小学《比例尺》数学教案

时间:2024-05-25 07:33:09 小学数学教案 我要投稿

小学《比例尺》数学教案(5篇)

  作为一位杰出的教职工,就不得不需要编写教案,借助教案可以让教学工作更科学化。优秀的教案都具备一些什么特点呢?下面是小编为大家整理的小学《比例尺》数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

小学《比例尺》数学教案(5篇)

小学《比例尺》数学教案1

  教学内容:教材第37页例5、试一试和练一练,练习七第4~日题。

  教学要求:

  1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。

  2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。

  教学重点:进一步认识比例尺。

  教学难点:根据比例尺求图上距离或实际距离。

  教学过程:

  一、揭示课题

  1.提问:什么是比例尺,

  2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。

  3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。

  二、教学新课

  1.教学例5。

  出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的`倍数关系来解答,也可以按图上距离 :实际距离=比例尺列出比例,用解比例的方法就可以求出结果。

  2.做练一练第1题。

  指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?

  3.教学试一试。

  出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离 :实际距离=比例尺列出比例,再解比例求出结果.

  4.做练一练第2题。

  指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。

  5.做练习七第4题。

  让学生做在练习本上,然后口答,老师板书。

  6.做练习七第5题。

  学生完成在练习本上。

  三、课堂小结

  这节课学习了什么内容?你学到了些什么?

  四、布置作业

  课堂作业:练习七第6、8题。

  家庭作业:练习七第7题。

小学《比例尺》数学教案2

  课题:比例尺

  教学目标:

  1.在实践活动中体验生活中需要的比例尺。

  2.在操作、观察、思考、归纳等学习活动中理解比例尺的意义,正确计算比例尺,了解比例尺在实际生活中的各种用途。

  3 .能读懂不同形式的比例尺。

  4.体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  教学准备:多媒体课件

  教学过程:

  一、通过实例了解放大、缩小、比例。

  1、(出示课件)请同学们观察下面两组图。(出示幻灯片1和2)

  (1)通过观察,什么发生了变化,什么没有发生变化?(大小变了,形状没有发生变化)

  (2)为什么图片的大小不同,图片的形状却没改变?(图片放大时是按比例放大的。)

  (3)在日常生活中通常要把实物绘制成图,总要按一定的比例缩小或放大,否则,图象就会变形,就象这样(幻灯片3)。

  (4)那么,什么时候需要把物体按比例放大画成图形?(如种表零件图、细胞构造图、分子结构图等)什么时候需要把物体按比例缩小画成图形?(地图、风景照片)特殊地,也可在图上反映实物的实际大小。

  (5)我们的祖国中华人民共和国有960万,平方公里的土地,整个形状象一只报晓的雄鸡,把它画下来就是这个样子(出示幻灯片4)。在绘制地图和其他平面图的时候,需要把实际距离按一定的比例缩小,再画下来。

  (6)那么画好之后的图象与实际图象之间到底有什么关系呢?今天这节课我们就来学习"比例尺"。(出示课题,幻灯片5)

  二、通过制图,认识比例尺。

  1、绘制教室平面图:

  (1)我们的教室地面大约长9米,宽6米。你们能不能将教室占地的平面图画在白纸上呢?(出示幻灯片6)

  (2)请同学们按屏幕上的要求制作教室的`平面图。(出示幻灯片7)

  A、确定图上的长和宽;

  B、四人小组合作作出平面图;(用彩色水彩笔绘制)

  C、写出图上的长、宽与实际的长、宽的比,并化简。

  图上距离实际距离图上距离与实际距离的比

  长

  宽

  D完成后4人小组交流(重点交流你是怎么确定图上的长和宽的),并将平面图贴在黑板上。

  2、学生小组合作学习。

  3、汇报。

  (1)学生汇报设计思路:同学们的杰作都完成了,我们看一看,有没有相同的?这几幅相同,我们选择其中一幅。黑板上贴出的图为什么有大有小呢?我们还是先听听各组是怎么设计的吧。A、请这幅图的设计师说一说你是怎样确定图上的长和宽的?

  B、图上的长和实际长的比是多少?

  C、图上的宽和实际宽的比是多少?(根据学生的汇报板书)

  图上距离 :实际距离

  (1) 9厘米 :9米 =9:900=1:100

  6厘米 :6米 =6:600=1:100

  (2) 6厘米 :9米 =6:900=1:150

  4厘米 :6米 =4:600=1:150

  (3) 3厘米 :9米 =3:900=1:300

  2厘米 :6米 =2:600=1:300

  (4)18厘米 :9米 =18:900=1:50

  12厘米 :6米 =12:600=1:50

  (2)研究变形的原因:有没有化简之后两个比不一样的?那么他们画出来的平面图和我们的教室的实际形状会不会一样?

