- 相关推荐
冶金工业液压污染控制分析论文
1前言
液压传动技术在18世纪诞生后即得到迅猛发展。今天,液压传动设备在各行各业得到广泛的应用,尤其在冶金行业中显得更为突出。液压传动技术有其不可比拟的优点,这是它得以迅猛发展的主要原因。与此同时,液压传动设备又有其脆弱的一面,其中抗污染能力低是突出的弱点。据统计,70%~80%的液压故障是由于不同程度的传动介质受污染而引起的。要保证液压系统正常、可靠地运行,必须要保持系统的清洁。利用液压污染控制技术,可有效提高液压元件使用寿命及液压系统工作的可靠性。
2液压系统污染的原因与危害
液压系统污染的原因很多,从污染产生机理来看,可分为液压介质的污染物,制作、安装过程中潜伏在系统内部的污染物和系统工作过程中产生的污染三种。结合冶金工业中的实际,产生污染的原因及危害主要有以下几个方面。
2.1液压系统内部再生污染产生的原因与危害[1]
2.1.1液压泵
冶金工业中最常用的液压泵包括:齿轮泵、叶片泵和轴向柱塞泵。其产生污染的主要原因是由于泵体内机械零件相互磨损产生细小金属粉末和金属颗粒。这些再生的固体颗粒污染物随着传动介质的循环流动而充满整个液压系统,容易堵塞液压元件先导部分节流孔,造成液压泵内泄漏增大,输出流量降低,甚至造成元件失灵。另外,对液压元件起到研磨剂的作用,导致系统污染状况急剧恶化,进而引起液压泵和液压阀过早磨损,危及整个系统的工作稳定和使用寿命。对于液压马达,容易造成内泄漏增大,输出转速降低,严重时引起失效而无法工作。
2.1.2液压阀
液压阀种类繁多,一般阀孔与阀芯间的径向间隙是4~13μm,最小达到2.5μm。污染物混入系统后会加速液压阀的磨损、研损,污染物会堵塞液压阀的节流孔或节流缝隙,破坏或者引起阀的动作失灵或者引起噪声。传动介质流经阀芯与台肩的棱边时产生冲刷磨损,构成危害系统的再生污染。
2.1.3比例控制阀和液压伺服阀
比例控制阀和液压伺服阀是液压系统中对污染最为敏感的液压元件之一。其危害主要表现为:控制误差增大、响应速度迟缓、输出不平稳、控制失灵、失去控制特性、检测曲线出现阶梯状、死区和滞后量增大以及流量比减小等。
2.2液压系统外部侵入污染的原因与危害
2.2.1新传动介质的污染
传动介质在未注入液压系统之前,由于存储、运输过程中经过了管道,传动介质与管壁发生摩擦,产生金属颗粒和橡胶颗粒进入液压系统内部。另外,还有大气中的水分、灰尘和金属容器内壁锈蚀等。在高温、高压条件下,空气极易使液体的传动介质氧化变质,生成有害的物质和胶状沉淀物,侵蚀金属表面,同时,降低了传动介质的体积弹性模量,使系统失去刚性和响应特性,引起气蚀现象,产生剧烈的振动和噪声,造成系统工作不稳定。
2.2.2液压元件内部的残留污染
冶金工业中,液压元件常见的残留污染包括:毛刺、切屑、飞边、灰尘、土、纤维、砂子、潮气、管路密封胶、焊渣、油漆和冲洗液等,其潜伏在系统内部,对系统安全可靠运行极易造成严重影响。
2.2.3液压缸密封件的污染
灰尘颗粒在液压缸内会加速密封件的损坏,缸筒内表面的拉伤,使泄漏增大,推力不足或者动作不稳定、爬行速度下降,产生异常的声音。实践表明,大多数液压缸防尘密封圈很少能够达到100%清除粘附在活塞杆表面的薄油膜和精细污染,造成环境中的尘土和脏物被带入液压缸,并进入系统,造成污染。
2.2.4冷却器的污染
如果循环冷却水进入系统,形成乳化液,降低了传动介质的润滑和防腐作用,造成系统内金属元件表面腐蚀。同时,水还加速了传动介质的氧化变质。水与传动介质中的某些氧化剂反应,产生粘性胶质物,引起阀芯粘滞和过滤器堵塞等故障。在实际生产中,传动介质中的水含量超过0.05%时,对系统就会产生严重的危害作用。
3液压系统污染平衡原理[2]
