数学建模论文

时间:2023-07-22 12:44:07 数学论文 我要投稿

数学建模论文模板

  在个人成长的多个环节中,大家都接触过论文吧,通过论文写作可以培养我们的科学研究能力。一篇什么样的论文才能称为优秀论文呢?下面是小编为大家收集的数学建模论文模板,欢迎大家借鉴与参考,希望对大家有所帮助。

数学建模论文模板

  数学建模论文模板 篇1

  摘要:随着新课改的实施,寻求高校数学教学的新方式引起了相关部门和工作人员的重视。同时,数学具有较强的逻辑性,能够有效培养和提高学生的逻辑思维能力,而数学建模更加能够体现数学的逻辑性,因此,在高校的数学教学中采用数学建模这一教学方法具有极强的现实意义。在此,本文就数学建模教育与高校数学教学方式改革模式进行论述。

  关键词:数学建模;高校数学;教学方式;改革

  所谓数学建模就是将实际生活中的事物通过数学的模式表现出来,也可以说是利用数学来解决生活中的实际问题。由此可见,数学建模是将数学与实际生活相联系的桥梁。

  一、将数学建模应用于高校数学教学的意义

  1.有利于学生更好地掌握基础理论知识。数学建模能够将实际生活中的问题以数学的形式表达出来,然后利用数学知识和思维来解决问题,这对于学生的基础理论知识的掌握有一定的要求。同时,也有助于学生充分利用自己的数学知识来解决问题。数学与生活实际的结合,还减少了学习数学的枯燥感,从而使得学生提高学习数学的.兴趣,进而更加全面地理解和掌握基础理论知识。2.有利于培养和提高学生的创新能力和创新思维。当前社会需要大量创新型人才,教育目标也有意向创新型人才的培养靠拢。在传统的教学方法下,很难让学生学会灵活运用知识。通过数学建模来进行教学能够弥补传统教学方式的不足,因为它能加强教师与学生之间的交流,提高学生在课堂上的参与度,从而帮助学生灵活运用课堂知识。通过理论与实际的结合,培养学生的思维能力和创新能力。3.有利于学生学习其他学科。通过数学的学习,学生能够提高自己的逻辑思维能力和实践能力,也能有效解决其他学科中的问题。

  二、当前在高校数学教学中应用数学建模存在的问题

  1.落实数学建模存在一定的难度。由于在数学教学中应用数学建模还处于探索阶段,很多学校的教学方案还有待完善,缺乏科学具体的落实措施。2.教师的教学能力有待提升。随着时代的进步,当前高校教师的质量已有了很大的提升,但是仍受传统教学理念的影响,没能很好地掌握数学建模这一教学方式,不能发挥出数学建模的作用。3.数学与其他学科的交叉不足。当前,我国高校还是以专业教育为主,数学专业的学生和教师的交流仅局限于数学领域,难以与实际进行结合,也很难与其他学科进行融合,因此学生难以拓展自己的数学知识。4.学生缺乏思维能力和团队合作能力。通过数学建模来学习数学知识需要学生具有良好的团队协作能力和清晰的思维能力,但是很多学生缺乏这种能力,导致他们在数学学习中缺乏自信,无法迅速解决团队中的分歧,降低了学习效率。5.学生不能够将理论知识与实践较好地结合。通过数学建模来学习数学,需要学生掌握数学术语,并且能够灵活运用。但就目前的情况而言,由于学生没有树立将理论与实际相结合的思想,导致他们在这方面比较弱。

  三、如何在高校数学教学中应用数学建模来进行教学

  1.学校和教师要树立正确的教学理念。当前,随着新课改的实施和教育目标的转变,数学教学中实施数学建模势在必行,因此,学校和教师要树立正确的教学理念,对数学建模有一个正确的认识,最大程度地发挥数学建模教学的作用。2.完善数学建模体系。完善数学建模体系要注意以下两个方面:第一,充分利用多媒体教学设备。当前,多媒体教学工具的使用越来越广泛,教师通过多媒体教学设备,能够将知识点通过图片、视频、动画等方式直观地展现给学生,从而加深学生的理解,还可以活跃课堂氛围。第二,充分运用实验教学。教师还需要加入一些基础实验,丰富学生的学习内容和形式,从而激发学生学习数学的兴趣。3.培养学生的数学建模能力。进行数学建模需要学生有一定的想象力和创新能力,并且有扎实的理论基础,能够将理论与实际较好地结合起来,因此,在日常的教学中,教师要注意培养学生的语言表达能力和逻辑思维能力。另外,要让学生多多练习,以此提高自己的逻辑思维能力。

  四、结语

  综上所述就是笔者通过分析数学建模在高校数学教学中的重要意义以及当前存在的问题提出的几点建议。将数学建模应用于数学教学中,是一项长期而艰难的工作,需要教育工作者和各个高校的不断探索、共同参与。

  参考文献:

  [1]肖楠,唐敏.分析数学建模对高校数学教学改革的意义[J].湖北函授大学学报,20xx(10):112-114.

  [2]徐岗,许金兰,陈临强.数学建模驱动的“计算机图形学”课堂教学模式改革[J].中国信息技术教育,20xx(6):89-91.

  [3]马丽雅.“数学建模”教学模式在小学数学中的应用[J].课程教育研究,20xx(26):121.

  [4]葛亚平.数学建模融入民办高职院校数学教学初探———以南通理工学院为例[J].教书育人:高教论坛,20xx(21):82-83.

  数学建模论文模板 篇2

  【摘要】:本文主要针对依据市场随机信息求解报摊每天的最优订购量问题给出了2个数学模型。模型A主要采用增量分析法,通过对每多订购一份报纸所需的成本或损失与不多订购一份报纸所需的成本或损失进行对比来确定最优订购量。模型B主要采用概率分布方法,列出报摊每天的平均收入即目标函数,将需求量视为连续随机变量求解出使目标函数取得最大值时的最优解。问题二、三是在问题一的基础上求解,适当改变问题一中的成本数值便可求出问题三中的最优解。对模型A和模型B的求解方法均比较简单,主要通过查阅标准正态分布表并加上一些简单的数学计算求解出最佳订购量。

  关键词:最优 增量分析 概率分布 查表

  一、 问题重述

  一个很受欢迎的报摊想决定一下它一天应购入多少份当地的报纸,该报纸的需求量D~N(450, 1002),这种报纸的购入价为每份35 美分,而售出价为每份50美分,这个报摊从过剩的的报纸上得不到任何价值,因而接受其100%的损失。试求:

  (1):每天应购入多少份报纸?

  (2):这个报摊出现断货的概率为多少?

  (3):该报摊的管理人员考虑到如果断货情况将会影响报摊的信誉,顾客通常来到报摊后还会想要买其他物品,而经常性的断货会令顾客跑到其他的报摊去,该管理人员认为每次断货的信誉成本为50美分,试确定此时订购量以多少为宜?断货出现的概率为多少?

  二、模型的假设

  假设该报摊报纸的需求量完全服从D~N(450, 1002),已经包含所有主客观因素,对问题(1)不考虑由于缺货导致的信誉损失。问题(3)中考虑信誉损失时只考虑由于断货造成的信誉损失而不考虑由于老板有事外出歇业等客观因素造成的信誉损失。

  三、 符号说明

  四、模型的`建立与求解

  问题一的求解:

  模型A:市场需求为随机的库存模型,采用增量法来确定最优订购量。定义如下两种成本:

  (1):高估市场需求量导致的成本C0,它表示每多订一份报纸并发现它不能卖出时的损失;

  (2):低估市场需求导致的成本Cu,它表示每少订一份报纸并发现它能卖出去时造成的机会损失,即把本来可以赚到的钱而没有赚到看成是一种损失。

  本题中易确定C0=a=35美分;Cu=b-a=15美分

  由于D~N(450, 1002),E(D)=450.因而在一般情况下,零售商希望优先考虑平均的或期望值下的市场需求量做为订购量,即Q=450份。

  根据上诉增量分析原理中的成本比较,将Q=450(不多买一份)与Q=451(多订购一份)相应的成本比较列表如下:

  于是易得Q=451与Q=450时的期望损失EL分别为:

  EL{Q=451}=C0P{D≤450}=350.5=17.5(美分) EL{Q=450}=CuP{D>450}=150.5=7.5(美分)

  这表明,随着Q的增加,相应的EL会增大,可以采用不断减1的分析,比如Q=449,Q=448,…,直到找到一个Q*值,使得每多顶一份报纸的期望损失与不增加时的期望损失相等,即EL(Q*+1)=EL(Q*).

