+4(a—b)

  椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  椭圆面积计算公式

  椭圆面积公式:S=πab

  椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

高一数学公式大全4

  诱导公式

  一:设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)

  二:设α为任意角,π+α的三角函数值与α的.三角函数值之间的关系:

  sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα

  三:任意角α与-α的三角函数值之间的关系:

  sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα

  四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα

  五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα

高一数学公式大全5

  等比数列公式

  如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

  (1)等比数列的通项公式是:An=A1×q^(n-1)

  若通项公式变形为an=a1/q*q^n(n∈N*),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q*q^x上的一群孤立的点。

  (2) 任意两项am,an的关系为an=am·q^(n-m)

  (3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

  (4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

  记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

  另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的'各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

  性质:

  ①若m、n、p、q∈N*,且m+n=p+q,则am·an=ap·aq;

  ②在等比数列中,依次每k项之和仍成等比数列.

  “G是a、b的等比中项”“G^2=ab(G≠0)”.

  (5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)或Sn=(a1-an*q)/(1-q)(q≠1)Sn=n*a1 (q=1)

  在等比数列中,首项A1与公比q都不为零.

  注意:上述公式中A^n表示A的n次方。

  等比数列在生活中也是常常运用的。

  如:银行有一种支付利息的方式---复利。

  即把前一期的利息和本金加在一起算作本金,

  再计算下一期的利息,也就是人们通常说的利滚利。

  按照复利计算本利和的公式:本利和=本金*(1+利率)^存期

  等差数列公式

  等差数列的通项公式为:an=a1+(n-1)d

  或an=am+(n-m)d

  前n项和公式为:Sn=na1+n(n-1)d/2或Sn=(a1+an)n/2

  若m+n=p+q则:存在am+an=ap+aq

  若m+n=2p则:am+an=2ap

  以上n均为正整数

高一数学公式大全6

  两角和公式

  sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

  tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

  ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

  倍角公式

  tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

  cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

  半角公式

  sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

  cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

  tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

  ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

  和差化积

  2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

  2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

  sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

  tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

  ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

  某些数列前n项和

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

  余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

  弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

  乘法与因式分 a2-b2=(a+b)(a-b)

  a3+b3=(a+b)(a2-ab+b2)

  a3-b3=(a-b(a2+ab+b2)

  三角不等式 |a+b|≤|a|+|b|

  |a-b|≤|a|+|b|

  |a|≤b<=>-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理

  判别式

  b2-4ac=0 注:方程有两个相等的实根

  b2-4ac>0 注:方程有两个不等的实根

  b2-4ac<0 注:方程没有实根,有共轭复数根

  降幂公式

  (sin^2)x=1-cos2x/2

  (cos^2)x=i=cos2x/2

  万能公式

  令tan(a/2)=t

  sina=2t/(1+t^2)

  cosa=(1-t^2)/(1+t^2)

  tana=2t/(1-t^2)

  公式一:

  设α为任意角,终边相同的角的同一三角函数的`值相等:

  sin(2kπ+α)=sinα

  cos(2kπ+α)=cosα

  tan(2kπ+α)=tanα

  cot(2kπ+α)=cotα

  公式二:

  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:

  任意角α与 -α的三角函数值之间的关系:

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:

  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:

  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:

  π/2±α及3π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  cos(π/2+α)=-sinα

  tan(π/2+α)=-cotα

  cot(π/2+α)=-tanα

  sin(π/2-α)=cosα

  cos(π/2-α)=sinα

  tan(π/2-α)=cotα

  cot(π/2-α)=tanα

  (以上k∈Z)

  注意:在做题时,将a看成锐角来做会比较好做。

高一数学公式大全7

  一般数列的通项求法

  一般有:

  an=Sn-Sn-1 (n≥2)

  累和法(an-an-1=... an-1 - an-2=... a2-a1=...将以上各项相加可得an)。

  逐商全乘法(对于后一项与前一项商中含有未知数的数列)。

  化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列)。

  特别的:

  在等差数列中,总有Sn S2n-Sn S3n-S2n

  2(S2n-Sn)=(S3n-S2n)+Sn

  即三者是等差数列,同样在等比数列中。三者成等比数列

  不动点法(常用于分式的通项递推关系)

  特殊数列的通项的写法

  1,2,3,4,5,6,7,8....... ---------an=n

  1,1/2,1/3,1/4,1/5,1/6,1/7,1/8......-------an=1/n

  2,4,6,8,10,12,14.......-------an=2n

  1,3,5,7,9,11,13,15.....-------an=2n-1

  -1,1,-1,1,-1,1,-1,1......--------an=(-1)^n

  1,-1,1,-1,1,-1,1,-1,1......--------an=(-1)^(n+1)

  1,0,1,0,1,0,1,01,0,1,0,1....------an=[(-1)^(n+1)+1]/2

  1,0,-1,0,1,0,-1,0,1,0,-1,0......-------an=cos(n-1)π/2=sinnπ/2

  9,99,999,9999,99999,......... ------an=(10^n)-1

  1,11,111,1111,11111.......--------an=[(10^n)-1]/9

  1,4,9,16,25,36,49,.......------an=n^2

  1,2,4,8,16,32......--------an=2^(n-1)

  数列前N项和公式的'求法

  (一)1.等差数列:

