论电力垄断行业改革

时间:2023-05-01 10:12:27 能源交通论文 我要投稿
  • 相关推荐

论电力垄断行业改革

1博弈论概述

  博弈论又称为“对策论”,一种使用严谨数学模型来解决现实世界中的利害冲突的理论。由于冲突、合作、竞争等行为是现实世界中常见的现象,因此很多领域都能应用博弈论,例如军事领域、经济领域、政治外交,解决诸如战术攻防、国际纠纷、定价定产、兼并收购、投标拍卖甚至动物进化等问题。

  博弈论的研究开始于本世纪,1944年诺依曼和摩根斯坦合著的《博弈论和经济行为》一书的出版标志着博弈理论的初步形成,随后发展壮大为一门综合学科。1994年三位长期致力于博弈论研究实践的学者纳什、海萨尼、塞尔顿共同获得诺贝尔经济学奖,使博弈论在经济领域中的地位和作用得到权威性的肯定。

  2 博弈论的基本原理和方法

  文献[1][2]用浅白的语言叙述了博弈论的思想精髓和基本概念。文献[3][4]更注重理论上的分析和数学的严谨。概括起来,博弈论模型可以用五个方面来描述

    G={P, A, S, I, U}

  P: 为局中人,博弈的参与者,也称为“博弈方”,局中人是能够独立决策,独立承担责任的个人或组织,局中人以最终实现自身利益最大化为目标。

  A: 为各局中人的所有可能的策略或行动的集合。根据该集合是否有限还是无限,可分为有限博弈和无限博弈,后者表现为连续对策,重复博弈和微分对策等。

  S:博弈的进程,也是博弈进行的次序。局中人同时行动的一次性决策的博弈,成为静态博弈,如齐威王和田忌赛马;局中人行动有先后次序,称为动态博弈,如下棋。

  I: 博弈信息,能够影响最后博弈结局的所有局中人的情报,如效用函数,响应函数,策略空间等。打仗强调“知己知彼,百战不殆”,可见信息在博弈中占重要的地位,博弈的赢得很大程度依赖于信息的准确度与多寡。得益信息是博弈中的重要信息,如果博弈各方对各种局势下所有局中人的得益状况完全清楚,称之为完全信息博弈(game with complete information),例如齐威王和田忌赛马,各种马的组合对阵的结果双方都不严而喻。反之为不完全信息博弈(game with incomplete information),例如投标拍卖,博弈各方均不清楚对方的估价。在动态博弈中还有一类信息:轮到行动的博弈方是否完全了解此前对方的行动。如果完全了解则称之为“具有完美信息”的博弈(game with perfect information),例如下棋,双方都清楚对方下过的着数。反之称为“不完美信息的动态博弈”(game with imperfect information)。由于信息不完美,博弈的结果只能是概率期望,而不能象完美信息博弈那样有确定的结果。

  U:为局中人获得利益,也是博弈各方追求的最终目标。根据各方得益的不同情况,分为零和博弈和变和博弈。零和博弈中各方利益之间是完全对立的。变和博弈有可能存在合作关系,争取双赢的局面。

  还有另一类型博弈称为多人合作博弈,例如安理会投票表决,OPEC联合限产保价等问题。这类问题重点放在联盟利益的分配上,它的理论和方法广泛应用于利益损失的共同分担问题。多人合作博弈的研究方法主要是特征函数模型。以个可能的联盟为定义域,特征函数表示各个联盟的得益(N是局中人的数目),它的分配解必须符合一定的合理性和稳定性,它的解的概念也发展成多种多样,包括稳定集、核心、核仁、Shapely值等。解的多样性符合现实世界复杂多样的需要,针对不同的问题选择或创造合适的解的概念是博弈论深入研究的课题。

  不管博弈各方是合作、竞争、威胁还是暂时让步,博弈论模型的求解目标就是使自身最终的利益最大化,这种解建立在对方也采取各自“最好策略”为前提,各方最终达到一个力量均衡,也就是说谁也无法通过偏离均衡点而获得更多的利益。这就是博弈论求

[1] [2] [3] [4] 

【论电力垄断行业改革】相关文章:

垄断行业的规制改革05-02

再谈我国电力改革04-30

论改革的价值哲学视野05-01

论户籍改革与和谐社会04-26

论农业教育课程改革04-29

论我校英语教学的改革05-02

浅析电力体制改革对武钢的影响04-30

论国企改革的困境和出路04-28

论司法权威与司法改革04-07

论中国投资基金的改革与发展04-28