- 相关推荐
数学思想教育教学论文
数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。接下来小编整理了数学思想教育教学论文,欢迎阅读!
1、数学思想的基本内涵
数学思想方法是前人探索数学真理过程中的精髓。而数学思想,是指现实世界的空间形式和数量关系反映到人的意识之中,经过思维活动而产生的结果,它是对数学事实与数学理论的本质认识,是知识中奠基性的成分。首先,数学思想比一般说的数学概念具有更高的抽象和概括水平。其次,数学思想、数学观点、数学方法三者密不可分。如果人们站在某个位置、从某个角度运用数学方法去观察和思考问题,那么数学思想也就成了一种观点、一种认识。
数学思想是对数学理论和方法在更高层次上的提炼和概括,属于理性认识的范畴。数学思想具有概括性和普通性,而数学方法它具有操作性和具体性。作为数学思想,它不仅比数学方法处于更高层次,而且是数学知识、数学方法的精髓和灵魂,其运用和发展有助于知识得到优化,有助于理性认识迅速构建,有助于将知识转化为能力。数学思想与数学方法既有联系又有区别。数学思想具有概括性和普遍性,数学方法具有操作性和具体性。数学思想是数学方法的理论基础和精神实质。数学思想都是通过某种方法来体现,而任何一种数学方法都反映了一定的数学思想。高职数学中的基本数学思想有:
(1)符号化与变元表示思想。包括符号化思想、换元思想、方程思想、参数思想。
(2)集合思想。包括分类思想、交集思想、补集思想、包含排除思想。
(3)对应思想。包括映射思想、函数思想、变换思想、数形结合思想。
(4)公理化与结构思想。包括基元与母结构思想、演绎推理思想、数学模式思想。
(5)数学系统思想。包括整体思想、分解与组合思想、状态运动变化思想、最优化思想。
(6)统计思想。包括随机思想、抽样统计思想。
(7)辩证的数学思想。包括数学范畴的对立统一、普遍联系相互制约、量变质变、否定之否定、数学化归、极限思想。
(8)整体与局部思想。高职数学中所蕴含的这些丰富的数学思想,它们与其基础知识、基本方法一起构成了高等数学的主要内容。同时,又由于这些思想往往隐含在基础知识和基本方法里,也就伴随着数学思想产出、发展和完善的过程。随着科学技术和人类社会的不断进步,数学思想其内涵也是会更丰富的,内容也是会不断的延展的。
2、数学思想对高职数学教学的启示
2.1数学思想在数学教材内容体系中的呈现
高等职业院校的数学教学是以应用为重点,必需够用为度,突出职业教育特色。因此,使学生掌握日常生活、生产中必备的数学知识,能以数学为工具解决一定的实际问题应作为高职数学教学的主要目标之一。数学方法是指在提出问题,解决问题(包括数学内部问题和实际问题)的过程中所采用的各种方式、手段、途径等,其中包括交换数学形式。但数学教材并不是这种探索过程的真实记录。恰恰相反,教材对完美演绎形式的追求往往掩盖了内在的思想方法,颠倒了数学真理的发现过程。整个高等数学其主要思想观点就是运动与变化的观点,以运动与变化的观点去考察问题,从运动与变化中去认识事物,这是唯物辩证法在数学中的反映。例如,高等数学就是从圆的内接正多边形面积的变化中去认识圆的面积,从割线运动中去认识切线,从平均速度的变化中去认识瞬时速度等等。而初等数学基本上不涉及运动与变化,只是在几个相对固定量的关系中从已知求未知。研究对象从初等数学主要研究常量的运算和固定不变图形的性质,反映运动与变化的数学概念是变量与函数,到高等数学是以变量及变量之间的依赖关系函数作为研究对象。
解决问题的基本方法是极限,这是因为在数学和科学技术应用发展中,所带来出现的问题表现出的矛盾,如“曲”与“直”、“均匀”与“非均匀”等等,虽然各自的具体意义千差万别,但表现在数量关系上都归结成“近似”与“精确”的矛盾。解决这一矛盾的有效方法就是极限方法,借助于这实质上深刻的辩证法,使人们清楚地看到,定不变的事物是过程、运动的结果。高职数学内容全面,结构严密,通过本课程的学习可以使学生初步获得从数和形两个方面洞察现实世界、用数学方法解决问题的能力。同时,它能提高学生的科学和文化素质。找到他们学习中遇到的问题和困难调动和激发学生在教和学中的积极性,发挥他们的潜能,为学生后续课程学习的奠定必需的数学基础。使学生明白高等数学这门课程正在渗透到许多专业基础课和专业课当中。高职数学既是工具,又是文化,学生自身也要加强对高等数学应用能力的培养。才能获得掌握和认识新理论、新知识、新方法强有力的工具。教师在传授知识的过程中应使数学思想的精神得以完整的体现。使学生了解和认识一个较为完整的数学知识体系。
2.2数学思想是课堂教学实施的精髓,是学生能力培养的核心指导思想
