数学建模论文
在日复一日的学习、工作生活中,大家肯定对论文都不陌生吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。为了让您在写论文时更加简单方便,以下是小编精心整理的数学建模论文,希望对大家有所帮助。
数学建模论文1
利用数学建模解数学应用题
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的'是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题审题题设条件代入数学模型求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
数学建模论文2
摘要:随着新课改的实施,寻求高校数学教学的新方式引起了相关部门和工作人员的重视。同时,数学具有较强的逻辑性,能够有效培养和提高学生的逻辑思维能力,而数学建模更加能够体现数学的逻辑性,因此,在高校的数学教学中采用数学建模这一教学方法具有极强的现实意义。在此,本文就数学建模教育与高校数学教学方式改革模式进行论述。
关键词:数学建模;高校数学;教学方式;改革
所谓数学建模就是将实际生活中的事物通过数学的模式表现出来,也可以说是利用数学来解决生活中的实际问题。由此可见,数学建模是将数学与实际生活相联系的桥梁。
一、将数学建模应用于高校数学教学的意义
1.有利于学生更好地掌握基础理论知识。数学建模能够将实际生活中的问题以数学的形式表达出来,然后利用数学知识和思维来解决问题,这对于学生的基础理论知识的掌握有一定的要求。同时,也有助于学生充分利用自己的数学知识来解决问题。数学与生活实际的结合,还减少了学习数学的枯燥感,从而使得学生提高学习数学的兴趣,进而更加全面地理解和掌握基础理论知识。2.有利于培养和提高学生的创新能力和创新思维。当前社会需要大量创新型人才,教育目标也有意向创新型人才的培养靠拢。在传统的教学方法下,很难让学生学会灵活运用知识。通过数学建模来进行教学能够弥补传统教学方式的不足,因为它能加强教师与学生之间的交流,提高学生在课堂上的参与度,从而帮助学生灵活运用课堂知识。通过理论与实际的结合,培养学生的思维能力和创新能力。3.有利于学生学习其他学科。通过数学的学习,学生能够提高自己的逻辑思维能力和实践能力,也能有效解决其他学科中的问题。
二、当前在高校数学教学中应用数学建模存在的问题
1.落实数学建模存在一定的难度。由于在数学教学中应用数学建模还处于探索阶段,很多学校的教学方案还有待完善,缺乏科学具体的落实措施。2.教师的教学能力有待提升。随着时代的进步,当前高校教师的质量已有了很大的提升,但是仍受传统教学理念的影响,没能很好地掌握数学建模这一教学方式,不能发挥出数学建模的作用。3.数学与其他学科的交叉不足。当前,我国高校还是以专业教育为主,数学专业的`学生和教师的交流仅局限于数学领域,难以与实际进行结合,也很难与其他学科进行融合,因此学生难以拓展自己的数学知识。4.学生缺乏思维能力和团队合作能力。通过数学建模来学习数学知识需要学生具有良好的团队协作能力和清晰的思维能力,但是很多学生缺乏这种能力,导致他们在数学学习中缺乏自信,无法迅速解决团队中的分歧,降低了学习效率。5.学生不能够将理论知识与实践较好地结合。通过数学建模来学习数学,需要学生掌握数学术语,并且能够灵活运用。但就目前的情况而言,由于学生没有树立将理论与实际相结合的思想,导致他们在这方面比较弱。
三、如何在高校数学教学中应用数学建模来进行教学
1.学校和教师要树立正确的教学理念。当前,随着新课改的实施和教育目标的转变,数学教学中实施数学建模势在必行,因此,学校和教师要树立正确的教学理念,对数学建模有一个正确的认识,最大程度地发挥数学建模教学的作用。2.完善数学建模体系。完善数学建模体系要注意以下两个方面:第一,充分利用多媒体教学设备。当前,多媒体教学工具的使用越来越广泛,教师通过多媒体教学设备,能够将知识点通过图片、视频、动画等方式直观地展现给学生,从而加深学生的理解,还可以活跃课堂氛围。第二,充分运用实验教学。教师还需要加入一些基础实验,丰富学生的学习内容和形式,从而激发学生学习数学的兴趣。3.培养学生的数学建模能力。进行数学建模需要学生有一定的想象力和创新能力,并且有扎实的理论基础,能够将理论与实际较好地结合起来,因此,在日常的教学中,教师要注意培养学生的语言表达能力和逻辑思维能力。另外,要让学生多多练习,以此提高自己的逻辑思维能力。
四、结语
综上所述就是笔者通过分析数学建模在高校数学教学中的重要意义以及当前存在的问题提出的几点建议。将数学建模应用于数学教学中,是一项长期而艰难的工作,需要教育工作者和各个高校的不断探索、共同参与。
参考文献:
[1]肖楠,唐敏.分析数学建模对高校数学教学改革的意义[J].湖北函授大学学报,20xx(10):112-114.
[2]徐岗,许金兰,陈临强.数学建模驱动的“计算机图形学”课堂教学模式改革[J].中国信息技术教育,20xx(6):89-91.
[3]马丽雅.“数学建模”教学模式在小学数学中的应用[J].课程教育研究,20xx(26):121.
[4]葛亚平.数学建模融入民办高职院校数学教学初探———以南通理工学院为例[J].教书育人:高教论坛,20xx(21):82-83.
数学建模论文3
数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。
一、数学建模的含义
数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。
二、数学建模能力的培养与强化
1.精心设计导学案,引导学生通过自主探究进行建模
在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。
2.在教学环节中融入数学模型教学
教师在教学的各个环节都可以融入数学模型教学。例如,教师在新课教学时,应注意渗透数学建模思想,让学生将新授课中的数学知识点与实际生活相联系,将实际生活中与数学相关的案例引入课堂教学,引导学生将案例内化为数学应用模型,以此激发学生对数学学习的兴趣。在不同教学环节,教师通过联系现实生活中熟悉的事例,将教材上的内容生动地展示给学生,从而强化学生运用数学模型解决实际问题的能力。
教师通过描述数学问题产生的背景,以问题背景为导向,开展新授课的学习。教师在复习课教学环节,注重提炼和总结解题模型,培养学生的转换能力,让学生多方位认识和运用数学模型。相对而言,高中阶段的数学问题更加注重知识的综合考查,对思维的灵活性要求较高。高中阶段考查的数学知识、解题方法以及数学思想基本不变,设置的题目形式相对稳定。因此,教师应适当引导,合理启发,对答题思路进行分析,逐步系统地构建重点题型的解题模型。
3.结合教学实验,开展数学建模活动
教师在开展数学建模活动时,应结合教学实验。开展活动课和实践课,可以促使学生进行合作学习。教师要适时进行数学实验教学,可以每周布置一个教学实验课例,让学生主动地从数学建模的角度解决问题。在教学实验中,以小组合作的形式,让学生写出实验报告。教师让学生在课堂上进行小组交流,并对各组的交流进行总结。教学实验可以促使学生在探索中增强数学建模意识,提升数学核心素养。
4.在数学建模教学中,注重相关学科的联系
教师在数学建模教学中,应注重选用数学与化学、物理、生物等科目相结合的跨学科问题进行教学。教师可以从这些科目中选择相关的应用题,引导学生通过数学建模,应用数学工具,解决其他学科的难题。例如,有些学生以为学好生物是与数学没有关系的,因为高中生物学科是以描述性的语言为主的。这些学生缺乏理科思维,尚未树立理科意识。例如,学生可以用数学上的概率的相加和相乘原理来解决生物上的一些遗传病概率的计算问题,也可以用数学上的`排列与组合分析生物上的减数分裂过程和配子的基因组成问题。又如,在学习正弦函数时,教师可以引导学生运用模型函数,写出在物理学科中学到的交流图像的数学表达式。这就需要教师在课堂教学中引导学生进行数学建模。因此,教师在数学建模教学中,应注意与其他学科的联系。通过数学建模,帮助学生理解其他学科知识,强化学生的学习能力。注重数学与其他学科的联系,是培养学生建模意识的重要途径。
总之,教师在数学教学过程中,应以学生为本,精心设计导学案,鼓励学生自主探究和应用数学模型。通过建模教学,让学生形成数学问题和实际问题相互转化的数学应用意识和建模意识。教师通过强化数学建模意识,让学生掌握数学模型应用的方法,可以使学生奠定坚实的数学基础,提升数学核心素养。
参考文献:
[1]郑兰,肖文平.基于问题驱动的数学建模教学理念的探索与时间[J].武汉船舶职業技术学院学报,20xx(4).
[2]王国君.高中数学建模教学[J].教育科学(引文版),20xx(8).
[3]李明振,齐建华.中学数学教师数学建模能力的培养[J].河南教育学院学报(自然科学版),20xx(2).
