- 《反比例函数的图像》教学反思 推荐度:
- 相关推荐
常用函数图像
常用函数图像1
这节课是青岛版九年级数学下册的一节探究课。在教学中我采用了体验探究的教学方式,在教师的配合引导下,让学生自己动手作图,观察、归纳出二次函数的性质,体验知识的形成过程,力求体现"主体参与、自主探索、合作交流、指导引探"的教学理念。整个教学过程主要分为三部分:第一部分是前置性作业,前置作业是前一天发给
2y?ax学生的,主要涉及如何作图、复习二次函数性质等问题。我的
设计目的是让学生在复习这些知识的过程中体会从函数图像来研究函数性质。应该说这样设计既让初三同学复习了旧知又使他们体会到如何研究函数,从哪些方面研究函数,从思维层面锻炼了学生的探究
2y?ax?c的能力。第二部分是学习探究,只要是图象让学生感受
性质以及和二次函数y?ax的联系与区别。第三部分是通过练习和我的展示让学生锻炼了自我学习的能力和出题的能力。
本节课的优点主要包括:
1、教态自然,能注重身体语言的作用,提问具有启发性。
2、教学目标明确、思路清晰,注重学生的自我学习培养和小组合作学习的落实。
3、能运用现代化的教学手段教学,尤其是能用几何画板等软件突破重难点
4、二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体的动态展示了二次函数的平移过程,让学生自己总结规2
律,很形象,便于记忆。
本节课的不足之处表现在:
1、目标定位不好,本节课通过画图,由图象观察总结出对称轴、顶点坐标、开口方向等。
2、课堂上讲的太多。有些过程,让学生自主观察总结是完全能收到好的'效果的,但是我都替学生总结了,学生还是被动的接受。其实这还是思想的问题,说明我没有真的放开手。真正让学生有了空间,他们也会给我们很大的惊喜。
3、有些内容偏离教学大纲,导致差生吃不好,优生吃不饱。课堂上有个别同学的学习态度不尽人意。
4、备课不够细心,“图象”两个字变成“图像”。
5、课堂应急处理不够老练,同学提出的问题没有及时解答
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样才会吸引学生对数学学科的热爱。
常用函数图像2
《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的方法解决问题,培养学生科学的态度与精神.借助于多媒体课件,让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握.
在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。主要反映在以下几个方面。 第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例
函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。于是,在教学中,我们同样关注了对“解析式”的分析。第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的'过程。
不足与改进:在整个课堂教学过程中,教师围绕主题、有针对性的提出问题,学生小组合作探讨问题得出结论,然而部分小组在合作探究上还有所欠缺,讨论的不够激烈完善。我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征;在画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?” 留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能
体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
常用函数图像3
一、教材分析
(一)教材的地位和作用
本课时主要学习指数函数的图像和性质概念,通过指数函数图像的研究归纳其性质。“指数函数”是函数中的一个重要基本初等函数,是后续知识——对数函数(指数函数的反函数)的准备知识。本节课的重点是指数函数的图像及性质,难点在于弄清楚底数a对于函数变化的影响。通过这部分知识的学习进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识并体会研究函数较为完整的思维方法,此外还可类比学习后面的其它函数。
(二)教学目标
知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
能力维度:学生利用描点法画出函数的图像,并描述出函数的图像特征,能够为研究指数函数的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的'体会,已初步了解了数形结合的思想。
1、知识与技能目标:
(1)掌握指数函数的概念(能理解对a的限定以及自变量的取值可推广至实数范围);
(2)会做指数函数的图像;
(3)能初步把握指数函数的图像,性质及其简单应用。
2、过程与方法目标:
通过由指数函数的图像归纳其性质的学习过程,由图像研究指数函数的性质。利用性质解决实际问题,培养学生探究、归纳分析问题的能力。
3、情感态度与价值观目标:
(1)在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题