  而

  EL(Q+1)=C0P{D≤Q

  *

  *

  },

  EL(Q

  *

  )=C

  *

  u

  P{D>Q

  *

  }

  由于

  P{D≤Q

  }+P{D>Q}=1

  *

  所以C0P{D≤Q}=Cu1-P{D≤Q}

  解得P{D≤Q*}=

  CuCu+C0

  将C0=35美分;Cu=15美分代入上式可得

  P{D≤Q

  *

  }=0.3

  2

  Q*-450450-Q*再由D~N(450, 100),,可得Φ =0.3即Φ

  100100450-Q100

  *

  =0.7查表得

  =0.5,解得Q=400。

  *

  即该报摊依据其市场需求信息每天订购400份当地的报纸为宜。

  模型B:

  采用概率分布方法建模。报纸每天的需求量D~N(450, 1002),即

  -(

  x-450)

  2

  P{D=x}=f(x)=

  100

  2

  不考虑信誉损失的情况下,报摊每天收入

  bX-aQ,

  Y=g(X)=

  (b-a)Q,

  X≤Q,X>Q.

  每天的平均收入(目标函数)

  Q

  ∞

  G(Q)=

  ∑[(bX

  x=0

  -aQ)f(X)+

  ∑(b-a)Qf(X)。

  X=Q+1

  通常X的取值及Q都相当大,将X视作连续随机变量便于计算。此时可设X的密度函数为P(X)。则

  G(Q)=E(g(X))=

  Q0

  [(bX-aQ)]P(X)dX+

  (b-a)QP(X)dX

  Q

  ∞

  从而

  dG(Q)dQ

  =(b-a)QP(Q)-

  Q0

  Q0

  aP(X)dX-(b-a)QP(Q)+

  ∞

  ∞

  Q

  (b-a)P(X)dX

  =-a令

  dG(Q)dQ

  **

  P(X)dX+(b-)a

  Q

  (PX) dX

  =0,得

  *

  Q0

  *

  Q

  即

  b-ab

  ∞Q

  *

  P(X)dX

  =

  P(X)dX

  b-aa

  P(X)dX=

  b-ab

  ,又由D~N(450,

  100

  2

  )得

  Q-450=Φ

  1000-450-Φ 100

  将b=50美分,a=35美分带入上式,求得Q*=400份 上述方程的解Q*就是Q的最优值。

  问题二的求解:

  当该报摊的订购量Q=Q*=400时,其缺货的概率

  P(A)=P{D>Q

  *

  }=1-P{D≤Q}=70%

  *

  问题三的求解:

  模型A根据题意,断货产生的信誉成本C=50美分。则由于断货产生的总成本C'=Cu+C=15美分+50美分=65美分。

  则根据问题一的求解模型可得P(D≤Q* ')=

  CuCu+C

  '

  =0.65

  第4 / 5页

  即Q,查表得到

  * '

  Q-450100

  * '

  =0.4,解得Q* '=490份

  此时P(A)=P{D>Q* '}=1-P{D≤Q* '}=0.35

  即此时报摊的订购量以490份为宜,断货出现的概率为35%。

  模型B此时每少订购一份报纸而发现它可以卖出去的损失为65美分,相当于售出价b'=100美分,而其他条件不变,则根据问题一得求解

  b-ab

  ''

  Q0

  *'

  P(X)dX=

  b-ab

  '

  '

  又由D~N(450,

  100

  2

  )得

  Q*'-4500-450*'

  =Φ -Φ ,求解得Q=490份。

  100100

  此时P(A)=P{D>Q* '}=1-P{D≤Q* '}=0.35

  即此时报摊的订购量以490份为宜,断货出现的概率为35%。

  五、模型的分析比较

  这两个模型都很好的解决了如何依据市场随机需求信息求解单时段,订单的最优订购量问题,这种随机市场需求的单时段库存模型在现实生活中比比皆是。模型思路清晰且求解简单,非常实用。

  六、模型的改进与推广

  本题中由于当天卖不出去的报纸对管理员没有丝毫用处所以没有考虑库存费用,若是其他的商品,如衣物、游泳衣等可以存放的物品,则还需要考虑其库存费用。

  参考文献

  【1】 熊德之 张志军,《概率论与数理统计及其应用》第五章 北京:科学出版社,20xx

  数学建模论文模板 篇3

  一、数学建模论文格式内容要求

  一篇数学建模论文,基本内容和格式大致分三大部分:

  1、标题、摘要部分:

  1.题目--写出较确切的题目(不能只写A题、B题)。

  2.摘要--200-300字,包括模型的主要特点、建模方法和主要结果。

  3.内容较多时最好有个目录。

  2、中心部分:

  1.问题提出,问题分析。

  2.模型建立:

  ①补充假设条件,明确概念,引进参数;

  ②模型形式(可有多个形式的模型);

  ③模型求解;

  ④模型性质;

  3.计算方法设计和计算机实现。

  4.结果分析与检验。

  5.讨论--模型的优缺点,改进方向,推广新思想。

  6.参考文献--注意格式。

  3、附录部分:

  1.计算程序,框图。

  2.各种求解演算过程,计算中间结果。

  3.各种图形、表格。

  二、数学建模论文格式排版要求

  1、题名。字体为常规,黑体,二号。题名一般不超过 20 个汉字,必要时可加副标题。

  2、摘要。文稿必须有不超过300字的内容摘要,摘要内容字体为常规,仿宋,五号。摘要应具备独立性和自含性,应是文章主要观点的浓缩。摘要前加“[摘要]”作标识,字体为加粗,黑体,五号。

  3、正文。用五号宋体,1.5倍间距。 文稿以 10000 字以下为宜。

  4、文内标题。力求简短、明确,题末不用标点符号(问号、叹号、省略号除外)。层次不宜超过5级。第1级标题字体为常规,楷体,小四;第2级标题字体为加粗,宋体,五号;次级递减。层次序号可采用一。(一)。1.(1)。1),不宜用①,以与注释号区别。文内内容字体为常规,宋体,五号。

  5、数字使用。数字用法及计量单位按 GB T15835-1995《出版物上数字用法的规定》和1984年12月27日国务院发布的《中华人民共和国法定计量单位》执行。4位以上数字采用3位分节法。5位以上数字尾数零多的,可以“万”、“亿”作单位。标点符号按GB T15835-1995《标点符号用法》执行。

  6、附表与插图。 附表应有表序、表题、一般采用三线表;插图应有图序和图题。序号用阿拉伯数字标注。常规,楷体,五号。图序和图题的字体为加粗,宋体,五号。

  7、引用。 引用原文必须核对准确,注明准确出处;凡涉及数字模型和公式的,务请认真核算。

  8、参考文献。论文应附有参考文献并遵循相应的'格式。参考文献放在文末。 “[参考文献]”字体为加粗,黑体,五号;其内容的汉字字体为常规,仿宋,小五。

  参考文献中书籍的表述方式为:

  序号 作者 书名 版本(第1版不标注) 出版地 出版社 出版年 页码

  参考文献中期刊杂志论文的表述方式为:

  序号 作者 论文名 杂志名 卷期号 出版年 页码

  参考文献中网上资源的表述方式为:

  序号 作者 资源标题 网址 访问时间(年月日)

  9、页眉,页脚。团队序号位于论文每页页眉的左端。页码位于每页页脚的中部,用阿拉伯数字从“1”开始连续编号。

  10、论文用A4纸打印出来,并将论文首页和论文装订到一起。

  数学建模论文模板 篇4

  一、高等数学教学的现状

  (一) 教学观念陈旧化

  就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

  (二) 教学方法传统化

  教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

  二、建模在高等数学教学中的作用

  对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的'认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