数学建模论文4
引言
当前,高考第五批和中专对口升学学生成为高职院校的主要生源,高等数学在高职院校不仅是工科学生公共必修课,同时也为经济类的专业基础课,对学生学习后续专业课程非常重要。但学生数学基础相对薄弱,对学习不感兴趣,自制力差。而学生对线性代数抽象的概念定理及其冗繁的计算难以接受成为线性代数教学的突出表现,因此,在线性代数教学中融入数学建模思想方法是解决学生理解困难和实现教学目标的有效途径。
一、高职院校线性代数教学情况与建模发展概况
1.线性代数教学情况。行列式、矩阵和线性方程组是目前高职院校线性代数部分教学的主要内容,所用的教材是以理论计算为主体,教学偏重其基本定义和定理,过分强调理论学习,忽视其方法和应用,有关线性代数应用实例几乎不涉及。再者高职院校高等数学总体课时少,因此线性代数部分课时也非常有限,但其理论抽象,内容较多,教师在课堂上大多采用填鸭式的教学方式,导致该课程与实际应用严重脱离,造成了学生感觉线性代数知识枯燥,计算繁杂,学习它无用处,大大降低了学生的学习热情。
2.数学建模及其发展概况。数学建模的基本思想是利用数学知识解决实际问题,是对问题进行调查、观察和分析,提出假设,经过抽象简化,建立反映实际问题的数量关系;并利用数学知识和Matlab、Lingo、Mathematics等数学软件求解所得到的模型;再用所得结论解释实际问题,结合实际信息来检验结果,最后根据验证情况来对模型进行改进和应用,它使学数学与用数学得到统一。数学建模大专组竞赛开展已有15年,参赛的高职院校逐年增加,我院在多年的参赛中取得了一定的成果,但因数学建模难度大和学生数学基础薄弱以及高职院校学制的原因,参加数学建模培训的学生基本为大一新生,而且只有小部分,明显受益面小。
二、数学建模思想融人线性代数教学中的`具体实施线性代数因其理论抽象,逻辑严密,计算繁琐,让人对其现实意义感受不到,使高职学生学习起来有困难,也就很难激发学生的学习兴趣,因此,线性代数教学过程中就要求教师介绍应用案例应体现科学性、通俗性和实用性。
1.数学建模思想融入线性代数理论教学中。线性代数中的行列式、矩阵、矩阵乘法、线性方程组等复杂抽象的概念都可以通过实际问题经过抽象和概括得到,故而可以恰当选取一些生动的实例来吸引学生的注意力,通过对实际背景问题的提出、分析、归纳和总结过程的引入线性代数定义,同时自然地建立起概念模型,让学生切实体会把实际问题转化为数学的过程,逐步培养学生的数学建模思想。比如讲授行列式定义之前,可以引入一个货物交换模型,并介绍模型是由诺贝尔经济学奖获得者列昂杰夫(Leontief)提出,让学生拓展视野。引导学生分析问题,建立一个三元线性方程组来求解该问题,再以此问题引出行列式,使学生了解行列式应用背景是为求解线性方程组而定义的。从简单的经济问题入手,让学生了解知识的应用背景,使学生感受到学习行列式是为生产实践服务的,提高学生学习的积极性[2],明确学生学习的目的性。
2.数学建模思想融入线性代数案例教学中。选择简单的实际案例作为线性代数例题,给学生讲授理论知识的同时引导学生对问题进行分析,对案例进行适当简化并做出合理假设,再建立数学模型并求解,进而用结果解释实际案例,学生通过这样的学习过程容易理解掌握理论知识,同时也体会了数学建模的基本思想,更让学生认识到线性代数的实用价值,而且有利于提高学生分析问题和解决问题的能力。对于不同的专业,可以根据专业需要引入相应的数学模型,但专业性不能太强,由于大一学生还暂时没有学,因课时限制,在线性代数课堂教学中应该采用简单的例子。比如经管类专业的学生学习矩阵和线性方程组的相关例题时,可以分别选择简单的投入产出问题和互付工资问题的数学模型;而电子通信类专业的学生学习矩阵和线性方程组的相关例题时,可以加入简单的电路设计问题和电路网络问题的数学模型。
3.数学建模思想融入线性代数课后练习中。高职院校线性代数教学内容侧重于理论,课后习题的配置大多数只是为学生巩固基础知识和运算技巧的,对线性代数的定义、定理的实际应用问题基本没有涉及,学生的实际应用训练不够,因此适当地补充一些简单的线性代数建模习题,让学生通过对所学的知识与数学建模思想方法相结合来解决。我们从两个方面具体实施:
(1)在线性代数课程中加入Matlab数学实验,利用2个学时介绍与行列式、矩阵、线性方程组等内容相关的Matlab软件的基础知识,再安排2个学时让学生上机练习并提交一份应用Matlab计算行列式、矩阵和线性方程组相关内容的实验报告。
(2)针对所学的内容,开展1次数学建模习题活动,要求学生3人一组利用课余时间合作完成建模作业,作业以小论文形式提交,提交之后,教师让每组选一个代表简单介绍完成作业的思路和遇到的问题,其余队员可作补充,再针对文章的不同做出相应的点评并指出改进的方向。通过这种学习模式,不但提高学生自学和语言表达以及论文写作能力,而且利于培养学生团队合作和促进师生关系,教学效果也得以提升。
4.数学建模思想的案例融入线性代数教学中。案例1:矩阵的乘积。现有甲、乙、丙三个商家代理某厂家的A、B、C、D四款产品。四款产品的每箱单价和重量分别为A:20元,16千克;B:50元,20千克;C:30元,16千克;D:25元,12千克。甲代理商代理的产品与数量分别为A:20箱,B:5箱,D:8箱。乙代理商代理的产品与数量分别为B:12箱,C:16箱,D:10箱。丙代理商代理的产品与数量分别为A:10箱,B:30箱。求解三家代理商代理产品总价和总重量。模型假设:①在没任何促销优惠措施下严格按照单价和数量计算总价;②同款产品对即使不同级别的三家代理商执行同样的单价。模型建立:由已知数据分析可知,发往各代理商的产品类别不尽相同,通过用0代替,可以列成表。由此,分别将产品的单价和单位重量。
三、改革的初步成效
数学建模思想方法与线性代数的教学适当结合并灵活运用,这一教学改革提高了学生们的能力和素质,主要表现在以下几个方面:(1)熟练掌握Matlab等数学软件的使用,利用数学软件加深了数学理论知识的理解和应用;(2)学生学习积极性明显提高,启发学生初步产生用数学解决实际问题的意识;(3)学生已逐步形成一种建模思维,逐步形成良好的分析和处理问题的习惯。另外,适时应用数学建模思想教学,促进了线性代数教学方法的改进,提高教学水平和教学效果,利于高职高等数学的教学改革进一步推进和课程建设的长效发展。
总之,在高职院校高等数学各个教学模块中逐渐地融入数学建模思想方法,能使学生的数学素养有较大提高,并对教师教学理念的转变起到促进作用。
数学建模论文5
【摘要】本文结合当前高校开设数学建模和数学实验课程的现实,从发展历史、现状以及教材建设等方面,分析它们的区别与联系,结合各自的特点,找到它们各自的优势和不足,提出了将两门课进行融合的想法并给出了理由和建议。
【关键词】数学建模;数学实验;学以致用;发现问题;解决问题
1、前言
数学建模课程进入我国的大学是在上世纪80年代,此时数学建模课程以及数学建模的思想已经在发达国家趋于普遍。我国对于该课程的设置大致是属于引进式的课程革新。随之而来的全国大学数学建模竞赛给数学建模课在全国高校的蔓延带来了强大的助推力。20xx年前后,数学实验课开始兴起了,全国很多高校的数学系开始开设数学实验课,如今的大学数学课程体系中,大部分都有《数学建模》和《数学实验》这两门课。它们的内容乍一看比较接近,再加上近年来有不少学校在进行两门课的合并,所以很多人会认为它们是重复的存在。本文主旨就在于讲清楚数学建模和数学实验的区别与联系。
2、综述数学建模
2.1数学建模课程的形成历史
要想说清楚数学建模这门课,必须先从数学模型说起。人类社会发展到今天,无论是工业生产,还是经济运行,甚至日常生活,都可以靠数学来揭示其中的规律。数学在上述各个领域中的呈现形式不再是一种纯粹的数学形式,而是应用数学语言对各类事物的本质规律进行的表述,即数学模型。随着科学研究领域的飞速发展,数学在各个领域中展现出越来越重要的作用,人们发现将现实问题数学化的意识和能力对于一个科研工作者来说是至关重要的,尤其是对于年轻人。于是在上世纪五六十年代,欧美国家的大学开始开设数学建模这门课程。八十年代,我国的高校开始陆续在各自的数学系开设数学建模课,逐渐发展成为许多学校的数学、应用数学、计算数学等数学类专业将它列为必修课或专业限选课,而且一些工科、经济管理、师范等院校也将它列为选修课。紧随而来的全国大学数学建模竞赛对数学建模课的继续发展也起到了巨大的推动作用[1]。随着大学师生对数学建模的越来越多的重视,关于数学建模的教学研讨也雨后春笋般的多了起来。配合全国大学生数学建模竞赛的指导工作,数学建模的师资队伍也在不断的壮大。各类教材和参考书层出不穷,虽然良莠不齐,但是生机勃勃的局面对于数学建模的发展也是大有益处。经过近二三十年的发展,现在数学建模课程设置以及相关配套已经基本上趋于成熟和完善。
2.2现阶段对于数学建模的认识