数学既有一般科学的特征,又具有横向移植的特点,因而在整个科学领域中有着广泛应用。数学方法是指用数学语言表述事物的状态、关系和过程,并加以推导、演算和分析,以形成对问题的解释、判断和预言。数学思想以解决问题为根本,指导人们从数学概念、命题、规律、方法和技巧的本质认识中获取解决自然科学、技术科学或社会科学等各个方面问题的具体途径、策略和手段。数学是集严密性、逻辑性、精确性和创造性与想象力与一身的学科。它的这些特点决定着高职数学教学培养目标是使受教育者不仅具有一定的数学素质和应用数学知识去发现问题和解决问题的能力,而且要使学生通过学习数学,更具有敏锐的洞察能力、分析归纳和逻辑推理能力,将抽象性的逻辑思维和创造性的发散思维结合起来,创造性地应用数学知识去解决现代科学技术所面临的许多问题。
进入高职学习的学生,他们在面临的学习方法和学习形式上都发生了重要的变化。目前对于入学的高职学生群体中体现入学起点较低,中学数学基础知识的能力水平参差不齐,由于高职数学要求的是“以应用为目的,以必须够用为度”教学原则,教学时间和教学内容上都进行了压缩和调整,对教师要求备课中要深入钻研教材和参阅有关参考材料,要善于从具体的数学知识中挖掘和提炼出数学思想方法,要预先把全书、每单元章节所蕴涵的数学思想方法及它们之间的联系搞明确具体,然后统筹安排,有目的、有计划和有要求地进行数学思想方法的课堂教学提出了更高的要求。
教师在教学过程中应首先培养学生学习数学的兴趣,因为“兴趣是最好的老师”。教师要注重运用启发式教学原则,充分调动学生学习数学的积极性。备课充分、规范,教学态度端正,治学严谨,关心学生,做学生的知心朋友。教师在教学应教育学生树立学好数学的信心,调动和激发他们的学习热情,深刻去体会数学思想的作用和意义,逐步形成良好的学习能力,锻造学生的辨证观。例如,导数概念在工程技术上更多的是被称为在一点的变化率,在数学课上强调这一点,可使学生迅速地接受专业概念的数学描述;另一方面还要对数学概念的实质分析透彻,以使学生能够意识到哪类专业问题可以使用相应的数学概念去表述,应用相应的数学知识去解决。对于习题课的教学中,要尽可能注意避免陷入模式化的算式形式,着重要以应用为中心,生动活泼地突出应用,引导和启发学生运用数学思想和方法去思维,而去解决实际问题作用,也还要能使不同水平的学生都能意识到数学的意义,从中领略到自己需要的东西。
2.3数学知识背景学习能深化学生对数学思想的认识
学生在数学教学过程和学生的学习过程中,教材是按知识的体系编写的,是逻辑的,严谨的。对于知识产生的背景和解决的过程介绍的甚少。适当地给学生介绍有关数学发展史,适时开展一些数学讲座如“数学热门话题”,“数学史上的三次危机”等,开阔学生眼界。在高职数学教学中适时去介绍和挖掘教学内容与所学专业和实际生活中实例的联系,也会对学生学习数学知识起到一定的作用,对他们也能够形成良好思维和学习兴趣也有帮助。这样既能突出高职的培养目标,学生充分了解数学的发展、数学的价值,培养学生战胜困难的决心,去激发学生的求知欲望。
2.4数学思想对教师素质的要求
数学知识在当今的国民经济发展和科学技术中得到广泛的应用,同时也在不断的知识扩充和延展。对于我们教师来说,自己知识的学习和提高从来都是必要的,也是重要的。同时,数学教师还应充分发挥其自身的人格魅力,以增强数学教学的实效性。这样的高职数学教学中,自然也会对教师素质的要求会更高。面对高职学生的能力培养,同时也是一个复杂的系统工程,让教师和学生都要意识到数学知识的传授和学习,不单单仅是各自单方面所要完成的任务,也是在“教”与“学”的过程中,对学生的数学素质、科学的思维能力建立与培养的过程。这样才能去提高学生的综合素质,培养出基础知识扎实,应用能力好,具有良好品格的高等技能型适用人才。
3、结论
数学思想的教学,能够使学生真正达到理解、掌握和运用数学知识的目的,从本质上理解数学科学,能够培养和发展学生的创造性思维,提高创造力。数学教学中数学思想的有效的运用,也是改善和提高教学的一种重要手段和方法。能够逐步促进学生形成良好的学习能力和解决问题的能力习惯,有效地提高教学效果,满足当今社会对高职学生的要求和需要地实现,使他们成为具有一定理论基础和实践运用能力强的社会主义建设者。
【数学思想教育教学论文】相关文章:
数学教学中的思想教育04-30
在数学教学中加强思想教育之我见04-30
数学教学论文11-09
数学教学论文06-30
将思想教育渗透于英语教学之中论文05-03
高校学生思想教育研究论文05-02
提高数学教学论文11-04
初中数学教学论文01-30
小学数学教学论文()01-21
初中数学教学论文05-22