考研数学线性代数主要考点及难点

时间:2023-07-10 18:45:10 梓欣 考研数学 我要投稿
  • 相关推荐

考研数学线性代数主要考点及难点

  线性代数这一块儿,学得好的同学觉得非常简单,无非就是套公式。但是学得不好的同学碰到线代题就发愁。但它作为考研数学必考科目,不会做的话损失真的很大。下面是小编帮大家整理的考研数学线性代数主要考点及难点,供大家参考借鉴,希望可以帮助到有需要的朋友。

考研数学线性代数主要考点及难点

  在数一、数二和数三中,线代部分占22%,虽然所占比例不及高数分值高,但这部分的成绩也会直接影响整体成绩,所以希望广大考生要足够重视。

  提醒大家,线性代数的考题与高等数学、概率部分考题最大的不同就是,线性代数的一道考题可能会牵涉到行列式、矩阵、向量等等很多知识点,这是因为线性代数各个章节知识之间联系非常紧密,知识是一个环环相扣且互相融合的。

  线性代数概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。因此考研复习重点应该先充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法等等。基本概念、基本性质和基本方法一直是考研数学的重点。

  所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基本知识,并及时进行总结,使所学知识能融会贯通,举一反三。

  根据往年经验,我们为大家总结了线性代数的通常主要考点:

  1、行列式——行列式这部分没有太多内容,行列式的重点是计算,利用性质熟练准确的计算出行列式的值。

  2、矩阵——矩阵是一个基础,关联到整个线代。矩阵的运算非常重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。

  3、向量——向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

  4、特征值、特征向量——要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A、

  另外,特征向量就是求齐次方程组的基础解系,你前面基础打牢了,这里又不是新的内容。

  5、二次型——二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。

  在线性代数的两个大题中,基本上都是多个知识点的综合,从而达到对考生的运算能力、抽象概括能力、逻辑思维能力和综合运用所学知识解决实际问题的能力的考核。因此,把基础烂熟于心之后,再利用做题进行综合思维的锻炼,通过做一些综合性较强的习题(或做近年的研究生考题),边做边总结,以加深对概念、性质内涵的理解和应用方法的掌握。

  学科工具

  线代前几个部分我们称之为学科工具,包括:行列式、矩阵、秩。这一部分考点通常情况下是作为做后续解答题的工具而存在的,当然也可能会直接考查,以选择题的形式单独出现。

  1、行列式部分的基本考点可以分为两大部分:

  首先第一部分考点就是行列式的计算,要求大家掌握行列式概念、性质和展开定理,以及计算行列式的公式,主要包括三部分:一是特殊的行列式,如上(下)三角行列式,低阶行列式,范德蒙行列式;二是方阵的行列式,主要介绍在矩阵的各类运算下行列式的变化情况,包括矩阵的转置、数乘、乘法以及分块矩阵下行列式的计算公式,还包括逆矩阵和伴随矩阵的行列式;三是结合特征值,矩阵所有特征值的乘积就等于矩阵的行列式,所以计算矩阵行列式的另一思路是求出矩阵所有的特征值。

  2、矩阵是线性代数的核心知识,它是后面其他各章节的基础,在向量组、线性方程组、特征值、二次型中均有体现。

  首先要求大家熟悉常见矩阵,熟练掌握矩阵的运算以及法则(特别是不成立的运算法则:交换律和消去律),这是考试的最基本的要求。

  其次是对特殊矩阵的考查,包括可逆矩阵、伴随矩阵、初等矩阵、正交矩阵。

  对于可逆矩阵是我们需要掌握其定义和性质、可逆性的讨论以及计算逆矩阵的方法;对于伴随矩阵需要掌握其定义、性质、以及秩的公式;对于初等矩阵我们需要掌握三类初等矩阵以及它们对应的逆矩阵和左行右列的定理即可;对于正交矩阵我们需要掌握其定义,性质。

  3、秩是线性代数中最为常用的也是最好用的工具之一,它既是重点也是难点,比较抽象,秩是贯穿线性代数始终的一个核心概念,整个线性代数的核心理论体系都是通过秩来串联和表达的。这里不仅仅要求要我们记住相关的定理和结论,更要求我们掌握与之相关的思想方法。

  线性方程组和向量

  考试中线代第一道解答题通常情况下出自两个部分的内容,用矩阵表示的线性方程组的求解问题、用向量表示的线性方程组的解法,但是从本质上向量和矩阵都可以转化为线性方程组的问题,所以这里核心要掌握线性方程组的解法。

  首先关于线性方程组我们需要关注三个问题:解的存在性、唯一性、解的结构;同学们一定要掌握解的存在性及唯一性的判别,充要条件以及性质;解得结构重点要掌握和理解基础解系的概念,这个部分常见的题型如下:

  (1)线性方程组的求解;

  (2)方程组解向量的判别及解的性质;

  (3)齐次线性方程组的基础解系;

  (4)非齐次线性方程组的通解结构;

  (5)两个方程组的公共解、同解等问题。

  其次关于向量这一部分,它既是重点又是难点,主要是因为其比较抽象,进而就会导致我们同学们在学习理解以及做题上的困难。这一部分主要是要掌握两个核心概念:线性表示和线性相关。关于这两个核心概念重点掌握其定义、充要条件(与秩的结合)以及性质,关于这两类题型我们一般是分别与非齐次线性方程组和齐次线性方程组一一对应来求解。

  特征值与特征向量、相似、二次型

  最后一部分考点是二次型,二次型是与其二次型的矩阵对应的,因此有关二次型的很多问题我们都可以转化为二次型的矩阵问题,所以正确写出二次型的矩阵是这一章节最基础的要求,而且结合实对称矩阵的性质的考查,也是一个重点。本章节的常见题型如下:

  (1)二次型表示成矩阵形式;

  (2)化二次型为标准形;

  (3)二次型正定性的判别。

  线性代数部分的知识点比较琐碎,各部分知识点之间的联系一定要掌握清楚,另外关于这门学科的计算题也要多加练习,考试中不光要算对,还要算的快,以最短的时间取得最高的分数是我们的目的。

【考研数学线性代数主要考点及难点】相关文章:

考研数学 线性代数主要考点与要求08-03

考研数学线性代数的考点归纳08-18

考研数学线性代数核心考点指导07-31

2015考研数学 线性代数高频考点09-15

2009~2014考研数学线性代数考点10-24

2012考研数学 线性代数考点及要求01-04

考研数学指导 线性代数考点及要求01-04

2012考研数学 线性代数的考点及要求01-04

2009~2014年考研数学线性代数考点10-18

考研数学线性代数四个核心考点07-24