在应试教育的驱动下,学生学什么怎么学都是在老师的引导下被动进行,思维主动性的缺失导致一直到考大学,学生们对于为什么要考大学,到大学里学什么专业这些重要的问题都没有深入的思考,至少是没有独立的思考。于是学以致用的“用”就成了一直被忽视的问题,一方面所学应该“用”在什么地方,反之就是为了这个“用”,大学应该选择学什么。这个问题是学生个人应该根据自己的知识和兴趣来自己解决的问题。数学建模恰恰就是在研究怎么用数学。做好建模需要学生有“用数学”的能力,也就是需要从实际需要出发来思考数学知识对解决现实问题的参与。学生们对于“用”的理解和能力上的长期的缺失导致了对于数学建模这门课的重要意义认识不够,学习数学建模的动机不是加速知识向现实生产生活的转化,而更多是为了参加数学建模竞赛并获奖,这是在动机上的偏差,这个偏差是本质上的,甚至连一些教师也有同样的认识问题。
2.3数学建模的教材分析
目前在用的数学建模教材有不少,其中用的较为普遍是高等教育出版社的国家“十二五”普通高等教育本科国家级规划教材《数学模型》,目前已经更新至第四版。自第一版到第四版,在内容结构的安排上,都是以建模所使用的数学方法作为划分章节的依据。这样结构清晰,逻辑合理,教师教学和学生学习都很合适。自第三版开始加入了Matlab的实验内容,将计算机的工具引入的建模教材,丰富了建模过程中关于模型求解的部分。有些教师对于这本教材的内容设置提了一些建议,其中一种说法是,这本书对于建模过程中更加务实的搞清机理、搜集数据以及模型检验与修改等环节讲述较少,重点呈现的是建模的“成品”。这种说法不无道理,但是应该考虑它作为一本教材的实际情况,它的目的是教会学生怎么建模,可具体建模过程的操作又因实际问题而各不相同,很难整理出关于具体实施方法的系统表述,而目前教材通过精心选取经典案例和优秀的解决方案作为主要内容是合适的。这就对教师的教学方法提出了更高的要求,如何通过组织学生讨论和模拟建模来切实提高他们的建模能力,以达到课程的培养目标。
3、数学实验课程综述
3.1数学实验这门课的形成
数学实验的提法是伴随着计算机技术和数学软件的发展应运而生的。在传统的数学教学与科研中,数学只需要有纸和笔就可以了,在纸上呈现出复杂的数学推导和计算过程。对于那些计算思路成熟、步骤清晰、逻辑困难已经被攻克但是却极端复杂的.数学问题,人们开始考虑让日益兴起的计算机来帮忙解决。人们认为只要将正确计算的步骤转化为计算机程序语言,让它代替人们去做复杂的计算工作,就能够高效且准确的得到人们想要的结果。随着计算机的强大计算能力越来越广泛的展现出来,人们开始更加重视计算数学这个方向。围绕着设计计算机能够高效率高精度的处理人们所遇到的大量的数学问题进行研究,逐渐出现了很多成熟的算法以处理日常所能遇到的大量的数学问题。
在上述背景之下,上世纪90年代,北京大学、清华大学等高等院校的一些教授提出了开设数学实验课的构想,立即在教育界引起反响,在教育部立项的面向21世纪高校非数学专业数学教学体系和内容改革的总体构想中,把“数学实验”列为数学基础课之一。1998年清华大学、北京大学、北京师范大学共同组织了一个课题组,在萧树铁教授的指导下,三校各抽一个班,开出了两期数学实验课,并在此基础上逐渐形成了数学实验教材[2]。20xx年之后,全国各大高校开始纷纷开设这门课,并在长期的教学实践中逐渐丰富和完善着这门课的教学内容和教学方法。之所以叫数学实验,或许是因为把数学交给计算机这样的外部设备,得到计算结果的过程,很像物理化学那样在实验室里做实验的过程。应当强调的是,数学实验所处理的问题并非纯数学问题,而是现实问题,也正因为此,称之为数学实验才更为贴切。实验目的是解决现实问题,实验材料需要从现实搜集,实验工具是计算机和计算软件,实验结果是现实问题的答案。面对一个现实问题,数学实验的首要任务应该是关于实验步骤的设计,其实质是将现实问题转化为数学问题,以及设计数学问题的数值算法,由此看到,数学实验和数学建模有密不可分的关系。
3.2现阶段对数学实验的认识
由于数学建模课的存在,数学实验教材中的关于建模部分的重要性显得不那么突出了。如今一种习惯的看法认为数学实验主要就是学一种计算软件,通过计算机完成那些困难的繁琐的数学计算。事实上这种认识是片面的。因为如果这样,我们只需要学好《计算方法》并掌握一种编程语言就好了,数学实验这门课就没有存在的意义了。翻看一下《数学实验》教材的前言就会发现,开始这门课的初衷还是要提高学生用数学的能力。从开设《数学实验》这门课的出发点来看,它和《数学模型》有着大致相同的目标,从形式和侧重点来看,又更偏重于为数学建模准备具体的方法和工具。
3.3数学实验的教材分析以及其之于数学建模
目前国内的《数学实验》教材也很丰富,并且大同小异。在实践当中,它们也都大多是充当一门计算语言的辅助教材甚至最终作为工具书。这是因为《数学模型》课的开展早于《数学实验》,因此开设后者的高校必定已经存在了《数学模型》,这样抛开两者中的重叠部分[3],《数学实验》也就自然的落到了这样一个尴尬的境地。
4、结合数学建模竞赛来谈数学建模与数学实验
对于与数学建模和数学实验这两门课密不可分的数学建模竞赛,我们有必要着重谈一谈。目前建模竞赛影响力最大的有两个,一个是全国大学生数学建模竞赛,一个美国大学生数学建模竞赛。美国大学生数学建模竞赛(MCM/ICM),它分为数学建模竞赛(MCM)和交叉学科建模竞赛(ICM),它们分别创始于1985年和20xx年,是由美国数学及其应用联合会主办,目前全球唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。赛题内容涉及经济、管理、环境、资源、生态、医学、安全、未来科技等众多领域。截至20xx年,共有来自美国、中国、加拿大、芬兰、英国、澳大利亚等19个国家和地区共9773支队伍参赛,其中不乏来自哈佛大学、普林斯顿大学、麻省理工学院、清华大学、北京大学、浙江大学等国际或国内知名的高校派出的参赛队。我国的全国大学生数学建模竞赛创办于1992年,形式类似于美国大学生数学建模竞赛,分为专科组和本科组(后来有了专门的研究生数学建模竞赛)。试题也是涉及众多领域,具有很强的应用性和时效性。
每年一届,经常涉及到当年的重大社会事件或重大科学发现。学生在三天的时间内完成模型建立、求解、验证及论文撰写,比美赛的时间还少一天,对学生的挑战更大。目前该项赛事已经成为全国高校规模最大的基础性学科竞赛。仅20xx年,来自全国33个省市自治区(包括香港和澳门)以及新加坡的1367所院校、31199个队近93000名大学生报名参加此项竞赛。参加数学建模竞赛对参赛选手是一个很大的考验。要想在竞赛中取得佳绩,参赛队的成员必须具备以下能力:第一个就是建立模型的能力,也就是能够将现实问题“数学化”的能力,这正是数学建模这门课设立的初衷。第二个就求解模型的能力,这个部分将极大的借助于计算机,这正是数学实验的主要功能。最后还要有良好的团队合作能力以及论文撰写能力。因此我们可以说数学建模竞赛是检验学生对于数学建模和数学实验两门课学得好不好的试金石。
5.正确认识和处理数学建模与数学实验的关系
正如前文所说,数学建模与数学实验两个概念与前后独立产生的两门课,《数学模型》与《数学实验》密切相关。两门课的课程设置各有各的出发点和教学目的,在内容和培养目标上确实存在重合的部分,但又各有各的侧重点。前者注重建模思想的形成和建模意识的培养,后者侧重建模的实际操作能力。
两者的共同的培养目的体现在“用数学”的“用”上,通过两门课的学习,可以提高学生发现问题和解决问题的能力。发现问题是为数学找到用武之地,解决的问题是将数学转化为实际。可见两门课相辅相成,缺一不可。自从两门课产生发展至今,各自都经历的作为一门新兴学科从不太完善到逐渐趋于成熟的过程。就各自目前的发展来看,都是正常的。近年来有不少学校的数学系在课程安排上把两门课先后排在一起上,也有的直接把它们合并成一门课叫作数学建模与实验。我们认为两门课的合并应该是有必要的,但一定不是简单地加法。有很多相应的问题需要考虑。首先是课时的分配问题。把两门课原有课时量简单相加肯定是不合适的,一方面是因为两个课原本就有重复,另一方面会造成课时太多,给师生带来一定的负担。因此需要在综合考虑两门课的有机融合的前提下,给出一个合理的课时量。其次是教学环境和设备的调配问题。两门课对上课的条件都有特殊的要求,数学建模课需要设计讨论环节,普通的教室往往不方便讨论;数学实验课最好是安排在机房,这样方便讲解和演示,也方便学生们随时上手编程实践。
如果有条件建设一个在功能上能够同时满足上述要求的实验室当然是最好,如果条件有限而不得不在不同的教室上课,那么前述的课时分配问题就再次凸显出来。第三是教材的融合问题。如果两门课合并成一门,显然就急需一本涵盖原来两门课的教学内容的教材。新教材的形成是一个严谨而复杂的过程,需要团队合作。经过教研讨论形成初稿,再通过一两个学期的适用来逐渐修改和完善。最重要的还是师资的配备,由于两门课各有侧重,原本上两门课往往不是同一位教师。然而从学生角度来看,合并后的一门课由两个老师分别穿插授课显然是不太合适的。所以需要原来的授课老师充实自己的知识储备,尽快适应新加内容的教学,并且尽快对新旧两部分内容进行融合,使之成为一体,才能使内容在讲授的过程中没有割裂感,这对教师是一个新的挑战。
通过以上的论述,我们认为数学建模和数学实验应该很好地融合在一起,这样不仅可以避免重复,提高教学效率,而且在培养学生学习的主动性,贯彻学以致用的主旨,锻炼发现和解决问题能力等方面,将起到更加促进的作用。
参考文献:
[1]姜启源,谢金星,叶俊.数学模型(第四版)[M].高等教育出版社,20xx.
