怎样提高运算能力

时间:2023-04-30 10:11:42 数学论文 我要投稿
  • 相关推荐

怎样提高运算能力

怎样提高运算能力

摘要:运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。

关键词:运算能力

    运算能力是指对记忆能力、计算能力、观察能力、理解能力、联想能力、表述能力、逻辑思维能力等数学能力的统称。目前,职业高中的学生运算能力是很差的,不少职高老师埋怨:“学生的计算能力太差了,连简单的运算都过不了关,甚至数学基础好的学生的运算结果也经常出错。”这种状况出现的原因是多方面的。有的学生不对简单的公式、公理、定理进行记忆、理解,不明算理,机械地照搬公式,不能进行灵活运用;有的学生不注意观察、不进行联想、不进行比较,不顾运算结果,盲目推演,缺乏合理选择简捷运算途径的意识;也有的学生对提高运算能力缺乏足够的重视,他们总是把“粗心”、“马虎”作为借口;也有相当多的老师只着重解题方法和思路的引导,而忽视对解题思路的归纳总结。这样不仅影响了学生思维能力的发展,也必然影响教学质量的提高。本文就如何提高职高学生的运算能力,从以下几个方面谈谈自己的粗浅看法。

一、灵活运用公式,举一反三,提高学生的计算能力

在职业高中阶段,许多专业的学习都经常用到简单的数值运算,但数值运算恰恰是职高学生的薄弱之处,他们的数值运算能力很差。其实,只要我们教师能进行恰当的引导,灵活运用公式,举一反三,也能提高学生的运算能力。举个例子来说:计算出现76的平方,很多同学只会用竖式相乘求出结果。其实,两位数的平方可以用完全平方公式求解。在初中,我们学过完全平方公式,许多职高学生能默出公式,但讲到灵活运用这些公式则显得很不够。我告诉他们:把7看成a,6看成b,那么76的平方可以用如下的方法求解:

 

上式中的4、8、3都是产生的进位,分别与其高位的数相加即可。同学们听了兴趣盎然。我又出了一个同样问题: 。很快就有不少同学用我刚才的方法计算出来了: 。显然,用完全平方公式能更快地求出结果。这个公式中并没有深奥的理论知识,关键是我们在平时是否进行了恰当的运用,是否将这个公式的实质传授给了学生,让他们理解,并能进行灵活运用而已。又如初中学习的平方差公式,在职业高中的学习阶段经常用到,但同学们就是不会用(不去用)。计算 的值,许多同学是先计算出每个数的平方,再计算出差的结果。其实,用平方差公式很快便能结果:

 

初、高中有许多数学公式,能够简化计算,只要我们教师恰当地引导学生,经常运用这些公式,就能提高学生的计算能力,这里我就不一一枚举了。

二、注意观察,合理联想,善用比较意识,有助于运算能力的提高

许多职业学校教师认为:职业学校的学生初中阶段的学习很不扎实,基本知识和基本方法掌握不牢固,应牢记一些固定的知识和方法,并要求他们运用这些知识或方法去解决问题。诚然,固定的思维方法在运算中有积极的一面,但也有消极的影响。当学生掌握了某一种知识(方法)后,遇到问题时往往习惯用类似的旧知识(方法)去解决问题,久而久之,必然会出现思维的惰性,缺乏多方位、多角度思考问题的意识,不利于运算速度的提高。更何况,职业学校的学生本身就思维活跃,只想寻求更简单而快速的运算方法,以便有更多的时间去做其他的事情。因此,固定的思维方法会影响学生运算的速度,使运算过程繁冗不堪,并因此而使学生厌恶对数学的学习。我在教学中就经常引导学生对问题进行多方位、多角度思考,努力培养他们的观察能力、联想能力、比较意识,寻求问题的最佳解决途径。

例如:直线斜率为1,且与圆 相交所得弦长为8,求直线方程。

大部分的学生一开始就会用弦长公式和韦达定理来解,即设所求直线方程为y=x+b,将直线方程代入圆方程得: ;利用 “弦长= ”来求。这种方法固然可以求出直线方程,但运算运算过程繁冗不堪,不利于学生运算能力的提高。

在上题中,我除了用上述方法讲解外,还提出了问题:有没有人能用更快、更简单的方法求出解?在思索中,我提示了这样线

[1] [2] 

【怎样提高运算能力】相关文章:

怎样提高学生提问题的能力04-28

怎样提高英语口语能力05-04

怎样提高学生阅读理解能力05-01

怎样进行提高儿童视知觉能力的训练04-29

怎样提高初中生的英语写作能力04-30

如何提高创新能力11-09

主持技巧:怎样提高和培养主持人应变能力12-19

培养学生运算能力的几种途径04-29

怎样提高英语作文04-06

怎样提高阅读技能04-29