  高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

  三、将建模思想应用在高等数学教学中的具体措施

  (一) 在公式中使用建模思想

  在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

  (二) 讲解习题的时候使用数学模型的方式

  课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

  (三) 组织学生积极参加数学建模竞赛

  一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

  四、结束语

  高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

  参考文献

  [1] 谢凤艳,杨永艳。 高等数学教学中融入数学建模思想[J]。 齐齐哈尔师范高等专科学校学报,20xx ( 02) : 119 —120。

  [2] 李薇。 在高等数学教学中融入数学建模思想的探索与实践[J]。 教育实践与改革,20xx ( 04) : 177 —178,189。

  [3] 杨四香。 浅析高等数学教学中数学建模思想的渗透 [J]。长春教育学院学报,20xx ( 30) : 89,95。

  [4] 刘合财。 在高等数学教学中融入数学建模思想 [J]。 贵阳学院学报,20xx ( 03) : 63 —65。

  数学建模论文模板 篇5

  走美杯”是"走进美妙的数学花园"的简称。

  "走进美妙的数学花园"中国青少年数学论坛是中国少年科学院创新素质教育的品牌活动。20xx年,由国际数学家大会组委会、中国数学会、中国教育学会、中国少年科学院成功举办了首届"走进美妙的`数学花园"中国少年数学论坛,至今已连续举办七届,全国三十多个城市近三十万人参与了此项活动,在全国青少年中产生了巨大的影响。 "走进美妙的数学花园"中国青少年数学论坛活动是一项面对小学三年级至初中二年级学生的综合性数学活动。通过"趣味数学解题技能展示"、"数学建模小论文答辩"、"数学益智游戏"、"团体对抗赛"等一系列内容丰富的活动提高广大中小学生的数学建模意识和数学应用能力,培养他们一种正确的思想方法。 著名数学家陈省身先生两次为同学们亲笔题词"数学好玩"和"走进美妙的数学花园",大大鼓舞了广大青少年攀登数学高峰的热情和信心,使同学们自觉地成为学习的主人,实现从"学数学"到"用数学"过程的转变,从而进一步推动我国数学文化的传播与普及。

  "走美"活动已连续举办七届,近30万青少年踊跃参与,已取得良好社会效果,并被写入全国少工委《少先队辅导员工作纲要(试行)》,向全国少年儿童推广。

  “走美”作为数学竞赛中的后起之秀,凭借其新颖的考试形式以及较高的竞赛难度取得了非常迅速的发展,近年来在重点中学选拔中引起了广泛的关注。客观地说“走美”一、二等奖对小升初作用非常大,三等奖作用不大。

  1、活动对象

  全国各地小学三年级至初中二年级学生

  2、总成绩计算

  总成绩=笔试成绩x70%+数学小论文x30%

  笔试获奖率:

  一等奖5%,二等奖10%,三等奖15%。

  3、笔试时间

  每年3月上、中旬。

  报名截止时间:每年12月底。

  走美杯比赛流程

  1、全国组委会下发通知,各地组委会开始组织工作

  2、学生到当地组委会报名,填写《报名表》

  3、各地组委会将报名学生名单全部汇总至全国组委会

  4、全国"走进美妙的数学花园"趣味数学解题技能展示初赛(全国统一笔试)

  5、学生撰写数学建模小论文

  6、全国组委会公布初赛获奖名单并颁发获奖证书

  7、获得初赛一、二、三等奖选手有资格报名参加暑期赴英国剑桥大学数学交流活动。

  8、各地按照组委会要求提交数学建模小论文

  9、前各地组委会上报参加全国总论坛学生名单

  10、全国总论坛和表彰活动

  数学建模论文模板 篇6

  论文题目: 浅谈化归思想方法及其在中学数学的应用

  学生姓名: *****

  学 号: ********

  专 业: 数学与应用数学

  方 向: 中教法

  指导教师: *****

  20xx年 12 月 21 日

  开题报告填写要求

  1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作前期内完成,经指导教师签署意见及系部审查后生效;

  2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见;

  3.学生查阅资料的参考文献应不少于6篇(不包括辞典、手册);

  4.有关年月日等日期的填写,应当按照国标GB/T 7408—94《数据元和交换格式、信息交换、日期和时间表示法》规定的要求,一律用阿拉伯数字书写。如“20xx年12月16日”或“200x-12-16”。

  1.本课题的研究意义和目的

  数学教育作为教育的一个重要组成部分,在人的发展方向有极其中要的作用。在中学数学教学中要重视数学思想方法的的教学,数学思想方法的提炼、概括、和应用是顺理成章的。而化归思想又是数学思想的一大主梁,也是必须要受到重视的数学思想。

  在教学中到处蕴涵着化归思想,教师要很好地挖掘教材中蕴涵的转化因素,让学生体验运用化归思想能够使问题简单化。培养学生的转化意识,使学生初步运用数学思想方法解决问题,既培养学生的思维品质,也可以为以后的学生的中学数学打下基础。

  2.本课题的基本内容、重点及难点

  本课题的基本内容是要了解什么是化归思想?及化归有哪些具体的思想方法?结合具体的数学内容及问题来进一步的探讨、分析及运用化归思想方法,从而使学生更好的了解掌握化归思想方法.

  化归思想作为数学思想的一大”主梁”体现在整个数学的教学及学习中,结合具体的数学问题来选择合适的化归思想方法是本课题的重点内容.但是如何结合具体的数学问题来选择正确的`化归思想方法则就是一个难点问题.

  3.本课题的研究方法(或技术路线)

  化归思想是要结合具体的数学问来反应出来的,所以本课题研究的方法主要是以前人的理论为基础,在广泛的搜集图书馆,电子书刊,教育报刊杂志,互联网等有关本课题的前沿信息与资料,向指导老师请求指导,向有关部门联系,向中学一线的老师咨询以及结合教育实习经验,并进行理论的学习,及时总结研究经验与思路,向指导老师报告,反复的进行修改,论证。

  4.论文提纲

  随着现代社会的发展,现代科技及经济发展成熟的标志是数学化,因为时代的发展越来越依赖于数学思想和方法的运用。所以在现代进行的数学教学中加入数学思想的教育是急迫的,更是必须的。

  数学教学中要加强数学思想方法的教学,已成为数学教学中的重要内容。而化归思想是教学中的一种重要的常用的数学思想方法.因而我的论文会绕着下面的几点来展开对化归思想的探究:

  (1)先介绍化归思想的概念,并进一步的讨论其实质及转化过程.

  (2)讨论运用化归思想的意义及其作用

  (3)结合具体的数学问题来探讨分析及运用化归思想,

  (4)通过对化归思想的探讨研究进一步运用到具体的实际问题中.

  5.本课题的参考文献资料

  张奠宙 过伯祥 《数学方法论稿》 上海教育出版社200O.2

  曾峥 杨之 《“化归”刍论》 数学教育学报20xx.10(4)

  杨世明 《转化与化归》 郑州 大象出版社2OOO

  G.波利亚 《数学与猜想 》 科学出版社1984

  M.克莱因 《古今数学思想 》 上海科学技术出版社1979

  沈文选 《中学数学思想方法》 湖南师范大学出版社1999

  谢廷桢.初中效学应渗透的效学思想和方法.山东教育(中学版).1996.(2~4) 49—50.

  卜昭红.中学效学教师应辨析效学方法与数学思想.中小学教师培训中学版).1999.(1);5l—52

  张奠宙. 《数学方法论》稿.上海教育出版社,1996

  钱佩玲.《数学思想方法与中学数学》 北京师范大学出版社,1999

  徐利治.《数学方法选讲》 华中理工大学出版社.20xx

  6.本课题的进度安排

  9.1-9.15确定论文题目、相关资料

  9.16-12.30 完成外文翻译,文献综述和开题报告

  3.5-4.30完成论文初稿

  5.8-5.20论文定稿

  毕 业 设 计(论文) 开 题 报 告

  指导教师意见:

  (对本课题的深度、广度及工作量的意见)

  指导教师: (亲笔签名)

  年 月 日

  院系审查意见:

  教研室负责人: (亲笔签名)

  年 月 日

  数学建模论文模板 篇7

  摘 要:数学建模竞赛是对大学生运用数学才能和计算机才能的归纳查验,数学建模的课程与练习也随之变成高校高级数学课程教育变革的一个首要方向。在实践的竞赛安排与练习进程中,经过社团活动、主题陈述、奖赏等办法激起学生的学习爱好,并联络系统教育与竞赛练习,使学生在竞赛进程中有所学、有所得。