(2)通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、 综合的能力通过探究体会“数形结合”的思想;感受知识之间的关联性;体会研究函数由特殊到一般再到特殊的研究学习过程;体验研究函数的一般思维方法。
(三)教学重点和难点
教学重点:指数函数的图象和性质。
教学难点:指数函数的图象性质与底数a的关系。
教学关键:从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
课时安排:1课时
二、学情分析
学生已有一定的函数基本知识、可建立简单的函数关系,为以函数关系的建立作为本节知识的引入做了知识准备。此外,初中所学有理数范围内的指数相关知识,将已有知识推广至实数范围。在此基础上进入指数函数的学习,并将所学对函数的认识进一步推向系统化。
三、教法分析
(一)教学方式
直接讲授与启发探究相结合
(二)教学手段
借助多媒体,展示学生的做图结果;演示指数函数的图像
四、教学基本思路:
(一)创设情境,揭示课题。
1创设情境(如何建立一个关于指数函数的数学模型——后续解决)
2引入指数函数概念
(二)探究新知。
1研究指数函数的图象
2归纳总结指数函数的性质
(三)巩固深化,发展思维
(四)归纳整理,提高认识
(五)巩固练习与作业
(六)教学设计说明
1、抛出生活中的实例,需要建立一个关于指数函数的数学模型,为学生提出问题;提高学生学习新知识的积极性以及体会数学与生活密切相关。
2、用简单易懂的实例引入指数函数概念,体会由特殊到一般的思想。
3、探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象突破,体会数形结合的思想。通过研究几个具体的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。让学生在研究出指数函数的一般性质后进行总结归纳函数的其他性质,从而对函数进行较为系统的研究。
4、进行一些巩固练习从而能对函数进行较为基本的应用
常用函数图像4
听了张老师的这节复习课,受益颇多,觉得自己离张高的距离还很远,张老师对课堂的驾驭游刃有余,对复习课定位准确,对教材理解到位又不失深度,紧密根据学情设置课堂内容各环节,自然、流畅又实用。我从以下两方面谈谈自己对本节课的认识:
一、教材理解
一次函数在初中数学函数的起始,是对以前的二元一次方程的升级版,更是以后学习其他函数的基础,所以一次函数就内容上讲起着承上启下的作用。而《一次函数图像》对学生来说是学习中的一个难点,所以张老师选择在这个单元新课之后上这么一节复习课,本身就是对教材内容精确的把握。
二、学情把握
张老师在课后发表自己的设计意图中有谈到自己的对学情的'分析,我认为一位老师课堂内容设置要是脱离了学情,那么这节课注定是作秀、失败的。而张老师的各环节设置紧紧联系学生的认知基础,进行恰到好处地设置问题,从简单的一次图像引入,让学生判断k、b的符号,到后面各问题设置层层递进,由易入难,显得特有层次感。而实际上我所说的“难”,正式这节的亮点问题。从平日生活中的两种灯泡---------节能灯和白炽灯的选择和使用出发设计问题,这本身就能吸引大家眼球,而问题紧密联系一次函数图像对选择方案作出判断,直观形象易懂;并引导学生进行变式训练,对一题进行各方位的改编,而问题又不会让学生“够不着”,在学生认知基础上一点一滴前进,真正提高了学生思考能力、思维能力。
常用函数图像5
这节课主要是通过学生自主探究、观察、类比学习,探索得出反比例函数的图象和性质,使学生经历了一次自主获取新知的成功体验,充分体现了新课程的教学理念和自主探究的学习方法。自主探究学习是近年来兴起的一种全新的教学方式,它主要着力于学生的学,鼓励学生以类似科学研究的模式,进行主动探索。它把目标指向学生的创新能力、问题意识,以及关注现实、关注人类发展的意识和责任感的培养,而不仅仅是知识的传播和掌握.其有利于改变学生学习数学的方式,它强调“做中学”,力图通过学生“做”的主动探究过程来培养他们的创新精神、动手能力和解决问题的能力。而立足于课堂,深入钻研教材,是数学课堂教学中实施探究性学习的基础。
带着这样的思路,我设计了《反比例函数的图象与性质》教案。对教学中体会较深的内容体会如下:
首先,为达到自主探究、培养学生的动手能力、观察能力和问题意识的教学目的,教师要努力为学生创设必要的情境。人们的学习往往从问题开始,因为这样的学习具有方向性与原动力。一节高质量的数学课常常是由好的数学问题启发并激励学生学习的充实过程。因此,我把教学设计的主体“教学情境设计”设计成由若干个有一定逻辑顺序的问题。即通过复习反比例函数的定义——各自举一个反比例函数,同桌互相检查——画出它的图象。使他们经历观察实验、猜测发现、交流反思等理性思维的基本过程,使他们领悟发现和提出问题的艺术,引导他们更加主动、有兴趣地学,富有探索地学,逐步培养学生的问题意识,孕育创新精神。