[2]萧树铁.数学实验(第二版)[M].高等教育出版社,20xx
[3]谭永基.对数学建模和数学实验课程的几点看法[J].大学数学,20xx.
数学建模论文6
【摘 要】为了提高空气管理系统控制功能的设计与确认效率,研究了信号驱动的空气管理系统控制逻辑建模方法。结合空气管理系统控制特点,采用自底向上建模的思想,先构建底层系统信号库,再由信号逐层搭建控制逻辑,最后由控制逻辑驱动功能并在功能层进行逻辑确认。本文方法在空气管理系统CAS与简图页逻辑设计与确认过程中进行了应用验证。
【论文关键词】空气管理系统;信号驱动;控制逻辑建模
0 引言
空气管理系统是民用飞机上非常重要的机载系统之一,负责控制飞机引气、座舱压力调节、机翼防冰、温度控制等功能[1-5]。空气管理系统控制是以两个综合空气管理系统控制器(IASC)为控制中枢,以各种传感器发来的监控信号、外部系统发来的通讯信号为输入,经IASC内部逻辑运算后,驱动各种受控设备,如风扇、活门、加热器等,来实现飞机空气温度、压力、流量等控制功能,并将系统状态信息发送给外部系统实现显示、告警及记录功能。
空气管理系统控制功能需求是以系统需求为依据,结合所采用的控制架构细化而来。各控制功能由若干个控制逻辑组成。在空气管理系统研制过程中需要进行控制功能的确认与验证。仿真的方式能有效提高效率,降低成本,而建立各种控制逻辑模型则是进行仿真确认与验证的基础。本文研究了一种信号驱动的空气管理系统控制逻辑建模方法。
1 信号驱动的控制逻辑建模方法
信号驱动是指由各种信号作为基本单元来进行控制逻辑建模。各个信号表示着不同的状态变量,空气管理系统控制器根据不同的输入状态变量的值来决定发出的指令信号。通过基本信号来表述逻辑能从最底层关系开始,逐步向上搭建整套控制逻辑。具体的建模过程包括构建信号库、搭建逻辑树以及驱动功能验证逻辑3个步骤。
1.1 构建信号库
构建信号库是为了方便在构建逻辑时随时调用而将一些基本的输入信号信息收集并按照一定的编码方式存储起来。空气管理系统逻辑运算中需要用到的信号属性包括信号名称、信号功能范围、信号有效性、信号设备源。所以可将每条信号按照[ID|NAME,RANGE(MIN,MAX),VALID,SOURCE]的方式进行整理,例如由控制器IASC1的A通道发出的座舱高度告警信号可表示为[00001|CAB_ALT_W,(0,1),true,IASC1A]。集合所有控制器接收的信号,从而形成空气管理系统信号库。
1.2 搭建逻辑树
逻辑树的根节点一般是各个基本信号组成的关系式,例如CAB_ ALT_W=1,表示座舱告警为真。这些关系式通过基本的与/或逻辑算子连接,从而形成基本的逻辑树,这些逻辑树的输出结果为TURE或者FALSE。在搭建逻辑树的过程中,当一条逻辑链比较长时,可将一棵逻辑树的输出作为另外一棵逻辑树的输入而形成逻辑嵌套,建模论文这种方式能简化逻辑树的搭建过程。逻辑树的表达可用逻辑方程来记录。例如座舱高度告警逻辑可按以下两种方式表达。
将所有的逻辑按照逻辑树的方式搭建起来,可形成一个逻辑库,在后续定义功能时即可直接调用来构建功能。
1.3 驱动功能验证逻辑
若干条逻辑合在一起,可以驱动复杂的功能。通过功能的仿真即可验证各种逻辑的正确性。从功能层面进行验证因为意义更明确更方便实施,且一条功能的验证即可验证多条逻辑,功能验证的方式是选择功能相关的所有信号,设定各信号的状态值,作为组成功能的所有逻辑的输入,计算得到功能输出值,观察是否与预期一致。
2 空气管理系统CAS与简图页逻辑建模与验证
CAS与简图页是供飞行员了解各系统状态的重要页面,由系统负责提供信号,指示系统按照指定的CAS与简图页逻辑进行显示。基于本文的思想,进行空气管理系统CAS与简图页逻辑建模与功能验证,开发了相应的软件平台。
2.1 空气管理系统CAS逻辑建模
定义CAS主要需要定义CAS等级、CAS显示内容以及CAS显示逻辑。CAS等级按照严重程度可分为WARING,CAUTION,ADVISORY, STATUS四种,分别用红色、黄色、青色、白色来表示。本文定义的CAS逻辑是由系统发出CAS相关信号后,由这些信号运算后显示在CAS页面的逻辑,空气管理系统CAS消息主要显示系统工作状态以及在一些危险状态如座舱高度过高、机翼防冰失效等情况下告警。
CAS定义模块主要提供CAS名称、内容、等级的`编辑页面,CAS逻辑的指定可直接调用逻辑库中的逻辑。
2.2 空气管理系统简图页逻辑建模
空气管理系统简图页功能是通过简要示意图显示系统主要设备与管路内空气的状态,管路的空气状态信息需要根据上下游的设备状态来判断,这些判断关系组成了简图页的逻辑。空气管理系统简图页的主要图形元素是活门与管路流线,其逻辑定义可分为活门与流线显示逻辑定义。简图页定义模块设计了自定义活门与管路绘制工具,通过活门与流线显示逻辑定义指定显示颜色的驱动逻辑,构成整体的简图页显示逻辑。
2.3 空气管理系统CAS与简图页功能验证
前面构建了空气管理系统CAS与简图页的逻辑,通过指定各功能相关输入信号的值,在逻辑运算后再直观地显示在页面上,从而可以确认功能是否正确实现。在验证时只需根据场景需要,设定各信号的模拟值,由系统后台运算得到功能输出信号值,并驱动页面上的显示元素显示相应的状态。
通过上述几个步骤,能对空气管理系统CAS与简图页功能进行整体的验证,有效提高了CAS与简图页功能的设计与确认效率,也能为后续系统排故提供支持。
3 结论
本文结合空气管理系统控制架构特点,提出了信号驱动的逻辑建模方法。本文方法具有如下特点:
1)构建了空气管理系统基础信号库,能支持在逻辑层、功能层随时调用相关的信号信息;
2)构建了空气管理系统逻辑库,支持上层功能的搭建与验证;
3)开发了控制逻辑建模工具,能模拟各种场景下的功能验证,提高了设计效率。
【参考文献】
[1]程立嘉,程晓忠,左彦声.大型客机空气管理系统现状与发展趋势[J].航空科学技术,20xx.3:7-8.
[2]徐红专,崔文君,张惠娟.电子电动式座舱压力调节系统研究[J].江苏航空,20xx,3:8-13.
[3]李明江.飞机自动增压系统仿真实验的设计与实现[J].实验室科学,20xx,13(4):73-75.
数学建模论文7
优秀高教社杯全国大学生数学建模竞赛题目
(请先阅读“全国大学生数学建模竞赛论文格式规范”)
A题 城市表层土壤重金属污染分析
随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的`焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、??、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:
(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息?有了这些信息,如何建立模型解决问题?
