- 相关推荐
含噪声的转子碰摩混沌信号分类识别
采用基于竞争学习和聚类分析的学习向量量化(LVQ)方法,研究转子碰摩混沌响应信号的神经网络分类识别问题,给出了相应的理论分析和计算结果,着重研究了LVQ网络在不同噪声时的识别情况.分析结果表明,该方法可以实现转子碰摩混沌信号与其它响应信号的分类识别,并且具有良好的抗噪性能,为转子碰摩混沌信号的分类识别提供了一种较为直接的实时处理方法.
作 者: 任辉 顾家柳 贺尔铭 张志禹 作者单位: 西北工业大学,航空动力与热能工程系,陕西,西安,710072 刊 名: 航空动力学报 ISTIC EI PKU 英文刊名: JOURNAL OF AEROSPACE POWER 年,卷(期): 2002 17(4) 分类号: V231.96 关键词: 神经网络 碰摩转子系统 混沌时间序列【含噪声的转子碰摩混沌信号分类识别】相关文章:
反馈信号的滞后对混沌控制的影响04-27
基于三阶累积量的转子振动信号降噪方法研究04-27
具非线性油膜轴承支承的弹性盘轴转子系统的分岔和混沌分析04-26
从辨证的角度看混沌04-26
混沌及其哲学启示04-27
透过噪声的危害浅谈噪声污染防治04-25
转子动力特性及动平衡研究综述04-26
酸性增加噪声更大04-26