其次,如何把复杂抽象的数学问题变为具体化、形象化的问题,让学生在学习时充满激情,过程中充满乐趣,在活跃的课堂气氛中,渐入佳境。在教学的过程中,我把信息技术和数学教学的学科特点结合起来,利用多媒体的动画演示让学生通过观察、探究发现反比例函数图象的性质,从而把复杂抽象的数学问题变为具体化、形象化的问题,让学生成为课堂的真正主角,教师从课堂的.主宰者变为引导者。让学生来发现、归纳和总结反比例函数图象的性质规律。这样有利于提高学生的学习积极性。我们知道“兴趣是最好的老师”,有良好的兴趣就有良好的学习动机,但不是每个学生都具有良好的学习数学的兴趣。“好奇”是学生的天性,他们对新颖的事物、知道而没有见过的事物都感兴趣,要激发学生的学习数学的积极性,就必须满足他们这些需求。利用多媒体信息技术图文并茂、声像并举、能动会变、形象直观的特点为学生创设各种情境,可激起学生的各种感官的参与,调动学生强烈的学习欲望,激发动机和兴趣。这充分说明了多媒体信息技术在教学中的作用。
再次,关注教学过程,注意抓住一切有利的教育机会,对学生的疑问和解决问题能力进行引导和培养。比如在做能力测试题第
(1)已知反比例函数y=(3k-6)x,如果在每个象限内y随着x的增大而减小,那么k的取值范围是______时,学生回答的答案是(k>2),是正确的,但进一步提问为什么时,答案却是因为当k=2时,3k-6=0不符合题意,此时我就进一步提出k<2行吗?解决此问题的关键是什么?从而培养了学生解决问题能力
不足和遗憾之处:
(1)反比例函数的图象可以进一步地利用有理数的乘法及各象限坐标的特点来验证说明。
(2)因为时间关系,最后没有进行总结。
反思二:
刚刚讲完《反比例函数的图像和性质》这节课,感受很深,本节课的内容主要有两点:一是画反比例函数的图像,二是由图像得出反比例函数的性质。后者只需观察即可直观得出,显然画反比例函数的图像是本节课的重点,从教学目标的角度分析,本节课更应侧重于画图像技能的培养。
准确、美观的画出反比例函数的图像,也应是本节课的难点,原因之一画函数的图像第一步是列表,列表时取哪些点?不取哪些点?取多少?密集程度如何?对刚接触反比例函数的学生来说,都是必须解决好的问题,否则划出的图像必然是五花八门,错误百出。原因之二,学生画函数图像的经验源于正比例函数和一次函数,由于二者的图像均为直线,所以有可能对画反比例函数图像造成一定的干扰。
本节课在难点的处理上,我首先在列表时,直接给定了x的取值,这就把列表时应有的困惑化为无形,学生只需由y=4/x计算y值而已。其次,学生在坐标系中描完点后,我运用多媒体及时矫正,把问题分散,同时又为下面的连线清除了计算上的障碍。在此一句具有启发性的问话:这些点是否在一条直线上?怎样连接这些点?把学生分散而不着边际的思维集中在正确的轨道上来,图像的正确率自然大大增加。紧接着跟上矫正:同学们所画图像与老师图像不太一致,请对照老师正确的图像小组讨论,由于前面层层铺垫,加之有正确的图像作比较,学生很容易发现自己画图中的错误,最后概括总结注意点水到渠成。但仔细想想在学生对答如流的表面下,却掩盖了本应解决好的问题,这些问题暂时不暴露,就永远不会暴露吗?这对画图像技能的培养必然带来负面影响,在这里就出现了一个很现实的问题:教学中作为老师的我们,是掩盖问题还是暴露问题,答案是显然的。但我对这节课在以下方面还是很满意的:如列表时直接给定x的取值,连线时启发性的问话,使学生思维定向,避免了错误的不断尝试,使学生尽快步入正确学习的轨道,节省了学习时间等等……在教学中给我的感觉明快顺畅,但是这与教学中质疑解惑并不矛盾,有效教学的标志不仅是顺畅,更重要的是对问题的深入思考,最终达到技能的形成和情感目标的实现。
回忆以往我在处理这个问题时的方法:列表、描点、连线由学生独立完成,然后老师提出问题,画反比例函数应该注意什么?列表时注意什么?为什么有的点取得密集?有的点取得疏松?描点时注意什么?连线时注意什么?用折线段连结所描的点可以吗?等等
常用函数图像6
学习目标:
1、能解释二次函数 的图像的位置关系;
2、体会本节中图形的变化与 图形上的点的坐标变化之间的关系(转化),感受形数 结合的数学思想等。
学习重点与难点:
对二次函数 的图像的位置关系解释和研究问题的数学方法的感受是学习重点;难点是对数学问题研究问题方法的感受和领悟。
学习过程:
一、知识准备
本节课的学习的内容是课本P12-P14的内容,内容较长,课本上问题较多,需要你操作、观察、思考和概括,请你注意:学习时要圈、点、勾、画,随时记录甚至批注课本,想想那个人是如何研究出来的。你有何新的发现呢?
二、学习内容
1.思考:二次函数 的图象是个什么图形?是抛物线吗?为什么?(请你仔细看课本P12-P13,作出合理的解释)
x -3 -2 -1
0 1 2 3
类似的:二次函数 的图象与函数 的图象有什么关系?
它的对称轴、顶点、最值、增减性如何?
2.想一想:二次函数 的图象是抛物线吗?如果结合下表和看课本P13-P14你的解释是什么?
x
-8 -7 -6 -3 -2 -1 0 1 2 3 4 5 6
类似的':二次函数 的图象与二次函数 的图象有什么关系 ?它的对称轴、顶点呢?它的对称轴、顶点、最值、增减性如何呢
三、知识梳理
1、二次函数 图像的形状,位置的关系是:
2、它们的性质是:
四、达标测试
⒈将抛物线y=4x2向上平移3个单位,所得的抛物线的函数式是 。
将抛物线y=-5x2+1向下平移5个单位,所得的抛物线的函数式是 。
将函数y=-3x2+4的图象向 平移 个单位可得y=-3x2的图象;
将y=2x2-7的图象向 平移 个单位得到可由 y=2x2的图象。
将y=x2-7的图象向 平移 个单位 可得到 y=x2+2的图象。
2.抛物线y=-3(x-1)2可以看作是抛物线y=-3x2沿x 轴 平移了 个单位;
抛物线y=-3(x+1)2可以看作是抛物线y=-3x2沿x轴 平移了 个单位.