  关键字:数学建模竞赛、安排、练习

  数学建模竞赛最早是由美国工业与运用数学学会在1985年建议的一项大学生竞赛活动,目的在于鼓舞学生学习数学的积极性,进步学生树立数学模型和运用计算机技术处理实践疑问的归纳才能,鼓舞广阔学生积极参加课外科技活动,开辟常识面,培育立异精神及协作认识,推进大学数学教育系统、教育内容和办法的变革。我国大学生数学建模竞赛是由教育部高教司和我国工业与数学学会主办、面向全国高级院校的、每年一届的通讯竞赛。其主旨是:立异认识、团队精神、重在参加、公平竞争。自1992年在我国兴办以来,每年一届,呈现出敏捷的展展开开势头,目前已变成全国高校计划最大的根底性学科竞赛,也是世界上计划最大的数学建模竞赛。20xx年,来自全国33个省/市/自治区(包含香港和澳门特区)及新加坡、美国的1251所院校、19490个队(其间本科组16008队、专科组3482队)、58000多名大学生报名参加本项竞赛。能够说,数学建模现已变成全国高校计划最大课外科技活动。

  1. 大学生数学建模竞赛的含义

  大学生经过了十几年的数学类课程的学习,依然很难将课本的常识用来处理实践疑问。数学建模恰是联络数学理论与实践运用的桥梁。大学生数学建模竞赛给了大学生们一个开放的渠道,将所学的常识交融,在三地利间中经过自立学习,处理一个实践疑问。这种以方针为导向的竞赛,能够充分调动大学生的自立学习积极性,表现学生的最大潜力。

  正确地引导学生参加大学生数学建模竞赛,加深大学生对数学类常识的了解,进步大学生的自立学习的才能,是大学生数学建模竞赛的底子含义。

  2. 激起学生爱好

  许多大学生对数学建模充溢爱好,但是在应试教育的练习中,现已失掉对新鲜常识的渴望,对常识了解不行透彻,与实践运用之间有着无穷的距离。所以,怎么激起学生爱好,表现学生的主动性,削减学生的畏难情绪,让广阔学生都参加尽量,是非常首要地。

  2.1 组成数学建模协会

  组成数学建模协会,经过学生安排展开有关作业,不光使很多的数学建模爱好者有了归属感,也有了非常好的.表现自我才能的渠道。经过数学建模爱好者表现辐射效果,股动别的学生参加到数学建模活动中。

  2.2 安排主题陈述

  由有数学建模带队经历的老师进行多方面的主题陈述,关于普通高校来说,一方面传递常识,另一方面经过对标题的剖析,引导学生怎么运用所学常识,激起学生爱好。陈述内容一是某种数学建模办法、软件;二是社会热点疑问或近来竞赛真题。陈述首要以剖析疑问、供给解题思路为主,不适合呈现太艰深的数学常识。别的,在陈述中拿出有些时刻与学生进行互动评论,使学生们有爱好进入到数学建模中来。

  2.3 奖赏

  向校园请求有关奖赏。假如学生全国大学生数学建模竞赛获奖的同学在引荐研究生方面给予优先思考,在奖学金鉴定上给予优先思考,或许能够获得必定的立异学分等等。

  3. 安排教育

  展开数学建模活动,首先是期望建模爱好者都能参加,从中学习常识,进步自学才能,进步剖析疑问处理疑问的才能。在安排教育中也应按照年级分层次安排教育。

  3.1 根底

  在低年级教育中,首要是高级数学的教育。在教育活动中,能找到根本的数学模型与高级数学常识的内在联络,比方人员模型多数为微积分的运用,最优报价模型能够用条件极值来处理。从高级数学的教育下手,使学生逐渐触摸并了解数学建模,树立开始的数学建模思维。

  3.2 进步

  当学生开始树立数学建模思维后,还应专门为有关理工科专业开设数学建模课程,教学常见的数学模型,如线性计划疑问、无约束优化疑问、非线性计划疑问、动态计划疑问、微分方程疑问、差分方程疑问、最短路径疑问、行遍性疑问、网络流疑问、数据的计算描绘和剖析、回归剖析,并进一步了解matlab、lingo、mathmetics等数学软件,敏捷扩宽学生的常识面。

  3.3 归纳

  在学生把握常见的数学模型后,对这些年的数学建模竞赛疑问进行详细剖析,供给参考性的解题思路。学生以此来做模拟练习,分组在一个月内,完结标题的剖析、材料搜集、材料收拾、树立数学模型、求解、查验模型,最终完结一篇陈述。老师依据每组陈述状况,进行点评,找出每组同学的优缺点,并要求其改正。

  4. 竞赛练习

  每年3-4月,我校进行3-4次专题讲座,首要强化学生的以下方面才能

  (1) 材料查阅和论文写作技巧。大有些参赛学生没有撰写论文的练习,很难写出内容、形式都完整的论文,这恰恰是数学建模竞赛有必要做到的。

  (2) 经典典范。经过经典典范,使学生对数学建模的各个方面愈加明晰明了,能够对论文的各有些内容有较为深刻的认识。

  (3) 强化数学软件和计算机编程才能。近些年的竞赛标题,许多都涉及到海量数据,对海量数据的剖析、收拾、计算,都需求参赛队员具备必定的编程才能或数学软件的运用才能。把握编程才能通常变成求解的要害。

  每年4月末,我校举行大学生数学建模校内赛,以实战的形式查验学生的学习效果。竞赛形式与全国大学生数学建模竞赛一致,由校表里专家命题,学生每三人一组报名参赛,在三地利间内,完结指定标题,并提交完整论文一份。完结后,由校内指导老师进行评定,并评出一、二、三等奖。赛后安排能较好完结论文的队员,做好剖析总结,依据每个学生的才能特色,从头分组,备战全国大学生数学建模竞赛。

  5. 结束语

  数学建模思维和才能的获得不是一朝一夕的工作,需求老师长时间详尽的练习,需求学生不断研究。数学的运用才能不同于数学专家的科研作业,不能只是把握数学常识,更需求学生有较为广泛的常识系统。作为教育作业者,咱们有职责持之以恒的给学生教授常识、传递数学的运用思维,为学生非常好地习惯社会做出自个的尽力。

  参考文献

  [1] 周义仓,赫孝良,数学建模试验[M],西安,西安交通大学出版社,20xx

  [2] 王树禾,数学模型选讲[M],北京,科学出版社,20xx

  [3] 赵静,但琦,数学建模与数学试验[M],北京,高级教育出版社,20xx

  [4] 姜启源,谢金星,叶俊,数学模型[M],北京,高级教育出版社,20xx

  数学建模论文模板 篇8

  摘 要:本文从“如何培养学生实践应用能力提高就业素质”出发,通过对大专院校进行广泛的调研,分析了目前高职院校开展数学建模的现状,并总结了黑龙江交通职业技术院校开展数学建模教学与竞赛活动的经验和做法,对指导高职院校的数学建模实践教学工作具有重要意义。

  关键词:数学建模竞赛;教学改革;实践教学

  中国大学生数学建模竞赛是目前全国高校中规模最大、影响最广的大学生课外科技活动,它在培养大学生知识的应用能力、创新能力以及团队的合作精神、顽强的意志品质等方面都显示了独特的作用和优势。然而,大学生数学建模竞赛在高职学院的开展却起步迟缓且步履维艰,如何改变现状,促进大学生数学建模竞赛在高职学院持续健康发展,已经成为教育工作者研究的重要课题。

  一、高职学院开展数学建模竞赛活动的现状

  总体来说起步较缓慢,以黑龙江赛区为例,参加全国大学生数学建模竞赛的院校和参赛队虽然逐年增加,20xx年达到了34所参赛院校共444支参赛队,但是高职学院参赛的少,仅占全省高职学院的1/3,有的高职学院长期徘徊在竞赛之外,有的断断续续,今年参赛明年休息。分析其原因主要有两个:一是部分高职学院对大学生数学建模竞赛十分陌生,对竞赛的意义缺乏认识,没有配套的实施办法和有效的激励机制;二是竞赛的指导教师匮乏,能力有限,目前高职数学教师队伍严重萎缩,有的学院数学教研室只剩一两个人。

  参加数学建模竞赛需要扎实的数学功底和良好的应用意识。而高职的课程体系突出专业技能的培养,通常只在一年级开设一个学期的“高等数学”课程,总学时一般仅有30学时,有的甚至不开数学课。教学内容以一元微积分的基本概念和简单算法为主。大多数参赛的高职院校,仅仅是为竞赛而竞赛,极少关注数学建模思想和方法在深化数学教学改革、促进课程建设等方面的作用。

