考研 名师支招基础阶段高数复习

时间:2023-05-06 05:51:21 考研数学 我要投稿
  • 相关推荐

2014考研 名师支招基础阶段高数复习

随着气温回暖,春姑娘笑得很开心。进入3月份,考研备考正当时。最近,我们经常收到同学们关于专业报考相关问题,其中大家最为关心的还是公共课复习,尤其考数学同学对现在基础阶段数学该如何复习,高数该从哪里入手学习之类的问题较为迷茫,在基础阶段的复习中,不管哪一科,唯一的目标就是打牢基础,下面我们教研室廖老师就关于高等数学复习做出以下建议,同学们可以参考以下方法。

2014考研 名师支招基础阶段高数复习

  一、 考研高等数学复习目标及资料选择

  数学备考一定要有一个复习时间表,也就是要有一个周密可行的计划。按照计划,循序渐进,切忌搞突击,临时抱佛脚。高数这门课在数学一和数学三中占56%,在数学二中比例高达78%,因此高数在考研中的重要性是不言而喻的,那么在现阶阶段我们又该做些什么呢?

  廖老师建议大家在现阶段复习高数的重点集中在函数、极限和连续这两个模块。高等数学部分的主体由函数、极限和连续、一元函数的微积分、多元函数的微积分、微分方程和级数五大模块构成(数学一、二、三在各个模块的要求有一定差异),从历年的试题中,高等数学的考查重点和难点更多的集中在前两个模块,他们既是考试的重点,也是学好后面模块的基础。

  此外,廖老师建议这一阶段复习以教材为主,数学一、二的考生建议使用同济版高等数学、数学三同学推荐赵树嫄的《微积分》(第3版),中国人民大学出版社。当教材习题对你而言没有太大困难的时候,可以参考一本基础阶段的考研辅导讲义,比较推荐的是国家行政学院出版社出版的,李永乐的复习全书,或北京理工大学出版社出版,张宇、蔡燧林主编的辅导讲义。

  二、理解概念 掌握定理

  数学中有很多概念。概念反映的是事物的本质,弄清楚了它是如何定义的、有什么性质,才能真正地理解一个概念。所有的问题都在理解的基础上才能做好。这里廖老师提出几个易混淆的概念,建议同学们在复习的时候要特别注意:连续,可导,存在原函数,可积,可微,偏导数存在他们之间的关系式怎么样的?存在极限,导函数连续,左连续,右连续,左极限,右极限,左导数,右导数,导函数的左极限,导函数的右极限。

  定理是一个正确的命题,分为条件和结论两部分。对于定理除了要掌握它的条件和结论以外,还要搞清它的适用范围,做到有的放矢。如罗尔定理:设函数f(x)在闭区间[a,b]上连续(其中a不等于b),在开区间 (a,b)上可导,且f(a)=f(b),那么至少存在一点ξ∈(a、b),使得 f'(ξ)=0。罗尔定理是以法国数学家罗尔的名字命名的。罗尔定理的三个已知条件的意义,⒈f(x)在[a,b]上连续表明曲线连同端点在内是无缝隙的 曲线;⒉f(x)在内(a,b)可导表明曲线y=f(x)在每一点处有切线存在;⒊f(a)=f(b)表明曲线的割线(直线AB)平行于x轴;罗尔定理的 结论的直几何意义是:在(a,b)内至少能找到一点ξ,使f'(ξ)=0,表明曲线上至少有一点的切线斜率为0,从而切线平行于割线AB,与x轴平行。

  三、教材习题要做熟

  廖老师特别提醒2014的考生,课本上的例题都是很典型的,有助于理解概念和掌握定理,要注意不同例题的特点和解法在理解例题的基础上作适量的习题。作题时要善于总结---- 不仅总结方法,也要总结错误。这样,作完之后才会有所收获,才能举一反三。

  考研高数中蕴含着三大运算:求极限、求导数和求不定积分,它们是贯穿于整个高等数学的灵魂,因此建议大家在在基础阶段集中训练这三种运算,尤其是不定积分和求极限,它们的难度比较大。对这三种运算的熟练程度直接决定了你的考研高数部分的得分。

  四、从宏观上理清脉络

  要对所学的知识有个整体的把握,及时总结知识体系,这样不仅可以加深对知识的理解,还会对进一步的学习有所帮助。

  高等数学中包括微积分和立体解析几何,级数和常微分方程。其中尤以微积分的内容最为系统且在其他课程中有广泛的应用。微积分的理论,是由牛顿和莱布尼茨完成的(当然在他们之前就已有微积分的应用,但不够系统)。

  总之,考研数学就是要大家踏踏实实的复习才有效果,祝大家复习顺利。

【考研 名师支招基础阶段高数复习】相关文章:

2014考研名师谈 基础阶段数学高数复习05-05

2014名师支招 考研高数复习靠坚持05-06

考研数学冲刺阶段复习支招04-28

名师点拨:考研高数复习三大要点05-01

2015考研高数基础阶段注重三个方面04-27

搞好考研数学基础阶段复习04-28

2016考研数学:高数五大阶段复习任务05-02

重视基础阶段复习 考研政治复习事半功倍04-29

名师支招 2015考研英语新题型复习攻略04-30

考研复习如何从基础阶段向强化阶段过渡05-01