抛物线y=-3(x-1)2的顶点是 ;对称轴 是 ;
抛物线y=-3(x+1)2的顶点是 ;对称轴是 .
3.抛物线y=-3(x-1)2在对称轴(x=1)的左侧,即当x 时, y随着x的增大而 ; 在对称轴(x=1)右侧,即当x 时, y随着x的增大而 .当x= 时,函数y有最 值,最 值是 ;
二次 函数y=2x2+5的图像是 ,开口 ,对称轴是 ,当x= 时,y有最 值,是 。
4.将函数y=3 (x-4)2的图象沿x轴对折后得到的函数解析式是 ;
将函数y=3(x-4)2的 图象沿y轴对折后得到的函数解析式是 ;
5.把抛物线y=a(x-4)2向左平移6个单位后得到抛物线y=- 3(x-h)2的图象,则a= ,h= .
函数y=(3x+6)2的图象是由函数 的图象向左平移5个单位得到的,其图象开口向 ,对称轴是 ,顶点坐标是 ,当x 时,y随x的增大而增大,当x= 时,y有最 值是 .
6.已知二次函数y=ax2+c ,当x取x1,x2(x1x2), x1,x2分别是A,B两点的横坐标)时,函数值相等,
则当x取x1+x2时,函数值为 ( )
A. a+c B. a-c C. c D. c
7.已知二次函数y=a(x-h)2, 当x=2时有最大值,且此函数的图象经过点(1,-3),求此函数的解析式,并指出当x为何值时,y随x的增大而增大?
常用函数图像7
二次函数的性质与图像
【学习目标】
1、使学生掌握研究二次函数的一般方法——配方法;
2、应“描点法”画出二次函数 ( 的图像,通过图像总结二次函数的性质;
3、通过研究二次函数和图像的性质,能进一步体会研究一般函数的方法,能由特殊到一般地研究问题。
【自主学习】
二次函数的性质与图像
1)定义:函数 叫二次函数,它的定义域是 。特别地,当 时,二次函数变为 ( 。
2)函数 的图像和性质:
(1)函数 的图像是一条顶点为原点的'抛物线,当 时,抛物线开口 ,当 时,抛物线开口 。
(2)函数 为 (填“奇函数”或“偶函数”)。
(3)函数 的图像的对称轴为 。
3)二次函数 的性质
(1)函数的图像是 ,抛物线的顶点坐标是 ,抛物线的对称轴是直线 。
(2)当 时,抛物线开口向上,函数在 处取得最小值 ;在区间 上是减函数,在 上是增函数。
(3)当 时,抛物线开口向下,函数在 处取得最大值 ;在区间 上是增函数,在 上是减函数。
跟踪1、试述二次函数 的性质,并作出它的图像。
跟踪2、研讨二次函数 的性质和图像。
跟踪3、求函数 的值域和它的图像的对称轴,并说出它在那个区间上是增函数?在那个区间上是减函数?
跟踪4、课本P60练习B
1、
【归纳总结】
研究二次函数的图像与性质的思路是什么?
函数二次函数 (a、b、c是常数,a≠0)
图像a>0 a<0
性质
【典例示范】
例1:将函数 配方,确定其对称轴和顶点坐标,求出 它的单调区间及最大值或最小值,并画出它的图像。
例2:二次函数 与 的图像开口大小相同,开口方向也相同。已知函数 的解析式和 的顶点,写出符合下列条件的函数 的解析式。
(1)函数 , 的图像的顶点是(4, );
(2)函数 , 图像的顶点是 。
常用函数图像8
在本节课中我采用“类比——探究——讨论”教学法。在学习了正弦函数图像与性质,平移正弦线得到正弦函数图像的方法类比作正切函数图像。设计问题让学生进一步探究正切函数的性质与图像,学生通过对这些“有结构”的材料进行探究,获得对正切函数的感性认识和形成正切函数图像的了解。
通过创设问题情境,引发认知冲突,较好地调动了学生的积极性和主动性,符合新课程理念的精神。通过多媒体显示得出函数图像。引导学生在有限的时间内完成正切函数性质的归纳和总结,让学生思考、动手画图、课堂交流、亲身实践。通过互相交流、启发、补充、争论,使学生对正切函数图像与性质的认识从感性的认识上升到理性认识,获得一定水平层次的科学概念。这节课主要是教给学生“动手做,动脑想;多训练,勤钻研。”的学习方法。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径;思考问题的方法。使学生真正成为教学的'主体。
学生才会逐步感到数学美,会产生一种成功感,从而提高学生学习数学的兴趣。在课堂教学中注重学生的学,让学生自己思考得到问题的答案,以至于后半段课堂时间仓促,课堂练习只能变成课后练习。在以后的教学中会注意调节好学生的研究时间
常用函数图像9
【知识与技能】
1.会用描点法画二次函数y=ax2+bx+c的图象.
2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.
3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.
【过程与方法】
1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.
2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.