在液压系统中,油液污染度与所采用的过滤器的过滤精度及单位时间侵入系统的污染物数量有关。污染源也是多方面的,包括外部侵入和内部生成的。因此,要精确分析液压系统的油液污染状况与各因素之间的关系,就需要运用液压系统污染平衡原理。在液压系统中污染物的外界侵入、内部生成与污染物的滤除之间存在着动态平衡问题,而达到这平衡的速度及平衡点的位置取决于污染物侵入数量、过滤比、过滤流量和过滤精度等参数。这4个参数若能合理选择、适当搭配,就能使油液的清洁度达到所需要的目标值,同时使液压系统达到令人满意的性能和延长使用寿命。通过过滤器对液压油进行过滤,进一步对过滤器积留污染物种类分析,还可以帮助查找磨损部位,对故障隐患及时进行处理,防故障于未然。
4液压系统污染控制技术
4.1液压系统内部再生污染的控制
控制液压系统内部再生污染的主要技术包括:使用清洁的传动介质;在满足生产工艺的前提下,尽可能降低系统工作压力,以减小因传动介质流动而造成的磨损;保持正常的系统温度;保持系统工作压力平稳,以减小压力波动造成的冲击;选择适当的传动介质粘度;保证良好的循环过滤系统,定期清洗和更换滤芯;对于比例控制系统和伺服控制系统,注意使用稳定的工作电流和控制电流七个方面。
4.2液压系统外部侵入污染的控制
控制液压系统外部再生污染的主要技术包括:尽量减少新传动介质的周转途径;在油箱上安装通气过滤器或气动安全阀,隔离介质与大气的接触;检修时,尽可能保证检修部位清洁,使用没有纤维屑的净布或“短袜”式的吸油材料清洗液压元件和阀台;禁止触摸液压缸的活塞以及活塞杆,防止脏物的粘附和碰撞;严禁冷却器漏水,避免水与传动介质混合;装配前认真冲洗,尽可能达到高流速和“紊流”,将残留污染赶出“窝点”和对于新安装的或改装的液压系统,投用前尽可能保证足够时间的无负荷“跑合”七个方面。
4.3发展高精度过滤技术
根据液压系统污染平衡原理,系统油液的污染度主要取决于系统总的污染侵入率和过滤净化能力。因此采用有效的过滤系统,可保持非常高的初始清洁度。为了提高系统工作的可靠性,延长设备的使用寿命,重要的一些回路采用高精度过滤器。高精度过滤技术的关键在于过滤材料,研制开发高性能的新型过滤器材料,合理解决过滤精度、压力损失和纳污容量之间的制约,是提高过滤性能的关键。近年来,高精度无机纤维滤材(丝径为l~2μm或更小)与较粗纤维搭配,并采取在滤材厚度方向孔径梯度变化结构,显著提高了滤材的纳污容量。此外,不锈钢粗纤烧结滤材、特种金属等耐高温、耐腐蚀的高强度滤材的采用,扩大了过滤技术的使用。
4.4实现全面清洁度控制[3]
“全面清洁度控制(TCC)”,是美国Pall公司提出的一种类似全面质量管理(TQC)的管理程序,旨在从单个零件的生产到系统开始运行以及今后的使用过程中,降低污染物的发生率及影响。其内容包括了液压系统的元件制造、系统设计、设备安装、冲洗、清洁度等级标准制定、运行过程中的油液过滤、油液质量管理等硬件和软件方面内容,并实行全过程、全系统的管理,如附图所示。通过实现全面清洁度控制可以提高液压系统防污染的水平。期阴极锌质量大大提高。复产6天的阴极锌质量如表3所示。从表3可以看出,采取措施后阴极锌含铜的合格率为83.3%,比原来提高了72%,阴极锌含铅的合格率为100%。
5结语
阴极锌质量作为锌电解一项重要的技术指标,不管什么时候提高阴极锌质量都有非常重要的作用。生产实践证明,加强停复产期间的质量管理,是提高阴极锌质量和提高电锌的0#锌产出率的一项重要措施。
【冶金工业液压污染控制分析论文】相关文章:
液压油污染控制与分析04-26
飞机液压系统污染原因分析及控制05-02
冶金工业液压系统污染与废尘回收论文05-05
液压介质的污染与控制04-29
全液压岩心钻机液压系统油液污染控制04-28
浅谈液压油的污染与控制04-27
免烧砖机中液压油的污染与控制论文04-30
航天液压系统污染控制标准研究05-02
液压系统的空气污染及其控制04-26