  高职学生总体水平较差,但对从未接触过的数学建模充满好奇。然而数学建模竞赛对学生的知识和能力要求都比较高,同时因高职学生二年级末就要面临顶岗实习和就业问题,参赛学生通常只能在一年级中选拔,他们的基础和能力显然都没有本科生扎实,因此赛前培训的工作量非常大。

  二、高职学院开展数学建模竞赛活动的意义

  通过数学建模竞赛可以提高学生的综合素质,是培养学生综合能力的有效途径。数学建模竞赛可以培养团队精神与合理表达自己思想和综合运用知识的能力等,所有这些对提高学生的素质都是很有帮助的,且非常符合当今提倡素质教育精神。

  数学建模竞赛不同于其它各种具有单个学科如:数学竞赛,物理竞赛,计算机程序设计竞赛等的竞赛,因为这些竞赛只涉及到一门学科,甚至一门课程的知识,而数学建模竞赛涉及到数学学科,计算机学科等其他许多学科的知识,仅数学学科就涉及到高等数学,线性代数,概率统计,计算方法,运筹学,图论,数学软件等方面的知识。学生要想在数学建模竞赛中取得好成绩,除了具有以上数学知识外,还要有较好的计算机编程能力,网上查阅资料的能力及论文写作能力等,此外,他们还应有接触各种新知识的.环境和喜好。因为数学建模的竞赛题远非只是一个数学题目,而更多是一个初看起来与数学没有联系的实际问题,它涉及到很多知识,有些还是当前尚未解决的问题,如:飞行管理问题,DNA排序问题等就是较有代表性的数学建模考试题目。通常数学建模题目只给出问题的描述和要达到的目的,参赛学生要做的事情是将问题用数学语言转化成数学问题,然后在数学的背景下使用计算机或数学软件来求解,最后再根据所得的解来解释和检验所给的实际问题。与数学竞赛不同的是,数学建模赛题没有标准的正确答案,试卷的评分标准是看学生解决问题和创新的能力.因此要做好一个数学建模问题并不是一件容易的事情,需要学生很多的知识以及对所学各种知识的综合运用,对学生是一个挑战。

  数学建模竞赛的题目由工程技术、经济管理、社会生活等领域中的实际问题简化加工而成,没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神。竞赛以通讯形式进行,三名大学生组成一队,在三天时间内可以自由地收集资料、调查研究,使用计算机、软件和互联网,但不得与队外任何人(包括指导教师在内)以任何方式讨论赛题。竞赛要求每个队完成一篇用数学建模方法解决实际问题的科技论文。竞赛评奖以假设的合理性、建模的创造性、结果的正确性以及文字表述的清晰程度为主要标准。可以看出,这项竞赛从内容到形式与传统的数学竞赛不同,是大学阶段除毕业设计外难得的一次 “真刀真枪”的训练,相当程度上模拟了学生毕业后工作时的情况,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件。

  竞赛让学生面对一个从未接触过的实际问题,运用数学方法和计算机技术加以分析、解决,他们必须开动脑筋、拓宽思路,充分发挥创造力和想象力,从而培养了学生的创新意识及主动学习、独立研究的能力。

  三、通过数学建模推动数学课程教学改革

  通过数学建模竞赛可以推动高校的教育教学改革。十几年来在竞赛的推动下许多高校相继开设了数学建模课程以及与此密切相关的数学实验课程,出版了两百多本相关的教材,一些教师正在进行将数学建模的思想和方法融入数学主干课程的研究和试验。

  数学教育本质上是一种素质教育,要体现素质教育的要求,数学的教学不能完全和外部世界隔离开来,关起门来在数学的概念、方法和理论中打圈子,处于自我封闭状态,以致学生在学了许多据说是非常重要、十分有用的数学知识以后,却不怎么会应用或无法应用。开设数学建模和数学实验课程,举办数学建模竞赛,为数学与外部世界的联系打开了一个通道,提高了学生学习数学的积极性和主动性,是对数学教学体系和内容改革的一个成功的尝试。

  数学建模教学和竞赛活动中经常用到计算机和数学软件,普遍采取案例教学和课堂讨论,丰富了数学教学的形式和方法。经过几年来参加数学建模竞赛和教学方法和手段的改革,一方面教师的知识面拓宽了,知识结构改善了,利用数学工具和计算机找出解决实际问题的意识和能力提高了,另一方面,由于理论与实际的结合多,学生的动手能力增强了,学习的主动性和积极性有了很大的提高,同时也培养了学生的创新意识和解决实际问题的能力。

  四、我校数学建模竞赛活动开展情况

  近年来,我校一直有序地组织学生参加数学建模竞赛,学校领导和教务处等有关部门非常重视和支持学生参加数学建模竞赛,逐步探索完善了一套合理的激励机制,激发指导教师的工作积极性和学生的参赛荣誉感及学习积极性。

  我校开展的数学建模竞赛活动是采用第二课堂课余活动的形式进行的。由数学教研室负责每学期对学生进行集体强化培训,以提高建模水平,培养学生之间的团队协作精神。通常我们在每年四月份组织校级竞赛,然后评选出五个代表队的优秀论文参加东三省数学建模联赛的评奖。通过校级的比赛在全校范围内选拔出队员,再进行深入的培训,最后参加全国比赛。

  我校历年来在大学生数学建模竞赛活动中保持优秀成绩,涌现了一批优秀的指导教师和学生。20xx年黑龙江交通职业职业技术学院第一次组队参加东北三省大学生数学建模竞赛,由于领导重视,工作扎实,平时训练重过程、重细节,竞赛中队员们表现出了良好的意志品质和团队精神,最终取得了不俗的成绩:5个参赛队中,1个队荣获省一等奖,另有1个队获省二等奖。20xx年参加东北三省数学建模联赛,四个队获得二等奖;20xx年参加全国大学生数学建模竞赛,一个队获得省级二等奖,一个队获得省级三等奖;20xx年参加东北三省数学建模联赛,一个队获得一等奖,三个队获得二等奖。事实证明:通过自身的努力,高职学院可以在全国大学生数学建模竞赛中取得较好成绩,而高职学生也必定会在艰苦的培训和竞赛过程中得到锻炼和提高。

  五、结语

  尽管目前高职学院开展大学生数学建模竞赛活动仍有不少困难,但是我们有理由相信,在社会各界的关心和支持下,这一项能使高职学生、教师和学院全面受益的竞赛不仅值得我们为之努力,而且一定能越办越好。

  数学建模论文模板 篇9

  一.前期准备(建模储备)

  1.工欲善其事,必先利其器。

  各种软件的成功安装,团队成员软件版本一致性。

  软件(Excel、matlab、word、latex、WPS等等)熟练掌握。

  2.必要数学知识

  让你的数学知识足够让你进行知识的获取与获取知识后接下去的快速学习。

  各种算法。

  3.建模算法与编程知识(思想的具体实现)

  了解各项算法。

  各种算法以及编程具体实现,提前将代码准备好。

  知道何种问题用何种算法,编程可以直接拿来用。

  4.资料获取能力(文件检索)

  各种网站与论坛(数学中国、校苑数模等)的资源的利用。

  (可以建群讨论)(注册收集体力从而下载东西)

  Google搜索引擎的真正使用方法,资源搜索方法。

  中国知网等学术论文获取方法。

  谷歌学术,百度学术。

  5.建立模型能力(思想)

  建立模型的能力才是整个数学建模的核心,模型从分析到实现是需要过程的。团队可以一起讨论,相信自己,结合找到的学术论文进行初步建模构想,再搜集资料。

  获取知识,搜索资料,最好在前人学术研究的基础上加以改进。利用好学术论文。

  建立模型不是一蹴而就的,团队分析,最后一人总结数学思想建模,可以分模块分部建立,有一人编程实现。

  6.文档写作能力(格式)