【教学重点】
①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.
【教学难点】
能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.
一、情境导入,初步认识
请同学们完成下列问题.
1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.
3.画y=-2x2+6x-1的`图象.
4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.
5.二次函数y=-2x2+6x-1的y随x的增减性如何?
【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.
二、思考探究,获取新知
探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.
2.列表,描点,连线画出对称轴右边的部分图象.
3.利用对称点,画出对称轴左边的部分图象.
探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
常用函数图像10
一次函数的概念、图象和性质,是这一章的重点。也是学习其他函数的重要基础,通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。教学完后,对新教材有了一些更深的认识。从这节课的准备来看,针对教学内容从课题的引入、知识的呈现方式、学生的学习活动安排、知识的巩固练习等多方面进行了多次的修改。通过课堂的实际实施感觉上也不是尽善尽美,还有许多令人不满意的地方。究其原因,教师不能就这节课的知识而教这点知识,教师应该通观教材,把握知识的脉络体系,又要站在高于教材的位置统筹安排。这样,教师才能灵活的把握课堂教学。而现在,教师缺乏的正是这一点,还是为了教而教。按部就班,设计的条条框框较多,多了一些稳重,少了一些灵活。而在课堂上,教师面对的是数十名学生,师生之间、生生之间考虑问题的角度、方式要灵活的多、开放的多,有可能教师固定的设计会影响到学生的思维发展。从这一角度讲,教师应在把握知识的基础上。结合学生的表现,灵活多样的处理知识。
学生是学习的主体,学生活动是新教材的一大特点。新教材在知识安排上,往往从实例引入,抽象出数学模型。通过学生的观察、分析、比较、归纳,探究知识的发生、发展、形成的过程,得出结论,并能运用解决实际问题。侧重于学生能力的培养,让学生知道学什么,如何学。因此,教学过程中,如何安排学生的学习活动至关重要,本节课,学生活动设计了三个方面。一是通过画函数图象理解一次函数图象的形状。二是两点法画一次函数的图象。三是探究一次函数的图象与k、b符号的关系。在学生活动中,如何调动学生的积极性、互动性,提高学生活动的实效性。值得老师们探讨。为了达到上述目的,我把学生分成四个组,每个组探索一种情况,我结合每个活动,都给学生明确的目的和要求,而且提供操作性很强的程序和题目。并根据每个组的表现给与一定的评价。如在活动一中,要求学生观察图象的形状,两条直线的位置关系。在活动二中,强调两点法(直线与坐标轴的交点)画直线。在活动三中,探究k、b符号与直线经过的象限与增减性的关系。学生目标明确,操作性强,受到了明显的效果。
本节课的重点是由一次函数的解析式确定函数图象,研究函数性质。由函数图象的位置判断解析式中k、b符号。
概括一次函数图象的性质时,一定要结合函数的图像
一次函数y=kx+b有下列性质:
(1)当k>0时,y随x的增大而______,这时函数的图象从左到右_____;
(2)当k<0时,y随x的增大而______,这时函数的图象从左到右_____.
(3)当b>0时,这时函数的`图象与y轴的交点在________.
(4)当b>0时,这时函数的图象与y轴的交点在_________.
一次函数的图像和性质节,很好的体现了数学中非常重要地数形结合的思想。这段内容的教学,还是从学生活动出发,从具体的实例研究起,观察图象的位置和性质,在按照k、b的符号分类讨论,使学生建立起数形之间的联系。还要找到数形间的结合点,明确k的符号决定直线的什么位置,b的符号又决定了什么。为了加深学生对知识的理解,课上设计了由解析式画函数图象的草图,由草图的位置判断解析式中k、b的符号的练习,收到了很好的效果。
本节课从时间安排上有点前松后紧,这是我一贯的习惯,另外,在练习题的处理上,针对性练习不够充足,一些比较时尚的题型设计的的较少。
总之,作为一名数学教师,应在以后的教学中不断总结,不断创新
以上是我对本节课粗浅的看法,希望和同行们共勉。
常用函数图像11
一、教材的地位和作用
本 节课主要是在学生学习了函数图象的基础上,通过动手操作接受一次函数图象是直线这一事实,在实践中体会“两点法”的简便,向学生渗透数形结合的数学思想, 以使学生借助直观的图形,生动形象的变化来发现两个一次函数图象在直角坐标系中的位置关系。培养学生主动学习、主动探索、合作学习的能力。本节课为探索一 次函数性质作准备。
(一)教学目标的确定
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。
1、知识目标
(1)能用“两点法”画出一次函数的图象。
(2)结合图象,理解直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响。
2、能力目标
(1)通过操作、观察,培养学生动手和归纳的能力。
(2)结合具体情境向学生渗透数形结合的数学思想。
3、情感目标
(1)通过动手操作,观察探索一次函数的特征,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)让学生通过直观感知、动手操作去经历、体会规律形成的过程。
(二)教学重点、难点
用“两点法”画出一次函数的图象是研究一次函数的性质的基础,是本节课的重点。直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响,是本节课的难点。关键是通过学生的直观感知、动手操作、合作交流归纳其规律。
二、学情分析
1、由用描点法画函数的图象的认识,学生能接受一次函数的图象是直线,结合“两点确定一条直线”,学生能画出一次函数图象。
2、根据学生抽象归纳能力较差,学习直线y=kx+b(k、b是常数,k≠0)常数k和b的取值对于直线的位置的影响有难度。所以教学中应尽可能多地让学生动手操作,突出图象变化特征的'探索过程,自主探索出其规律。
3、抓住初中学生的心理特征,运用直观生动的形象,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
三、教学方法
我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。
四、教学设计
一、设疑,导入新课(2分钟)
师:同学们,上节课我们学习了一次函数,你能说一说什么样的函数是一次函数吗?