数学建模论文8
本文从数学建模竞赛的动员组织情况、具体竞赛过程、获奖情况和今后的工作方向四个方面对我校数学建模竞赛活动进行了一些探索与实践。
教育国的核心是培养创新型人才。全国大学生数学建模竞赛是高校中参加人数最多、影响最广泛的学科竞赛之一,此项赛事由教育部高教司和中国工业与应用数学学会联合主办,迄今已举办21届,它对创新型人才的培养起到了不可估量的作用,未来也将日益显现它这方面的作用。长春理工大学从1996年开始参赛,成绩斐然,已累计获得国家级奖40余项,年均3项,20xx年我校共有51队153人参加全国赛,是吉林省除吉林大学外参赛队数最多的高校。其中9队获得国家一等奖,11队获得省一等奖,21队获省二等奖,8队获省三等奖,获奖率位居吉林省参赛高校前列。这主要归益于以下几方面:
一、赛前的动员及组织情况
赛前周密的宣传组织工作是本次大赛取得成功关键因素之一。我校一直把组织数模竞赛作为一项重要的教学活动纳入了全年工作日程,专门成立了数学建模竞赛领导小组,协调、督促、组织数学建模竞赛各项准备活动。通过海报、课堂、网站等多种形式宣传开展数学建模活动,鼓励各学院学生踊跃报名。
二、竞赛具体过程管理和实施情况
由专人统筹负责竞赛工作。从每年四、五月份开始采取校级、省级竞赛层层选拔的制度,把最优秀、最渴望参赛、最有能力的队员吸纳进来组成国家赛参赛队伍。对于国赛队员将认真组织赛前培训和辅导工作。
三、本年度竞赛获奖情况分析
今年我校共有51个队参加了全国大学生数学建模竞赛,获得国家奖9项,省级奖40项,获奖率几近100%。
四、竞赛过程中存在的问题及拟解决的措施
1.竞赛过程中存在的主要问题还是数学软件使用和写作两方面,在今后的培训和其他级竞赛中应加强这两方面的训练。另外宣传力度也有待加强。
2.今年全国赛我校51队中有35支代表队选择了A题,此题是交通占道问题对城市交通能力的影响问题,实质是利用数学方法建立模型,需要学生有较好的微积分、常微分方程、运筹学等课程基础,正是由于我校平时对大一大二的数学基础课的'精心讲解和严格要求才使得我校学生有信心也有能力作出此题并取得了如此好的成绩,今后我们将继续加强数学基础科的教学工作,同时注意在教学中渗透数学建模的思想、方法,培养学生参加建模的兴趣。并希望以数学建模工作为平台,通过多种形式大力开展数学建模教学与研究活动,以赛促学、以赛促教,以竞赛推动教学研究,以教学研究提高竞赛质量。B题选择队数相对较少,原因主要是该题是关于碎纸文字的拼接复原模型,需要队员熟悉算法,精于编程,大多数同学不敢碰此题原因就是编程能力过弱。
3.国家赛获奖结果反映出理学院、计算机科学与技术学院、光电工程学院、电子信息工程学院的学生获奖人数占到98%,创新实验班参赛人数并不多,仅占总人数的33%,特别是计算机科学与技术学院的创新实验班仅有8人参加,不及总人数的6%。
五、对学校的建议和意见
1.认真组织各级数学建模竞赛,建议提前到3月中旬组织校数学建模竞赛,改进选拔方式,通过评审、教师推荐、答辩精选国赛参赛队员,加大对数学软件、算法的培训;5月下旬到7月中旬,利用周六对选拔出的学生进行实战培训,建议全体队员模拟实战,完成3-4道往年的竞赛题目,并提交论文,指定专门教师负责指导。
2.进一步宣传发动,动员更多的学生参加数学建模竞赛,特别是加大对计算机学院的宣传力度,争取更多的计算机科学与技术学院,特别是动员计算机科学与技术学院创新实验班的同学参赛。
3.继续举办大学生数学建模培训,切磋技艺,交流经验,提高水平。组织教师精讲获国家奖的。同时每年选派2至3名指导教师参加建模交流会议及理论学习,也让更多教师参与数学建模类教改科研项目,将数学建模作为一件可持续发展的项目开展。
4.抓好数学建模基地建设,定期做讲座和研讨,打造一支高素质建模指导教师队伍。
数学建模竞赛是一项长期、可持续、与实践结合密切、应用前景极好的学科竞赛,需要我们不断探索和实践,不断摸索出一套适合我校竞赛组织活动的规范化体系。
数学建模论文9
1、探索有效教学模式,培养学生的综合应用素质
1.1开设医药数学建模课,向学生传授数学建模的基本方法和技能
使学生的综合应用能力、实践创新能力和综合应用素质等多方面均能得到提升和发展。
对于医学专业的学生来说,在校所学的数学基础理论课程比较有限,并且学生对纯粹的数学知识与复杂的理论推导已经极为厌倦,如果数学建模还是以传统的“灌输式”和教师“主导型”为主、简单的应用案例为主要教学内容的话,其结果势必会使学生有一种再讲数学课和做应用题的感觉,既不能很好地激发学生的学习兴趣,也不能体现数学建模的思想方法和本质特色。
因此,如何使学生摆脱这种尴尬的现状已成为我们教学的一大难点。针对这种情况,在教学模式上,我们大胆尝试研究型教学模式,即采用“从实践中来,到实践中去”的教学理念。一方面,从最现实、最热门的医学话题出发,从学生最感兴趣的问题入手,激发学生的学习兴趣和进一步学习的主动性,使他们从一开始就能进入到学习的角色中去;另一方面,通过开展多种方式的实践教学活动,使学生在实践中掌握数学建模的常用方法和基本技能,忽略繁琐的数学推导过程,让学生体会发现问题和思考问题的过程,培养学生解决问题的创新能力。
1.2组织兴趣研讨班,培养学生数学建模的实践能力
近些年来,我们开设的医药数学建模课受到了学生的一致好评,其关键之处在于我们一改传统的教学模式,通过组织数学建模兴趣研讨班,让每位同学都能充分地参与到研究中去并且使每位学生都有发言的机会。这些举措旨在进一步激发学生的创新意识,提高学生的数学建模实践能力。研讨班面向全校各类医学专业的学生,并以三人为单位,划分成若干个组,通过专题研讨的形式开展活动。实践证明:通过这种研讨过程,学生不仅对所学的医学知识有了更深刻的理解与认识,在文献资料查阅、计算机编程、语言表达能力等诸多方面也都有了显著的.提高。通过这个过程的学习,为学生今后从事医学科研工作打下了良好的基础。
2、优化教学方法,提升综合应用素质的培养效果
2.1突出应用思想,培养学生对知识的发现能力
为了有效的培养学生综合应用能力和深层次学习的习惯与意识,我们在教学方法上一改往日的“讲透,讲懂”的方法,忽略纯理论的繁琐推导,突出知识的应用思想和应用意识,让学生带着问题上课,尝试在解决问题中与教师进行交流,下课带着问题回去。
在课堂教学中,重点讲解发现问题和解决问题的方法与技巧。通过课前作业,引导学生自我发现问题;通过课堂讲解和研讨,引导学生解决问题;通过课后作业,总结和巩固所学知识,学习应用与拓展知识。这种完全以学生为主,教师为辅的做法,有利于培养学生树立勇于探索求知的信心和探索新知识的能力与意识,提高学生的创新能力和敏锐的洞察力及想象力,从而提升学生的综合应用素质。
2.2以热门的医学问题为主线,贯穿数学建模的知识点
在现实生活中的实际问题是比较复杂的,往往单一的方法是难以解决的,通常是需要多种方法的综合应用方能解决。
因此,以实际问题驱动的教学模式,主要是引导学生如何将复杂的实际问题分解为一系列简单的小问题,在解决每一个小问题的过程中,让学生学习并掌握相关的数学知识与方法。这种在应用中学习的教学方法,在很大程度上解决了学生普遍存在的“学数学有什么用、学了数学不知怎么用”的困惑。
2.3倡导举一反三,增强学生的综合应用素质
在整个教学过程中,贯穿以学生为主体,通过案例分析引导学生的思维方法,针对一个案例的解决过程和方法,要求实现举一反三,促使学生对所掌握的知识进行重组再现和优化构建,让学生在学习和问题的解决中学会不断地总结与归纳,用成功的方法再去演绎解决新的问题,通过不断地归纳演绎、对比分析、总结经验、弥补不足,进一步学习相关知识和方法,再进行实践,从而不断增强自身的综合应用能力和素质。
3结语
随着医学院校教育理念的转变以及教育体制改革的深入,对培养适应科学技术迅速发展的创新型医学人才提出了更高的要求。如何培养出具有创新能力、综合素质高的专业人才已成为亟待解决的问题之一。本文探讨了医药数学建模课程的开设对培养大学生实践创新能力的几点做法。教学实践证明:数学建模课充分锻炼了学生的各项能力,是提高医学专业学生综合应用素质行之有效的方法。
数学建模论文10
线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型。简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。涉及更多个变量的线性规划问题不能用初等方法解决整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的,30多年来发展出很多方法解决各种问题。从约束条件的构成又可细分为线性,二次和非线性的整数规划。