  充分研究以前优秀作文。格式,语言使用。

  对自己模型的表达。

  论文010203按时间,改一次,另存为一次。

  7.对所参加比赛要求与评判的了解

  将比赛需要的所有东西准备好。

  对时间的把握。

  对比赛评判习惯的把握。

  提前了解题型,早做准备。

  参赛队应该尽可能多的研读和实践历年获奖论文及其中的模型和求解算法,并进行一次全真模拟训练磨合队伍。

  二.人员分工合作

  数学员:数学方法与思想

  程序员:精通算法的实现,调试程序

  写手:论文的实现

  数学模型的组队非常重要,三个人的团队一定要有分工明确而且互有合作,三个人都有其各自的特长,这样在某方面的问题的处理上才会保持高效率。

  三个人的分工可以分为这几个方面:

  1.数学员:

  学习过很多数模相关的方法、知识,无论是对实际问题还是数学理论都有着比较敏感的思维能力,知道一个问题该怎样一步步经过化简而变为数学问题,而在数学上又有哪些相关的方法能够求解,他可以不会编程,但是要精通算法,能够一定程度上帮助程序员想算法,总之,数学员要做到的是能够把一个问题清晰地用数学关系定义,然后给出求解的方向;

  2.程序员:

  负责实现数学员的想法,因为作为数学员,要完成大部分的模型建立工作,因此调试程序这类工作就必须交给程序员来分担了,一些程序细节程序员必须非常明白,需要出图,出数据的地方必须能够非常迅速地给出。

  3.写手:

  在全文的写作中,数学员负责搭建模型的框架结构,程序员负责计算结果并与数学员讨论,进而形成模型部分的全部内容,而写手要做的。就是在此基础之上,将所有的图表,文字以一定的结构形式予以表达,注意写手时刻要从评委,也就是论文阅读者的角度考虑问题,在全文中形成一个完整地逻辑框架。同时要做好排版的工作,最终能够把数学员建立的模型和程序员算出的结果以最清晰的方式体现在论文中。因为论文是评委能够唯一看到的成果,所以写手的水平直接决定了获奖的高低,重要性也不言而喻了。三个人至少都能够擅长一方面的工作,同时相互之间也有交叉,这样,不至于在任何一个环节卡壳而没有人能够解决。因为每一项工作的工作量都比较庞大,因此,在准备的过程中就应该按照这个分工去准备而不要想着通吃。这样才真正达到了团队协作的效果。

  三.数学建模过程

  1.看到问题、分析问题、理解题意。

  2.寻找资料,查找相关知识。

  3.思考可使用算法模型,想出问题解决思路。

  4.列出模型框架。

  5.进行模型与算法的具体实现过程。

  6.对模型的.优化与检查。

  7.论文的整理。

  8.摘要论文的批判与检查。

  9.提交。

  四.对数学建模的理解

  利用数学方法解决实际问题,对数学知识的了解与熟悉,快速查找学术知识并运用。

  论文的整理,让他人理解。

  数学好:数学思想。

  编程好:调试程序与算法的实现。

  整理能力:文档表述清晰。

  五.我下一步的努力

  1、数学模型的了解与掌握:

  《数学模型》 姜启源版

  《数学建模与数学实验》 赵静版

  (认真读完上述两本数学建模书籍)

  各种网络上找到的书籍,关于算法与模型的简单看看。

  2、各种数学工具的安装与使用

  Matlab的安装与使用

  Excel的进一步了解

  Word的进一步熟悉

  各种我不知道的数学工具:spss,latex……

  3、算法的掌握与实现

  将看过算法都整理起来,便于比赛时直接用。

  4、多看与研究比赛获奖论文

  研究思想,感受过程。

  5、研究模板,写作排版与论文整理方法

  6、万事俱备,自己亲身实践数学建模

  数学建模论文模板 篇10

  一、论文形式:科学论文 科学论文是对某一课题进行探讨、研究,表述新的科学研究成果或创见的文章。 注意:它不是感想,也不是调查报告。

  二、论文选题:新颖,有意义,力所能及。 要求:

  有背景. 应用问题要来源于学生生活及其周围世界的真实问题,要有具体的对象和真实的数据。理论问题要了解问题的研究现状及其理论价值。要做必要的学术调研和研究特色。

  2有价值 有一定的应用价值,或理论价值,或教育价值,学生通过课题的研究可以掌握必须的科学概念,提升科学研究的能力。

  3.有基础 对所研究问题的背景有一定了解,掌握一定量的参考文献,积累了一些解决问题的方法,所研究问题的数据资料是能够获得的。

  4. 有特色:思路创新,有别于传统研究的新思路;方法创新,针对具体问题的特点,对传统方法的`改进和创新; 结果创新,要有新的,更深层次的结果。

  5. 问题可行:适合学生自己探究并能够完成,要有学生的特色,所用知识应该不超过中学生的能力范围。

  三、(数学应用问题)数据资料:来源可靠,引用合理,目标明确

  1. 数据真实可靠,不是编的数学题目; 2. 数据分析合理,采用分析方法得当。

  四、(数学应用问题)数学模型:通过抽象和化简,使用数学语言对实际问题的一个近似描述,以便

  于人们更深刻地认识所研究的对象。 1. 抽象化简适中,太强,太弱都不好;

  2. 抽象出的数学问题,参数选择源于实际,变量意义明确; 3. 数学推理严格,计算准确无误,得出结论;

  4. 将所得结论回归到实际中,进行分析和检验,最终解决问题,或者提出建设性意见; 5. 问题和方法的进一步推广和展望。

  五、(数学理论问题)问题的研究现状和研究意义:了解透彻

  1. 对问题了解足够清楚,其中指导教师的作用不容忽视; 2. 问题解答推理严禁,计算无误; 3. 突出研究的特色和价值。

  六、论文格式规范(可参考数理化学科能力竞赛要求,20xx全国大学生数学建模论文要求) ● 论文用白色A4纸单面打印;上下左右各留出至少2.5厘米的页边距;从左侧装订。

  ● 论文第1页为编号专用页,用于组织者评阅前后对论文进行编号,包含参赛者姓名、学校等基本信息;

  ● 论文题目和摘要写在论文第2页上,从第3页开始是论文正文。

  ● 论文从第2页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号。 ● 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。

  ●论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 ●

  提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。全国评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选。

  ● 论文应该思路清晰,表达简洁(正文尽量控制在20页以内,附录页数不限)。

  ●引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:

  [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为:

  [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为:

  [编号] 作者,资源标题,网址,访问时间(年月日)。

  数学建模论文模板 篇11

  本文针对目前高校数学建模教学开展的现状,从学生、教师、教材和学校四个方法进行了分析,指出目前数学建模教学的问题之所在,并给出了数学建模教学的若干策略和建议。

  进入20世纪以来,数学的应用以空前的广度和深度向诸如经济、人口、生态、地质等新的领域渗透。数学的应用已成为科技进步的重要推动力,无论是微观的机理研究,还是宏观的决策分析都离不开数学的应用,人们已习惯用数学思维思考问题,用数学语言表达问题,用数学方法解决问题。而要用数学方法来解决实际问题,首先需要建立实际问题的数学模型,即针对该实际问题,分析其重要特征,进行必要的简化假设,运用适当的数学工具,建立的一个数学结构。我们把这样的一个过程称为数学建模。数学建模是实现与发挥数学应用功能的重要手段,同时也是启迪创新思维、培养创新人才的一个重要途径。

  英、美等国自二十世纪七十年代在研究生和本科阶段相继开设了“数学建模”课程,并于七十年代末期进入中学课堂。我国在上个世纪八十年代中期,借鉴英、美等国开设“数学建模”课程的经验,由清华大学应用数学系主任萧树铁教授首倡并实践,在清华大学和国内部分高校开设了“数学模型”课程[2]。

  近几年,随着“全国大学生数学建模竞赛”规模和受认可程度的日益壮大,随着教育部在新课标中将“数学建模”设为新增内容模块,随着对高等数学教学改革的呼声日益强烈,越来越多的地方院校开始重视数学建模教育的重要作用,在理工类专业甚至是经管类专业大量开设“数学建模”课程。但数学建模课程与传统的数学课程不同,数学建模课重点在于培养学生的创新思维和创新能力,如何进行有效的数学建模教学是一个问题。

  本文将对目前大学数学建模教学现状进行分析,总结出教学过程中存在的突出问题,并提出大学数学建模教学策略。

  一、数学建模教学的现状分析

  目前,开设“数学建模”课程的院校越来越多,但是通过调查我们发现效果并不是很理想,学生用数学解决实际问题的能力并没有得到很大程度上的提高。经过深入的调查和分析,我们发现主要有以下几个方面的问题。