生1:函数的解析式都是用自变量的一次整式表示的,我们称这样的函数为一次函数。
生2:一次函数通常可以表示为y=kx+b的形式,其中k、b为常数,k≠0。
生3:正比例函数也是一次函数。
师:(同学们回答的都很好)通过前面的学习我们可以发现,一次函数是一种特殊的函数,那么一次函数的图象是什么形状呢?
这节课让我们一起来研究 “一次函数的图象”。(板书)
二、自主探究——小组交流、归纳——问题升华:
1、师:问(1)你们知道一次函数是什么形状吗?(4分钟)
生:不知道。
师:那就让我们一起做一做,看一看:(出示幻灯片)
用描点法作出下列一次函数的图象。
(1)y= 0.5x (2) y= 0.5x+2
(3)y= 3x (4) y= 3x + 2
师:(为了节约时间)要求:用描点法时,最少5个点;以小组为单位,由小组长分配,每人画一个图象。画完后,小组订正,看是否画的正确?
然后讨论解决问题(1):观察你和你的同伴画出的图象,你认为一次函数的图象是什么形状?
小组汇报:一次函数的图象是直线。
师:所有的一次函数图象都是直线吗?
生:是。
师:那么一次函数y=kx+b(其中k、b为常数,k≠0),也可以称为直线y=kx+b(其中k、b为常数,k≠0)。(板书)
师:(出示幻灯片)问(2):观察你和你的同伴所画的图象在位置上有没有不同之处?(2分钟)
讨论正比例函数的图象与一般的一次函数图象在位置上有没有不同之处。
小组1:正比例函数图象经过原点。
小组2:正比例函数图象经过原点,一般的一次函数不经过原点。
师出示幻灯片3(使学生再一次加深印象)
师:问(3):对于画一次函数y=kx+b(其中k)b为常数,k≠0)的图象——直线,你认为有没有更为简便的方法?
(一边思考,可以和同桌交流)(2分钟)
生1:用3个点。
生2:老师我这个更简单,用两个点。因为两点确定一条直线嘛!
生3:如画y=0.5x的图象,经过(0,0)点和(2,1)点这两个点做直线就行。
师:我们都认为画一次函数图象,只过两个点画直线就行。
(幻灯片4:师,动画演示用“两点法”画一次函数的过程)
师:做一做,请你用“两点法”在刚才的直角坐标系中,画出其余三个一次函数的图象。(比一比谁画的既快又好)(4分钟)
师:问(4):和你的同伴比一比,看谁取的那两个点更为简便一些?
组1:若是正比例函数,我们组先取(0,0)点,如画y=0.5x的图象,我们再了取(2,
1)点。这样找的坐标都是整数。
组2:我们组认为尽量都找整数。
组3:我们组认为都从两条坐标轴上找点,这样比较准确。如y=3x+2,我们取点(0,3)和点(-2/3,0)
组4:我们组认为,正比例函数经过(0,0)点和(1,k)点;一般的一次函数经过(0,b)点和(-b/k,0)点。
师:同学们说的都很好。我觉得可以根据情况来取点。
2、师:我们现在已经用:“两点法”把四个一次函数图象准确而又迅速地画在了一个直角坐标系中,这四个函数图象之间在位置上有没有什么关系呢?
问(1):(由自己所画的图象)观察下列各对一次函数图象在位置上有什么关系?(独自观察——学生回答)(3分钟)
①y=0.5x与y=0.5x+2;②y=3x与y=3x+2;③y=0.5x与y=3x;④y=0.5x+2与y=3x+2。
生1:①y=0.5x与y=0.5x+2;两直线平行。
生2:②y=3x与y=3x+2;两直线平行。
生3:③y=0.5x与y=3x;两直线相交。
生4:④y=0.5x+2与y=3x+2;两直线相交。
师:其他同学有没有补充?