MATLAB自身并没有提供整数线性规划的`函数,但可以使用荷兰Eindhoven科技大学Michel Berkelaer等人开发的LP_Solve包中的MATLAB支持的mex文件。此程序可求解多达30000个变量,50000个约束条件的整数线性规划问题,经编译后该函数的调用格式为
[x,how]=ipslv_mex(A,B,f,intlist,Xm,xm,ctype)
其中,B,B表示线性等式和不等式约束。和最优化工具箱所提供的函数不同,这里不要求用多个矩阵分别表示等式和不等式,而可以使用这两个矩阵表不等式、大于式和小于式。
如我们在对线性规划
求解中可以看出,其目标函数可以用其系数向量f=[-2,-1,-4,-3,-1]T来表示,另外,由于没有等式约束,故可以定义Aep和Bep为空矩阵。由给出的数学问题还可以看出,x的下界可以定义为xm=[0,0,3.32,0.678,2.57]T,且对上界没有限制,故可以将其写成空矩阵
此分析可以给出如下的MATLAB命令来求解线性规划问题,并立即得出结果为x=[19.785,0,3.32,11.385,2.57]T,fopt=-89.5750。
从运算结果来看,由于key值为1,故求解是成功的。以上只用了5步就得出了线性规划问题的解,可见LP_Solve数据包能较轻松地实现多变量线性规划整数解的问题。
对于小规模问题,可以考采用穷举算法。人为假定xM的各个元素均为20,当然可以采用逐个求取函数值,得出和前面一致的结果。
如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。对于非线性整数规划问题要比整数线性规划问题更复杂,在实际应用中往往还会遇到整数或混合规划问题,基于该领域的常用算法是分支定界(branch and bound)算法。
通过下面实例归纳出线性规划数学模型的一般形式,最后通过MATLAB来实现其最优解。
(投资的收益和风险)
问题提出市场上有n种资产si(i=1,2,3…n)可以选择,现用数额为M的相当大的资金作一个时期的投资。这n种资产在这一时期内购买si的平均收
益率为γi,风险损失率为Qi,投资越分散,总的风险越小,总体风险可用投资的si中最大的一个风险来度量。
购买si时要付交易费,(费率pi),当购买额不超过给定值ui时,交易费按购买ui计算。另外,假定同期银行存款利率是r0,既无交易费又无风险(r0=5%)。
已知n=4时相关数据如下:
试给该公司设计一种投资组合方案,即用给定达到资金M,有选择地购买若干种资产或存银行生息,使净收益尽可能大,使总体风险尽可能小。 首先,我们做如下符号规定:
si:第i种投资项目(如股票,债券)
ri,pi,qi:分别为si的平均收益率,风险损失率,交易费率 ui:si的交易定额r0:同期银行利率
xi:投资项目si的资金a:投资风险度
Q:总体收益 △Q:总体收益的增量
要使净收益尽可能大,总体风险尽可能小,这是一个多目标规划模型。对此我们首先建立一个初步模型。在实际投资中,投资者承受风险的程度不一样,若给定风险一个界限a,使最大的一个风险qixi/M≤a可找到相应的投资方案。这样把多目标规划变成一个目标的线性规划。
因此我们固定风险水平,优化收益,对模型做出简化并对其进行简化: 我们从a=0开始,以步长△a=0.001进行循环搜索,编制程序如下: a=0;
while(1.1-a)>1
c=[-0.05 -0.27 -0.19 -0.185 -0.185];
Aeq=[1 1.01 1.02 1.045 1.065]; beq=[1];
A=[0 0.025 0 0 0;0 0 0.015 0 0;0 0 0 0.055 0;0 0 0 0 0.026]; b=[a;a;a;a];
vlb=[0,0,0,0,0];vub=[];
[x,val]=linprog(c,A,b,Aeq,beq,vlb,vub);
a
x=x'
Q=-val
plot(a,Q,'.'),axis([0 0.1 0 0.5]),hold on
a=a+0.001;
end
xlabel('a'),ylabel('Q')
计算结果如下:
a=0.0030 x=0.4949 0.1200 0.20xx 0.0545 0.1154 Q=0.1266 a=0.0060 x=0 0.2400 0.4000 0.1091 0.2212 Q=0.20xx
a=0.0080 x=0.0000 0.3200 0.5333 0.1271 0.0000 Q=0.2112 a=0.0100 x=0 0.4000 0.58430 0Q=0.2190
a=0.0200 x=0 0.8000 0.18820 0Q=0.2518
a=0.0400 x=0.0000 0.9901 0.0000 0 0Q=0.2673
分析结果可见:
在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长很快。在这一点右边,风险增加很大时,利润增长很缓慢,所以对于风险和收益没有特殊偏好的投资者来说,应该选择曲线的拐点作为最优投资组合,大约是a*=0.6%,q*=20%,
数学建模论文11
一、问题教学法的教学模式
问题教学法是一种新的教学模式,与传统教学有很大的区别。在传统的教学中,教师考虑最多的是“教什么、怎样教”的问题,很少顾及学生“学什么、怎样学”,限制了学生学习的主动性和创造性。[1]为了改变这种现状,美国神经病学教授HowardBarrows于1969年创立了基于问题和项目的学习(ProblemBasedLearning)理念教学法。[2]这种方法不像传统教学模式那样先学习理论知识再解决问题,而是让学生围绕问题寻求解决方案。它强调让学生置身于复杂的、有意义的问题情境中,并让学生成为该问题情境的主体,自己去分析问题,学习解决该问题所需的知识,进而通过合作解决问题。此外,教师在该过程中也可以通过提问的方式,不断地激发学生去思考、探索,培养学生自主学习的能力。与传统的教学模式相比,问题教学模式更注重对学生自学能力、创新能力、发现问题和解决问题能力的培养。问题教学模式刚开始主要被应用于医学、市场营销、实验教学、毕业论文的写作等领域。[3]近年来,一些学者开始探索将这种教学模式引入到“数学建模”课程的教学中。黄河科技学院从20xx级信息与计算科学专业的学生开始,在“数学建模”教学活动引入问题教学模式,已经取得了初步的成效。
二、基于问题教学法的实施步骤
1.教师提出问题
教师在每次上课之前要精心设计适合学生自学的问题体系,目的是为了诱导学生的思维,激发学生的学习兴趣,让学生置身于特定的问题环境中,营造一种质疑、探究、讨论、和谐互动的学习氛围。这一步骤要求教师不仅需要熟悉教学内容,还必须更好地了解学生的实际情况,这是成功实施问题教学模式的基础。
2.积极分析问题
问题教学法的基本特点是教学环节由一连串问题组成,并且问题与问题之间的联系具有链接性和层次性。前一个问题是后一个问题的铺垫,后一个问题又是前一个问题的深化和拓展。在学生熟悉了相关知识的基础上,根据给出的实际问题,教师引导学生进行探索。探索活动一般包括自学教材、观察实验、小组讨论等方式。学生一方面要充分利用原有认知结构中存储的有关知识信息,另一方面可以利用教材、实验或教师提供的阅读材料,获取解决问题的方法。在对问题讨论中教师要创设和谐民主的教学环境,要让学生充分发表自己的见解,大胆质疑,相互答辩,相互启发。
3.解决问题
当所有学生都对问题的解决方案有了一定的思路之后,教师组织课堂发言。让每一小组推荐一位表达能力强的学生,在课堂上把他们对解决问题的方法及结论的合理性进行讲解。在每组讲解完之后,其他学生可以对他们进行提问,而发言小组的学生要向其他同学和老师进行解释。教师在主持和引导的同时,也可以向学生提问。这样通过对一个又一个问题的提问,推动学生思考,将问题引向纵深层次,一步步朝着解决问题的方向发展。
4.对问题的结果进行评价
问题教学法不仅以问题为开端,还以问题为终结。教学的最终结果不是传授知识来消灭问题,而是在解决已有问题的基础上引发更多、更广泛的问题。因此教师在对问题的结果进行总结时要注意引导学生反思“这个问题为什么要这样解决”,“这个问题还可以怎样解决”,“从解决这个问题中我学到了什么”以及“这种解决方案还有什么不足之处”等等,从而激发他们提出新的问题,这是问题教学中最重要、最有教益的一个方面。
三、基于问题教学法的实施案例
在基于问题教学的过程中,每次讨论的问题都围绕某一专题进行讨论学习,下面以“公平的.席位分配问题”[4]为例,说明在“数学建模”中如何运用问题教学法。
1.合理设计问题