  首先,学生缺乏良好的基础。建立数学模型解决各种实际问题,需要开放式的数学建模思维,需要善于联想发散的创新意识,需要坚持不懈的顽强毅力,需要合理分工团结合作的协助能力。而这些往往都不是传统课程教学中所侧重的,在从小学到大学的传统数学课上,学生从课堂上学到的可能更多的是具体的知识方法,做的可能更多的是有固定解法有正确答案的数学题。因此数学建模课程的基础要求与培养目标和学生的建模基础之间存在巨大的差距。所以没有好的学习基础,不能得到好的学习效果也就是很自然的事情了,在仅仅一门“数学建模”课上进行弥补也是几乎不太可能的事情。

  其次,教师普遍缺乏开展研究性教学的经验。数学建模的教学是一种以学生为主体的创造性研究性学习。与传统数学教学以知识为中心不同,数学建模的教学强调让学生亲身体验如何“用数学”、如何抓住主要因素简化问题将实际问题化为数学问题,在实践中感受数学建模的思想,体会运用数学的力量。因此,数学建模教师在教学中不能只关注学生的学习结果,更应该重视学生在学习过程中的情感和体验,重视培养学生的直觉思维。而这些可能是目前教师所缺乏的,或者是教师在教学过程中很容易忽视的,需要我们的教师在教学过程中重视,采用恰当的'教学模式教学手段,充分调动学生的学习积极性,强化实践教学,让学生在大量实践中学会建模。

  再次,目前缺乏系统的适合不同层次学生学习的数学建模教材。现有的新编的数学建模教材大多面向数学建模竞赛培训,案例一般相对比较复杂,初学者学起来会比较困难,不适合初学者进行学习,也有一些早期的数学建模教材案例大多比较简单,但大多与时代脱节,不能有效的激发学生的学习兴趣。

  最后,部分学校存在功利意识。数学建模教育的目的在于激发学生主动探究问题的积极性,培养学生的创新精神和研究问题的科学性,而科学研究和创新往往不是在短期内就可以看到好的成果的,数学建模教育应该重视的是学生参与建模实践的过程,在实践中体会一种用数学解决实际问题的意识,想用数学会用数学创造性的解决实际问题,从而带来能力上的提高。各种数学建模竞赛只是给学生提供更多实践机会的一个平台,能否获奖不应该是我们建模教学的根本目的,重要的是在参与的过程中,学生体会到了什么,学到了什么?但在部分学校,目前出现了重建模竞赛轻建模教学的情况,重视赛前对重点学生的突击培训,轻视在平时对所有学生的常规建模教学工作,甚至出现了,为了获奖由老师捉刀代笔的情况,从建模能力培养上,学生自然也就不会有多大的收获。

  二、数学建模的教学策略

  数学建模的教学是一个系统工程,不应该简单的只是开设一门课的问题,从学生建模意识的渗透,到教师教法的研究和教学内容的恰当选取,到学校各方面的正确认识和重视,都是构建合理有效的数学建模策略所需要考虑的问题。

  首先,我们要通过多种渠道分层次开展数学建模的思想和方法的推广和教学。数学建模课程的学时是十分有限的,而且“用数学”的思维习惯的养成也不是短时间内就可以完成的事情。所以数学建模思想的推广不能仅限于数学建模课,应该通过多种渠道分层次的在整个大学期间进行不断的渗透和强化,只有这样才能达到培养学生创新思维,提高学生用数学解决实际问题的能力。

  我们可以尝试在高等数学,线性代数等数学类基础课上渗透数学建模的思想和方法。教师可以结合数学课的教学内容,举一些简单的、离学生生活较近的数学建模题目的例子,对数学建模的概念、步骤和方法进行讲解,并可以适当的采用matlab等数学软件用加深学生的直观影响。这样做不仅可以提前对学生进行数学建模的启蒙,也让数学类基础课的教学更加生动有趣。同时我们还可以借助学生社团的力量,在课外开展数学建模讲座和数学建模兴趣小组等活动,这对于维持学生的学习积极性体会数学建模的魅力也是非常有益的。总之,数学建模的教学一定不能局限于一个学期的课堂教学,最好能通过各种途径贯彻始终。

  其次,我们要重视数学建模课主讲教师的培养。建模比赛中获过奖或者指导过学生获奖的教师也不一定能教好数学建模课,不一定能使学生的建模能力得到普遍的提高。要成为一名优秀的建模教师,需要更新教育教学观念,改变以学生为中心的教学模式,多与其他院校的建模老师交流,学习他人的成功教学模式和教学经验,还需要扩展教师的知识体系,才能驾驭开放的建模问题,最重要的是提高教师的敬业精神和教学团队的合作精神,和其他课程的教学相比较,数学建模的教学需要教师付出大量课外的劳动,没有团结合作,拼搏奉献的教学队伍,是不可能开展好数学建模的教学工作。

  再次,我们要针对学校的实际情况有目的性的选择合适的案例开展教学。好的数学建模案例应该适合学生的能力水平,难度太大的问题会使得学生无从入手失去兴趣,太容易的问题也会学生感觉乏味得不到提高,我们需要随着学生建模能力的提高,逐步提高案例的难度。与实际联系紧密的热点问题可以更好的吸引学生的兴趣,体会数学建模的魅力,但所涉及的专业背景不能太深,最好在学生的认知范围以内。开放性的问题可以更好的发挥学生的想象力,给学生更大的发挥空间,更好的锻炼学生的建模能力。

  数学建模论文模板 篇12

  一、小学数学建模

  "数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

  二、小学数学建模的定位

  1.定位于儿童的生活经验

  儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

  2.定位于儿童的思维方式

  小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

  实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。

  三、小学"数学建模"的教学策略

  1.培育建模意识

  当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释".培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。

  2.体验建模过程

  在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。

  3.在数学建模中促进自主性建构

  要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。

  我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""<"和"="的掌握与使用,进而使学生明确了解"比较"的真正含义。首先,利用公园或者学校等地方的跷跷板为素材,让学生了解自己的哪个伙伴被压上去,哪个伙伴被压下来;然后让班级的高矮不同的同学进行身高比较。最后将上面这些情景在课堂上通过多媒体手段展现出来,由于这些情景都是学生曾亲身体验过的,此时再叫他们去做"重量"或者"高度"的比较,他们就可以轻松的掌握">""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的'创建其数学模型,提升他们自主建模的信心。

  四、总结

  数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。

  数学建模论文模板 篇13

  1素质教育与高职数学课程改革

  在职业教育大发展的初期,在“工具论”和功利主义教育思潮影响之下,一度把为专业课服务作为数学课的唯一职能,甚至普遍弱化数学课的地位,一些学校的数学课程被大幅缩减甚至被取消。部分专家学者及时对唯技能、唯工具、忽视素质教育等错误思潮进行了批判,20xx年8月,教育部颁布文件《教育部关于推进高等职业教育改革创新,引领职业教育科学发展的若干意见》,强调改革培养模式,增强学生可持续发展能力,重视学生全面发展,推进素质教育,增强学生自信心,满足学生成长需要,促进学生人人成才。公共基础课是高职院校素质教育的主渠道,为素质教育服务是高职院校基础课改革的方向。高职院校基础课的功能主要有为专业课服务和为素质教育服务两个方面。如果真正明确高素质技能型人才的培养目标,真正重视学生的终身发展,而不是把高职院校视为技能培训机构,就应该高度重视基础课的地位。数学的基础性与广泛的应用性不仅使数学成为学习其他科学的基础和工具,而且也使数学成为提高高职学生全面素质极好的载体。高等数学不仅是一种工具,而且是一种思维模式;不仅是一种知识,而且是一种素养;不仅是一门科学,而且是一种文化。它内容丰富,理论严谨,应用广泛,影响深远。然而,当前多数高职院校数学课堂仍是以传授课本上的理论知识为主,课程内容主要局限于数学的知识成分,很少涉及到数学思想、精神、学生情感、态度、价值观等观念成分,很少涉及到解决实际问题的能力,而较多地让学生做习题,却较少地让学生想问题。在做习题中,又较多地在操作层面上训练解题方法,而较少地在思维层面上培养数学素养,重知识,轻思想;重技巧,轻能力。大多数学生对数学的思想、精神了解得较肤浅,甚至误以为学数学就是为了会做题、能应付考试,不知道数学方式的理性思维的重大价值,不了解数学在生产、生活实践中的重要作用,不理解数学文化与诸多文化的交汇。所选用的教材由于过多考虑数学学科的知识本位,学生通过教材看到的是定义、公式、定理和性质的堆积和罗列,看不到实际应用的案例,因此学习积极性不高,学习效果不好。况且高职学生基础相对较差,教学效果更不如人意。