生5:③y=0.5x与y=3x都是正比例函数;两直线相交,并且交点是点(0,0)点。
生6:老师,我也发现了④y=0.5x+2与y=3x+2的图象相交,并且交点是点(0,2)。
师:(出示幻灯片5)同学们回答都不错,我们要向生5和生6学习,学习他们的细致思考。
常用函数图像12
1数轴
11 有向直线
在科学技术和日常生活中,为了区别一条直线的两个不同方向,可以规定其中一方向为正向,另一方向为负相
规定了正方向的直线,叫做有向直线,读作有向直线l
12 数轴
我们把数轴上任意一点所对应的实数称为点的坐标
对于每一个坐标(实数),在数周上可以找到唯一的点与之对应这就是直线的坐标化
数轴上任意一条有向线段的数量等于它的终点坐标与起点坐标的差任意一条有向线段的长度等于它两个断电坐标差的绝对值
2 平面直角坐标系
21 平面的直角坐标化
在平面内任取一点o为作为原点(基准点),过o引两条互相垂直的,以o为公共原点的数轴,一般地,两个数轴选取相同的单位长度这样就构成了一个平面直角坐标系x轴叫横轴,y轴叫纵轴,它们都叫直角坐标系的坐标轴;公共原点o称为直角坐标系的原点;我们把建立了直角坐标系的平面叫直角坐标平面简称坐标平面两坐标轴把坐标平面分成四个部分,它们叫做四个象限
22 两点间的距离
23 中点公式
3 函数
31 常量,变量和函数
在某一过程中可以去不同数值的量,叫做变量在整个过程中保持统一数值的量或数,叫做常量或常数
一般地,设在变活过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量
1. 函数的定义域
2. 对应法则
(1) 解析法
就是用等式来表示一个变量是另一个变量的函数,这个等式叫做函数的解析表达式(函数关系式)
(2) 列表法
(3) 图像法
3 函数的值域
一般的,当函数f(x)的自变量x去定义域D中的一个确定的值a,函数有唯一确定的对应值这个对应值,称为x=a时的函数值,简称函数值,记作:f(a)
32 函数的图像
若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x))的集合构成一个图形F,而集F成为函数y=f(x)的图像
知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤
4 正比例函数
41 正比例函数
一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k叫做变量y与x之间的比例函数确定了比例函数k,就可以确定一个正比例函数
正比例函数y=kx有下列性质:
(3) 当k>0时,它的图像经过第一,三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二,四象限,y随着x的增大而减小
(2)随着比例函数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率
42 反比例函数
一般地,函数y=k/x(k是不等于0的常数)叫做反比例函数
反比例函数y=k/x有下列性质:
(7) 当k>0时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y随x的值增大而减小;当k<0时,它的图像的两个分支分别位于第二、四象限内,在每一个象限内,y随x的增大而增大
(8) 它的图像的两个分支都无限接近但永远不能达到x轴和y轴
5 一次函数及其图像
51 一次函数及其图像
如果k=0时,函数变形为y=b,无论x在其定义域内取何值,y都有唯一确定的值b与之对应,这样的函数我们称它为常函数
直线y=kx+b与y轴交与点(0,b),b叫做直线y=kx+b在y轴上的截距,简称纵截距
52 一次函数的性质
函数y=f(小),在a〈x〈b上,如果函数值随着自变量x的值增加而增加,那么我们说函数f(x)在a〈x
如果分别画出两个二元一次方程所对应的一次函数图像,交点的坐标就是这个方程组的.解,这种求二元一次方程组的解法叫图像法
初中数学正方形定理公式
关于正方形定理公式的内容精讲知识,希望同学们很好的掌握下面的内容。
正方形定理公式
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;
正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。
希望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌握,相信同学们会取得很好的成绩的哦。
初中数学平行四边形定理公式
同学们认真学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌握了吧,相信同学们会从中学习的更好的哦。
初中数学直角三角形定理公式
下面是对直角三角形定理公式的内容讲解,希望给同学们的学习很好的帮助。
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中30度
角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系a^2+b^2=c^2
,那么这个三角形是直角三角形(勾股定理的逆定理)。
以上对数学直角三角形定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们都能考试成功。
初中数学等腰三角形的性质定理公式
下面是对等腰三角形的性质定理公式的内容学习,希望同学们认真看看。
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)
上面对等腰三角形的性质定理公式的内容讲解学习,同学们都能很好的掌握了吧,希望同学们在考试中取得很好的成绩。
初中数学三角形定理公式
对于三角形定理公式的学习,我们做下面的内容讲解学习哦。
三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于180度;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;
三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
以上对三角形定理公式的内容讲解学习,希望同学们都能很好的掌握,并在考试中取得很好的成绩哦。
常用函数图像13
二次函数的图像是教学的重点,也是教学的难点。学会并理解了函数的图像,可以说就掌握了函数的性质。如何进行函数图像的'教学呢?