奖学金评定是学生比较关心的问题,笔者根据学生的兴趣及认知水平选择“奖学金名额分配问题”。设某校有5个系A、B、C、D、E,各系学生数分别为345、72、894、68、39,现在有74个奖学金名额,问每个系分配几个名额比较公平?[5]在给出问题后,我们将相关问题印发给学生,并让学生课下先收集关于“公平的席位分配问题”的模型及相关求解方法并认真研读。
2.小组讨论分析问题
根据课下学生收集的求解方案,上课时首先以小组为单位初步讨论。首先提出如果让同学们进行分配的话,他们会使用什么方法进行分配,让他们进行讨论。学生首先会给出比例分配方案,如果按人数比例分配到各系的名额恰好都是整数,可以得到完全公平的分配方案。但在很多情况下,按人数比例分配到各系的名额带有小数。比如在这个问题中各系分配的名额数分别为:18.00、3.76、46.65、3.55、2.04,有小数部分。可以先把整数分配完,这时各系分配的名额数为:18、3、46、3、2。共分配了72名额,还有2个名额该如何分配?大家经过讨论,会提出谁的小数部分大就把名额给谁的分配方案,于是第73个名额给B系,第74个名额给C系。最终的方案是各系名额数分别为:18、4、47、3、2。接着老师会提出下面的问题,这种分配方案对谁最不公平?学生会进一步讨论每个名额代表的人数,A为19.17人,B为18人,C为19.02人,D为22.67人,E为19.5人,说明这种分配方案对D系最不公平,而B系最占便宜,两个系中每个名额代表的人数相差了4.67人。那么要重点讨论有没有相对来说比较公平的席位分配方案。
3.学生进行发言讨论
在所有小组都讨论完之后,教师组织各组学生进行课堂发言和讨论,让每组选一人报告本小组讨论结果。教师对各组的报告进行评价,指出在讨论过程中的问题及不足之处。在这个问题中,学生根据课下收集的文献资料会逐步提出Q值分配方案,Q值分配方案的改进,Q值+D’Hondt分配方案,席位分配的平均公平度方案等等。每种方案都是前面方案的改进,最后我们提出问题,这些分配方案公平度如何?让学生逐一讨论,从而营造出一个讨论主题鲜明、学习氛围良好的课堂环境。
4.教师对结果进行评价总结
在这个问题中,经过逐一讨论,大部分学生认为问题已经圆满解决了,不会再对结果进行归纳整理,不会反思问题解决的思路。因此在最初的问题解决后,老师要引导学生进行评价总结,比如:“各个方案的公平度如何”,“我们还有没有更公平的分配方案”,“公平的席位分配方案应满足什么原则”等等。
四、结论
从“公平的席位分配问题”这个案例可以看到,在教学中为学生设计一个真实的问题进行教学,学生可以通过真实问题进行学习,并且以一个真实问题的解决为主线,激发学生的学习兴趣和探索精神,再通过结果反馈信息,引导学生逐步深入理解学习内容。学生在研究问题的过程中不仅学习了课本上的知识,而且还亲身体会了解决实际问题的乐趣,为学生以后自主学习提供了极大的帮助。[6]四、结语当然,在“数学建模”课程的教学过程中问题教学模式也存在不足之处,比如课程内容多、课时少,问题讨论时间和讲授时间出现矛盾,对有的专题讨论不够深入,学生参与度不够,学生发言的深度和广度都有待于进一步提高等等。这需要教师认真归纳讲课内容,尽量分离出较多比较有吸引力的专题供学生讨论,以问题为中心规划教学内容,让学生围绕问题寻求解决方案,从而提高学生学习的主动性,提高学生在教学过程中的参与程度,激发学生的求知欲。“数学建模”课程教学的本身就是一个不断探索、创新和提高的过程,选择正确有效的教学方法能更好培养学生的创新能力,激发学生对数学建模的兴趣。
数学建模论文12
摘要:所谓数学建模,即借助数学模型,处理所遇到的具体问题的课程,在本文中,分别就教学、模型建立以及相应的信息检索来进行研究,通过将这三面进行相应的糅合从而证明可以将计算机技术引入到相应的建模实践中,从而有效促进数学建模的发展,使得教学质量得以有效提升。
关键词:数学建模;计算机应用;融合
1.数学建模与计算机技术概述
目前计算机在生活中应用极为广泛,借助于计算机能够使得先前较为复杂繁琐的问题得以简化,有效提升计算速率。就数学建模来看,计算机在此方面的作用不言而喻。对于此,人们普遍认为,能够借助于计算机将任何一个数学问题进行简化处理。而对于生活中所遇到的任意一个实际问题,均能够借助于相应的数学模型来进行表示,在建模过程中,也可以根据实际情况来做出一些相应的简化处理,从而将其归属于完全的数学问题,最终建立起能够用变量所描述的数学模型。之后,借助于相应的计算机、软件以及编程方面的知识,来对此模型进行相应的求解计算。
2.计算机技术在数学建模中的应用
计算机在数学建模中的应用面非常的广泛,限于笔者的水平,本文主要就两个方面展开讨论:第一,确定建模思想;第二,对数学模型进行求解计算。
2.1计算机技术辅助确立数学建模思想
对于数学建模,其最为重要的'目的便是为了能够提升学生对于数学知识的使用性,借助于相关的数学思想来对实际问题进行解决,同时,还能够促进学生数学思想的发展、建模能力发展以及相关数学知识的完善,最终提升其对于数学知识的使用能力。培养数学思维重在将学生所思所想以最快最佳的方式展示出来,计算机技术在数学建模中的应用使得这个设想变得可能。因为数学模型的计算和设计工作量大,传统的计算办法不能迅速解决某个问题,但是在建模的辅助下一切问题迎刃而解。
2.2计算机技术促进数学建模结果求解
对于数学建模,其属于一项系统性工程,整个过程工作量较多。在前期,对于模型的构想与建立需要不断完善,此后,对于模型的求解也是极为困难的,这主要因为其涉及到非常多的数据处理与计算。在计算数学模型时,不仅速度快,准确度也很高,如表1给出了手动解30维线性方程组和计算机解30维方程组的时间,手动所用时间是计算所用时间的1200倍。
同时,对于一些借助纸和笔而无法实现的计算,通过计算机能够较快实现,其中主要涉及到相关的编程、绘图等操作。
3.数学建模与计算机应用融合的优势
计算机在数学建模领域拥有极为重要的优势与作用。如计算机的计算速度快、可以辅助作图,甚至可以辅助做立体图形。同时,借助于计算机也能够使得模型得以进一步完善,也就是說两者彼此之间相辅相成。
3.1计算机使数学建模多样化
数学建模的出现,主要是为了便于处理同工程或者科研相关的问题的,和试题类有着较大区别。其所处理问题具有一定的特性,即围绕日常具体问题展开,科研背景突出,需要的知识结构复杂,涉及的范围庞大,因素多且难,非常规特征明显,缺乏有效的处理措施,涉及数据多,要选择的算法亦十分繁琐,得出的结果存在波动性,要有限定的前提,通常仅可获取近似解。而计算机的出现,则在一定程度上使这种情况得到缓解。是数学建模多样化,令设计领域更加宽泛,如数学建模可以模范人类大脑的记忆功能。
3.2计算机使数学模型求解更为简单
计算机在数学建模中的应用使得数学模型求解更为简单体现在以下几个方面:
(1)计算量问题得到解决。以前计算量大是制约数学建模发展的主要因素之一,现在在计算机的帮助下,只要模型完善,计算量大已经不是问题。如德国的神威计算机,计算速度达到了12.5亿亿次/秒。
(2)可视化功能使抽象问题具体化。现代计算机都有强大的作图功能,会使数学模型中的一些抽象概念、问题解决过程都变得可视化。图表的制作更是非常简单。
3.3计算机利用数学建模寻求最优解成为可能
在3.1节中已经提到,在计算机没有应用到数学建模中之前,很多数学模型的解只是近似解,连精确解都谈不上,更不用说是最优解。其主要原因是模型本身的计算量太大,笔和纸这两样工具更不能在短时间内攻下数学模型计算这块,此外笔和纸根本不可能完成某些图表的制作也是原因之一。计算机有效的解决了这两个问题,这就会使得数学模型得到精确解。在求得精确解的基础之上还可以进一步寻求最优解,因为数学模型的解往往是多解的,不是唯一解。
4.总结
数学模型,其主要是通过使用相应的数学语言来对实际问题进行相应的表示,也就是说,模型的实质主要是为了有效解决生活中的实际问题。通过借助于计算机能够使得复杂问题得以有效简化,对于促进社会发展起到了重要作用。因而,在未来发展中数学建模也将会像计算机一样得到广泛重视。目前,对于教育界而言,其主要问题在于理论与实践相脱节。我们的教学越来越形式、抽象。在教材中,充斥着大量的定理、理论证明等等,但是并没有将其与实际生活相结合,而对于借助相应的数学教学来实现脑力发展的系统化更是微乎其微。将计算机与数学建模相结合,这是未来数学领域发展所必须经历的一个过程。
参考文献:
[1]李大潜.数学建模与素质教育[J].中国大学教育,20xx (10):41-43.
[2]姜启源.数学实验与数学建模[J].数学的实践与认识,20xx,31(5):613-617.