  通项公式an=a1+(n-1)d 首项a1,公差d, an第n项数

  an=ak+(n-k)d ak为第k项数

  若a,A,b构成等差数列 则A=(a+b)/2

  2.等差数列前n项和:

  设等差数列的前n项和为Sn

  即Sn=a1+a2+...+an;

  那么Sn=na1+n(n-1)d/2

  =dn^2(即n的2次方) /2+(a1-d/2)n

  还有以下的求和方法: 1,不完全归纳法 2 累加法3 倒序相加法

  (二)1.等比数列:

  通项公式an=a1*q^(n-1)(即q的n-1次方) a1为首项,an为第n项

  an=a1*q^(n-1),am=a1*q^(m-1)

  则an/am=q^(n-m)

  (1)an=am*q^(n-m)

  (2)a,G,b 若构成等比中项,则G^2=ab (a,b,G不等于0)

  (3)若m+n=p+q 则am×an=ap×aq

  2.等比数列前n项和

  设a1,a2,a3...an构成等比数列

  前n项和Sn=a1+a2+a3...an

  Sn=a1+a1*q+a1*q^2+....a1*q^(n-2)+a1*q^(n-1)(这个公式虽然是最基本公式,但一部分题目中求前n项和是很难用下面那个公式推导的,这时可能要直接从基本公式推导过去,所以希望这个公式也要理解)

  Sn=a1(1-q^n)/(1-q)=(a1-an*q)/(1-q);

  注: q不等于1;

  Sn=na1 注:q=1

  求和一般有以下5个方法: 1,完全归纳法(即数学归纳法)2 累乘法3 错位相减法 4 倒序求和法5 裂项相消法

高一数学公式大全8

  导数公式

  y=f(x)=c (c为常数)则f'(x)=0

  f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)

  f(x)=sinx f'(x)=cosx

  f(x)=cosx f'(x)=-sinx

  f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

  f(x)=e^x f'(x)=e^x

  f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)

  f(x)=lnx f'(x)=1/x(x>0)

  f(x)=tanx f'(x)=1/cos^2x

  f(x)=cotx f'(x)=-1/sin^2x

  导数运算法则

  加法法则:(f(x)-g(x))'=f'(x)-g'(x)

  减法法则:(f(x)+g(x))'=f'(x)+g'(x)

  乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

  除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

高一数学公式大全9

  圆的公式

  1、圆体积=4/3(pi)(r^3)

  2、面积=(pi)(r^2)

  3、周长=2(pi)r

  4、圆的标准方程(x—a)2+(y—b)2=r2【(a,b)是圆心坐标】

  5、圆的一般方程x2+y2+dx+ey+f=0【d2+e2—4f>0】

  椭圆公式

  1、椭圆周长公式:l=2πb+4(a—b)

  2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

  3、椭圆面积公式:s=πab

  4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的'乘积。

  以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

  两角和公式

  1、sin(a+b)=sinacosb+cosasinbsin(a—b)=sinacosb—sinbcosa

  2、cos(a+b)=cosacosb—sinasinbcos(a—b)=cosacosb+sinasinb

  3、tan(a+b)=(tana+tanb)/(1—tanatanb)tan(a—b)=(tana—tanb)/(1+tanatanb)

  4、ctg(a+b)=(ctgactgb—1)/(ctgb+ctga)ctg(a—b)=(ctgactgb+1)/(ctgb—ctga)

  倍角公式

  1、tan2a=2tana/(1—tan2a)ctg2a=(ctg2a—1)/2ctga

  2、cos2a=cos2a—sin2a=2cos2a—1=1—2sin2a

  半角公式

  1、sin(a/2)=√((1—cosa)/2)sin(a/2)=—√((1—cosa)/2)

  2、cos(a/2)=√((1+cosa)/2)cos(a/2)=—√((1+cosa)/2)

  3、tan(a/2)=√((1—cosa)/((1+cosa))tan(a/2)=—√((1—cosa)/((1+cosa))

  4、ctg(a/2)=√((1+cosa)/((1—cosa))ctg(a/2)=—√((1+cosa)/((1—cosa))

  和差化积

  1、2sinacosb=sin(a+b)+sin(a—b)2cosasinb=sin(a+b)—sin(a—b)

  2、2cosacosb=cos(a+b)—sin(a—b)—2sinasinb=cos(a+b)—cos(a—b)

  3、sina+sinb=2sin((a+b)/2)cos((a—b)/2cosa+cosb=2cos((a+b)/2)sin((a—b)/2)

  4、tana+tanb=sin(a+b)/cosacosbtana—tanb=sin(a—b)/cosacosb

  5、ctga+ctgbsin(a+b)/sinasinb—ctga+ctgbsin(a+b)/sinasinb

  高一数学公式记忆口诀

  《集合与函数》

  内容子交并补集,还有幂指对函数。

  性质奇偶与增减,观察图象最明显。

  复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

  指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。

  分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

  两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

  幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

【高一数学公式】相关文章:

高一数学公式大全03-12

高三数学公式03-09

(精)高三数学公式7篇03-09

八年级数学上册数学公式12-18

高一反思03-01

高一劳动话题10-13

给高一新生的信10-19

高一化学知识03-03

高一新生简单03-11

高一军训后感09-08