1、学习图像之前,让学生正确画平面直角坐标系,准备不同颜色的彩笔。
2、每节课基本都是学生自己画图、比较、讨论、总结。本节画出的图像比较,和上节学习的图像比较,和小组其他同学比较,看形状、看开口、看对称轴、看顶点有什么相同点和不同的地方,尽可能自己总结函数的图像。
3、小组展示成果,其他小组听、评和补充。总结出顶点形式的图像性质。
4、画出函数的图像,根据图像确定ahk的数值。
5、注意二次函数的对称性,步骤是列表、描点、连线。取值时从对称轴开始取,注意左右对称取值。
常用函数图像14
《正切函数的图像与性质》是高一的一节概念课,在学习了正弦函数和余弦函数的图形与性质以后,再学习正切函数的图像与性质,教学的重点除了要让学生掌握正切函数的图像性质,更要让学生掌握研究函数的一般方法,也就是在课堂教学中学生对于“方法”的掌握和体验很关键。这次,听了刘卫华老师的《正切函数的图像与性质》一课,给我的启发和收获很大。
首先,虽然现在的数学课堂教学过程中可以利用的教学辅助技术和工具很多,而且,刘老师也确实恰到好处地在课堂教学过程中使用了PPT和几何画板,这对于更精确、形象而又直观地研究函数图像有很大的帮助。然而,让我很敬佩的是,刘老师同时也没有因此而放弃我们传统的尺规作图的教学,她通过自己的`作图带领学生经历了一次很好的函数性质研究过程。从而也体现了她良好的数学业务功底以及对数学学科知识的很高认知水平。
此外,刘老师教学语言的规范性,教学过程中推理的严密性也非常值得我学习。她的课堂教学语言非常简练,几乎没有什么多余的废话。对学生的问题总是能非常简洁而又一针见血地指出。这对于培养学生严密的思维以及良好的数学语言表达能力是非常重要的。让我印象很深的是,在研究正切函数奇偶性的时候,当学生完成了奇函数的证明后,刘老师能够继续指出,让学生思考有没有可能是一个偶函数?从而充分体现了教师在教学过程中推理演绎过程的严密性。在这里,稍微有点遗憾的是,有学生提出是奇函数了就不会是偶函数时,教师可能因为没有听到的原因,没有针对这个问题把学生的这个错误纠正。
第三、教学过程中对于一些通性通法的教学使得学生能够在类比思想的引导下,基本自主地完成函数图像和性质的研究。在整堂课的教学过程中,其实类比的思想方法是始终贯穿其中的。教师一开始就让学生类比正弦函数的定义来得到正切函数的定义。虽然在类比过程中,正切函数的定义得出有点快,但是整个的设计指导思想是对的。因为,数学教学中,最重要的是数学思想和一些研究问题的方法的学习,这才是对学生今后的继续学习最有用的。如果说稍微有些遗憾的地方,就是在课的最后小结部分显得有些仓促和慌乱,没有能很好的利用课堂小结这个环节将整堂课所涉及到的那么多研究的方法进行总结。
常用函数图像15
本节的学习内容是在前面学过二次函数的概念和二次函数的图像和性质的基础上,运用图像变换的观点把二次函数的图像经过一定的平移变换,而得到二次函数的图像,二次函数的图像和性质(第三课时)教学反思。二次函数是初中阶段所学的最后一类最重要、图像性质最复杂、应用难度最大的函数,是学业达标考试中的重要考查内容之一。教材中主要运用数形结合的方法从学生熟悉的知识入手进行知识探究。这是教学发现与学习的常用方法,同学们应注意学习和运用。另外,在本节内容学习中同学们还要注意“类比”前一节的内容学习,在对比中加强联系和区别,从而更深刻的体会二次函数的图像和性质。
通过本节课教学,得出几点体会:
1、在教学中二次函数图像的对称轴,顶点坐标,开口方向尤其重要,必需特别强调。
2、在探究中要积累研究问题的方法并积累经验,学生在前面已经历过探索、分析和建立两个变量之间的关系的过程,学习了一次函数和反比例函数,学会了用描点法作函数图象并据此分析得出函数的`性质,教学反思《二次函数的图像和性质(第三课时)教学反思》。我们可以把研究这些问题的方法应用于研究二次函数的图象和性质,并据此形成研究问题的基本方法。
3、要使课堂真正成为学生展示自我的舞台,还学生课堂学习的主体地位,教师要把激发学生学习热情和获得学习能力放在教学首位,为学生提供展示自己聪明才智的机会,使课堂真正成为学生展示自我的舞台。充分利用合作交流的形式,能使教师发现学生分析问题解决问题的独到见解以及思维的误区,以便指导今后的教学。但在复习与练习的过程中,我发现学生存在着这样几个问题。
本节课,我合理、充分利用了多媒体教学的手段,利用powerpoint,《几何画板》这两种软件制作了课件,特别是《几何画板》软件的应用,画出了标准、动画形式的二次函数的图像,让抽象思维不强的学生,更加形象的结合图形,分析说出二次函数的有关性质,充分体现了“数形结合”的数学思想。为了突出重点,攻破难点,我要求学生“先观察后思考”、“先做后说”、“先讨论后总结”,“师生共做”充分体现了教学过程中以学生为主体,老师起主导作用的教学原则。本节课,让学生有观察,有思考,有讨论,有练习,充分调动了学生的学习兴趣,从而为高效率、高质量地上好这一堂课作好了充分的准备。
【函数图像】相关文章:
图像记忆的原理03-06
函数知识点03-01
《对数与对数函数》反思03-10
高中幂函数知识点12-18
[荐]函数知识点15篇03-04
八年级上册数学函数03-09
八年级上册数学函数教案03-09