数学建模论文13
数学建模有利于将数学理论付诸实践应用,在各行业中作用巨大。大学生数学建模教育的实施,也是素质教育创新的重要要求。开展数学建模竞赛,有利于提高大学生创新能力,对提升大学生综合素质也有帮助。研究如何通过大学生数学建模竞赛培养大学生创新能力,具有十分重要的现实价值。
一、通过数学建模竞赛培养大学生创新能力的途径与策略
高校组织开展数学建模比赛,对创新型大学生的选拔机制进行完善,为大学生创新能力的提高提供实战平台。教师不仅要激发学生对数学建模的兴趣,也要培养大学生的创新能力。学校鼓励全体学生共同参与数学建模竞赛,通过竞赛实现大学生各方面能力的培养。竞赛的开展主要分为初期选拔、暑期选拔以及赛前选拔三个阶段。
1. 初期选拔阶段。高校于每年的4 月开始进行初期选拔的筹备工作,在5 月初开始进行动员宣传,采用张贴海报及制作展板等形式进行文件的发布,全校级别的数学建模竞赛于6 月份组织开展。随着近些年数学建模竞赛的不断发展,学生对数学建模的兴趣高涨。数学指导组教师一同进行竞赛论文的评审,遵循一定的评审原则,保证评审的合理性、客观性。获奖人数根据参赛总人数进行合理设置,通常约占总人数的50%。经过校级竞赛选拔部分善于创新的学生进行暑期培训。整体而言,数学建模竞赛具有较大的影响,涉及较多的学校与学生,学生从中也可获得较大的好处,对大学生创新能力的培养有利。
2. 暑期选拔以及再次选拔阶段。高校通常在8 月开始着手参赛学生的建模专题培训,合理制订数学建模专题的培训计划,对竞赛知识内容进行科学编排,保证理论课与实验课课时的均衡安排,使指导教师的教学优势得到发挥。课程组按照大纲的指示,进行年度教学计划的科学制订。教师也可一同进行备课,以全国竞赛出题为中心进行探讨,促进学生竞赛能力的提高。在短期集训课的学习完成后,对参训学生进行再次选拔。此时学生的竞争意识将十分强烈,选拔竞争也十分激烈。
数模指导组教师需仔细考量选拔的结果,一同进行各小组学生论文的评审,善于发现创新型学生,坚持公正平等的原则对待各个参赛学生,最终选出享有全国大学生数学建模竞赛资格的学生,并且对这些学生的组合进行优化。
3. 赛前再选拔以及模拟训练阶段。高校在8 月下半月进行赛题模拟训练,模拟训练的要求遵循全国赛的标准,频率分析大学生数学建模竞赛与创新能力的培养白一青:本文主要阐述了在数学模型课程的载体作用下,开展数学建模综合实验和数学建模竞赛培训,对培养大学生数学建模竞赛和创新能力进行探究,并提出通过数学建模竞赛提升大学生创新能力的策略。关键词:数学建模竞赛;创新能力;培养为5 天一轮。指导教师此时需要在指导工作中投入大量心血与实践,做好学生的指导与点评工作。学生根据全国赛的标准进行论文写作,指导教师共同对学生的作品进行审阅和点评。各小组可选出一名代表作点评,讨论汇报工作,由小组其他成员进行补充。此时学生的讨论将十分激烈,在这个过程中,问题的结果也将逐渐浮现,数学建模理论也逐渐实现提升。
二、数学建模竞赛开展培养大学生创新能力的'效果分析
1. 大学生参赛积极性高,参赛成绩较为理想。通过以上方法,大学生在数学建模竞赛中的参与十分积极,成绩越来越理想,创新能力也得到阶段性提高。近些年,大学生参赛人数持续上涨,上涨幅度甚至将近20%,学生的参赛成绩也达到新的高度。与此同时,大学生在挑战杯活动中的参与也同样热情高涨。这些学生凭借数学建模竞赛,实现了数学素质与创新能力的提高。
2. 大学生创新思维与能力得到有效提高。在数学建模训练的作用下,大学生信息收集与处理的能力得到培养,使学生形成科学的数量观念,能够对事物数量及其变化进行敏锐观察。并且,数学的严谨推导可使学生养成认真、仔细的良好习惯,使学生的逻辑思维能力得到提高,从而思路更加清晰,可以轻松地应对各项事务,使问题能得到有效解决,使数学理论能够付诸实践,从而使大学生的数学素养得到有效提高。
三、结语
总之,大学生数学建模竞赛的开展,对大学生创新能力的培养与提高十分有益,并且能使学生其他素质得到提高,如团队合作能力、竞争能力及表达交流能力等。高校应积极有效地组织和开展数学建模竞赛,使大学生素质教育在此途径中得到发展,促进大学生综合素质的全面提高。
数学建模论文14
摘要:数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
关键词:数学建模;教师
一、新课的引入需要发挥教师的作用
教师在数学建模课堂上的引导作用首先体现在教师对新课的引入上。教师一段精彩的导入会点燃学生学习的热情、激发学生的学习兴趣、唤起学生的好奇心,能把学生的注意力迅速集中到要学的知识上来。这对提高教学质量、提高学生的学习效果起着不可估量的作用。同时,新课前的导入环节是对学生进行情感教育的最佳时刻。学生只有在教师的'引导下才能够体会到数学建模的价值、增强学好数学建模的信心。俗话说:“好的开始是成功的一半。”数学建模课堂也是这样。因此,在新课引入时要充分发挥教师的作用。
二、在教学任务的设计上需要发挥教师的作用
数学建模课堂一般应采用任务型教学模式,是让学生通过自主探究、合作学习、交流展示的方式完成一系列学习任务来达到特定的教学目标和学习目标。学生在课堂中的主体作用能否得到有效发挥取决于教师对问题设计质量的高低。教师应通过设计一系列高质量的问题把复杂的数学建模问题分解成若干简单问题来引导学生更好地发挥其主动性。学生也只有在这些问题的正确引导下才能突破难点并向着学习目标努力,有效防止学生思考、探究、交流的内容偏离学习目标等现象的出现。这些任务的制订需要充分发挥教师的作用。
三、在新旧知识的联系点上需要发挥教师的作用
建构主义强调新知识是在学生已有知识的基础上通过学生自身有意义的建构获得的。笔者认为,学生自主建构知识应在教师的科学引导下进行。尤其是对于数学建模这样高难度的知识更是这样。失去了教师的科学引导,学生易产生疲倦感,久而久之会丧失学习数学建模的兴趣和信心。因此,在新旧知识联系点上应发挥教师的作用。教师应在准确掌握教学目标、难点的基础上,充分考虑学生的认知能力、习惯、思维方式,通过有针对性的具体问题唤起学生对旧知识的回忆,再通过启发性问题引导学生去发现新知识,从而实现温故知新的目的。在教师引领下学生自主建构知识可以使学生少走弯路,从而使学生更加高效地自主探究、掌握新知识。
四、在教学重点、难点上需要教师的引导
教学的重点、难点是每一节课的核心和主线,只有准确把握了重点、突破了难点才能更好地掌握本节课的内容。在强调学生自主探究、小组合作学习的课堂教学模式中,数学建模教材的重点、难点学生往往把握不准、难以突破。这就需要教师科学引导学生主动去发现重点、突破难点。教师引导学生发现重点、突破难点并不是让教师直接告诉学生本节课的重点是什么、怎样突破难点,而是通过具体问题的引导让学生自己找到重点、并通过学生自己的思考、讨论解决疑难问题。学生在教师的引导下通过自己的努力、讨论解决了疑难后,学生会非常兴奋,从而会越来越喜欢数学建模课。相反,在没有教师引导的数学建模课堂中,学生经常被困难吓倒,从而对数学建模课产生畏惧感。由此可见,教师对学生的科学引导是学生学好数学建模必不可少的环节。在以学生为本、注重学生全面发展、提倡课堂中突出学生主体地位的背景下,教师的引导仍是数学建模课堂中不可缺失的要素。数学建模课堂中学生的自主探究、合作学习与教师的科学引导并不矛盾而是相辅相成的。只有在教师科学、适时、适当地引导下才能更好地突出学生的主体地位,从而打造出自主探究、合作学习、愉悦发展的高效数学建模课堂。
数学建模论文15
《新课程标准》对学生提出了新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新课标中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义。
数学建模活动是一种使学生在探究性活动中受到数学教育的学习方式,是应用已有的数学知识解决问题的教与学的双边活动,是学生围绕某个数学问题,自主探究、学习的过程。新的高中数学课程标准要求把数学探究、数学建模的思想以不同的形式渗透在各模块和专题内容之中,突出强调建立科学探究的学习方式,让学生通过探究活动来学习数学知识和方法,增进对数学的理解,体验探究的乐趣。但是《新课标》虽然提到了“数学模型”这个概念,但在操作层面上的指导意见并不多。如何理解课标的上述理念?怎样开展高中数学建模活动?
数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
一、在教学中传授学生初步的数学建模知识
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的'方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。 二、培养学生的数学应用意识,增强数学建模意识
在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。
三、在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学的和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
【数学建模论文】相关文章:
数学建模论文模板01-25
数学建模论文模板07-22
(热)数学建模论文模板15篇07-21
数学建模范文03-13
数学建模在数学中的应用04-29
数学建模教学例谈04-29
数学建模策略的教学原则05-02
数学建模范文(优)03-13
数学建模的学习心得11-07