  2数学建模融入数学课程是高职数学课改的有效切入点

  近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。

  2.1数学建模融入数学课程能够培养和提高学生的学习兴趣

  学习兴趣对学生的.学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。

  2.2数学建模思想融入数学课程能够加快高职学校素质教育的步伐

  高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。

  2.3数学建模思想融入数学课程能够提升学生各方面的能力

  学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。

  3数学建模教学实践及学生创新能力的提高

  近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。

  3.1融入数学建模思想精心设计教学内容

  按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析→基本知识讲解→触类旁通→举一反三,归纳总结→掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。

  3.2灵活多样的教学方法与现代教学手段相结合

  在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。

  数学建模论文模板 篇14

  【摘要】数学教学实质就是学生在头脑中“数学模型”的建构过程,是现实对象的数学表现形式。本文从在小学数学课堂中建构“数学模型”的现实意义、建构数学模型的方法途径、实施“数学模型”的具体策略等几方面作了探讨。

  【关键词】活动课有效生活性实用性

  一、确立“数学模型”的现实意义

  数学教学就是在一定基础上进行对数学知识模型的建立及其方法的应用。数学模型化是一种极为重要的数学思想方法。对于学生学习和处理数学问题有着极其重要的影响,它可以帮助学生体会数学的作用,产生对数学学习的兴趣。因此,建构和掌握数学模型化方法,是培养学生创新精神、实践能力的一种最有效的途径。

  数学模型是建立在数学一般的基础知识与应用数学知识之间的一座重要的桥梁,建立数学模型,就是指从数学的角度发现问题、展开思考,通过新旧知识间的转化过程,归结为一类已经解决或较易解决的问题中去,再综合运用已有的数学知识与技能解决这一类问题。这是在平时的数学教学中教师应该着重培养学生所具备的一种数学思想和方法。就是将数学理论知识应用于实际问题的思想和方法。学生在探索、获得数学模型的过程中,也同时获得了建构数学模型、解决实际问题的思想与方法,而这对学生的发展来说,其意义远大于仅仅获得某些数学知建构数学模型不仅包括学生在数学实践体验中的.思想情感、态度与价值观,更重要的是转化思想、集合思想、数形结合思想、函数思想、符号化思想、对应思想、分类思想、归纳思想、模型思想、统计思想等。数学最主要的思想是归纳思想和演绎思想,要重点培养学生的探究成因、预测未来、举一反三、触类旁通的能力和思想。

  二、巧方法找途径建模型

  小学数学中的法则、定律、公式等都是一个个数学模型,如何使学生通过建模形成数学模型?其中一条很重要的途径就是把生活原型上升为数学模型。因为生活原型中揭示的“事理”是学生的“常识”,但是“常识”还不是数学,“常识要成为数学,它必须经过提炼和组织,而凝成一定的法则……”,所以要使“事理”上升为“数理”还需要有一个模型化的过程。

  (一)、创设情境,诱发问题。

  教师有目的、有意识地创设能激发学生创造意识的各种情境,促使学生产生质疑问题、探索求解的学习动机。

  1.问题情境设置的途径。促使学生原有的知识与必须掌握的新知识发生激烈冲突,使学生意识中的矛盾激化,从而产生问题情境。

  2.问题呈现形式多样化。可由教师提出问题,也可教师引导学生提出问题,但必须让学生明确问题解决的目标,激发问题解决的动机,充分发挥教师的引导作用。

  3.问题的提出要针对学生实际。问题的引入力求趣味、新奇、有针对性,能够诱导、启发、激活学生头脑中潜在的知识,使之服务于问题的解决,最大限度地调动学生的求知欲。

  (二)、成功导学,构建模型。

  学生在老师的鼓励和指导下自主探究解决实际问题的途径,进行自主探索学习,把实际问题转化为数学问题,即将实际问题数学化。建模过程是学生的分析、抽象、综合、表达能力的体现。

  1.教师导学是构建模型的前提。从导思、导议、导练入手,结合学生心理特征和认知水平,提出的启发性问题,不宜过于简单又不能超过学生的实际水平。

  2.老师要善于聚焦集思、由此及彼、由表及里,把分散的、现象的、感性的问题上升到理性并纳入到所要达到的教学目标的轨道上来,从而形成集体求索的态势。

  3.提出一个或几个问题之后,要给学生思考的时间,如何“跳”才能“摘到果子”。这样,他们解决问题的能力会更强些。

  (三)、逐层探究,求解结果。

  教师在点拨导、引导学生将实际问题数学化的基础上,进一步组织深层探究,求解数学问题。要让学生叙述解决数学问题的过程,交流解决问题的经验,从而达到解决问题、形成解决问题策略的目的。

  1.学生交流讨论的过程是学生之间、师生之间的多边互动的过程,应最大限度地调动学生的积极性,提高学生的参与程度。充分发表各自的意见,实施开放性思维。通过相互交流合作,综合比较,达到既求解问题又培养能力的目的。

  2.教师要指导问题求解的策略,要组织好交流活动,使学生尽情地交流求解问题的经验,相互补充,完善表述,形成策略。同时要把握好“收”与“放”的关系,放开以各抒己见,收拢以达到相对统一的认识,使学生的认识系列化、规范化。

  (四)、联系实际,检验结果。

  求得数学模型的解,并非问题得到解决,要结合实际,将求得的数学结果放到实际情境中去检验,看其是否实际结果。

  通过深层探究,求得数学结果已是教师与学生的共识,但结合实际、检验结果,是教学时常忽视的地方,其原因之一,是教材中大量提供是已经过加工、合理的素材,缺乏检验的必要性。因此关键再于教师的引导和重视。

  (五)、问题解决,评价反思。

  教师对教学活动的效果进行评价,既要评价知识的掌握、技能的习得,及时引导学生归纳、总结,理出知识网络,形成知识结构,达成对知识内化的转化;更要评价解决问题的方法,重在引导学生反思解决问题的过程,归纳解决问题的方法和策略。

  三、小学数学课堂中实施“数学模型”的具体方法

  (一)创设情境,激发建模兴趣。

  数学模型都具有现实的生活背景,这是构建模型的基础和解决实际问题的需要。如构建“统一长度单位”模型时,可以创设这样的情境:让学生用身边熟悉的铅笔、文具盒、小刀、橡皮等长短不一的物体量数学书的长度,结果学生量出的数据各种各样,谁也不知道数学书的具体长度,这时需要寻求一种新的策略,于是构建“统一长度单位”的模型成为学生的需求,同时也揭示了模型存在的背景与适用的条件。

  (二)关注方法,感知建模过程。

  感性材料是学生建立数学模型的基础,因此教师首先要给学生提供丰富的感性材料,多侧面、多维度、全方位感知某类事物的特征或数量间的相依关系,为数学模型的准确构建提供平台。如“表内乘法”模型构建的过程就是一个不断感知、积累的过程。首先学习“2-6的乘法口诀”的算法,初步了解乘法的意义,学会能用找规律的方法算出几个相同加数的和,感知乘法口诀的来源及编制的方法;接着采取半扶半放的方式学习“7、8的乘法口诀”,进一步引导学生感知归纳法、演绎法更广的适用范围;最后学习“9的乘法口诀”,运用以前已有的思想和方法灵活解决相关的计算问题。在此过程中,学生经历了观察、操作、实践等活动,充分体验了“表内乘法”的内涵,为形成“表内乘法”的模型奠定了坚实的基础。

【数学建模论文】相关文章:

数学建模论文模板07-22

大学数学建模思想研究论文09-09

有效运用数学建模拓展数学教学的论文09-09

(热)数学建模论文模板15篇07-21

数学建模国赛A题优秀论文11-08

高职数学建模思想渗透渠道研究论文09-09

高校数学建模竞赛与创新思维研究论文09-04

高职高等数学教学引入数学建模思想的探索论文09-09

高职专科院校数学建模教学的探索与实践论文09-09