  4、揭示比例尺的意义:

  (1)看来同学很聪明。在画图时,这些都是在图上的长度,我们把它叫做图上距离。我们进行实地测量知道教室的长是9米,宽是6米,这些都是实际的长度,我们把它叫实际距离。通过刚才的学习,我们知道图上距离与实际距离之间存在着一种倍数的关系,这个倍数就是比例尺。(出示幻灯片8,即比例尺的定义)请大家把比例尺的定义读一读。

  (2)现在你知道什么叫做比例尺吗?比例尺是谁与谁的比?怎么求呢?谁能够用一个式子来表示?(出示幻灯片9)现在你会求比例尺了吗?那我们来试一试。

  5、试求比例尺(出出示幻灯片10)

  (1)北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺。

  2厘米:120千米=2厘米:12000000厘米=1:6000000

  答:这幅地图的比例尺是1:6000000。

  (2)教师强调:我们在求比例尺的过程中应该注意,

  (1)比例尺与一般的尺不同,它是一个比,不应带有计量单位。

  (2)求比例尺时,前、后项的长度单位一定要化成同级单位。

  (3)比例尺的前项,一般应化简成"1".如果写成分数的形式,分子也应化简成"1"。

  6、比例尺的运用

  (1)知道了一幅地图的比例尺之后,我们可以求出两地之间的实际距离。

  (2)根据"图上距离:实际距离=比例尺"这一计算公式,你能不能说说图上距离等于什么?(实际距离=图上距离÷比例尺)

  (3)在比例尺是1∶6000000的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?

  A、学生独立完成。

  B、反馈,交流方法。并寻求其他的解法。

  15÷ =15×6000000=90000000(厘米)=900(米)

  答:南京到北京的实际距离大约是900米。

  三、巩固练习

  (一)判断下列这段话中,哪些是比例尺,哪些不是?为什么?

  把一块长20米,宽10米的长方形地画在图纸上,长画了5厘米,宽画了2.5厘米.

  1.图上长与实际长的比是 ( )。

  2.图上宽与实际宽的比是1∶400( )。

  3.图上面积与实际面积的比是1∶160000( )。

  4.实际长与图上长的比是400∶1( )。

  (二)在比例尺是1∶5000000的中国地图上,量得上海到杭州的距离是3.4厘米,计算一下,上海到杭州的实际距离大约是多少千米?

  四、课堂小结

  这节课我们学习了比例尺,知道了图上距离与实际距离的比叫做这幅图的比例尺.并能根据比例尺求出图上距离或实际距离.应注意的是,在计算中,图上距离与实际距离的单位必须是相同的.

小学《比例尺》数学教案3

  教学目标

  1. 通过学习,初步了解比例尺的意义。

  2. 认识数值比例尺和线段比例尺两种不同表现形式,学会求出平面图的比例尺。

  3. 能运用所学的比例尺的知识解决生活中的问题,并在小组合作中培养合作意识和创新思维能力。

  4.情感、态度、价值观:体会数学与日常生活的密切联系。

  教学重、难点:

  (1)理解比例尺的含义。

  (2)能根据图上距离、实际距离、比例尺中的两个量求第三个量。

  教具学具

  小黑板、课件、备一幅地图

  教学过程

  一、导入新课

  同学们,昨天老师请大家自己动手测量了我们教室的长和宽。现在老师提议大家以小组为单位,当一名绘图师,利用你们手里的材料,画出我们教室的平面图。再动手之前,先考虑这两个问题:

  1. 要把教室的平面图画在纸上,你有这么大的纸吗?那怎么办?

  2. 随便在纸上画一个长方形,这一定是教室的平面图吗? 小组合作并完成汇报,在实物展示台上展示自己的作品。

  教师总结:同学们都很聪明,你们都把实际的长和宽缩小了,画出了教室的平面图,其实就是用到了今天我们要学习的知识――比例尺,也就是把实际距离按一定的倍数缩小。

  揭示课题:今天我们一起来学习比例尺的知识。

  二、学习新课

  1.学习比例尺的意义。

  (1)动手操作

  请学生在小组内算一算自己所画的教室平面图的长和宽各缩小了多少倍。

  学生们计算并汇报,集体订正。

  一个教室长8米,宽7米,如果我们要画这个 教室的平面图,就需要把实际距离同时缩小一定的倍数后,画在平面图上,缩小多少倍由你自己决定,你打算设 计:

  1、用几厘米表示8米和7米。

  2、你设计的方案是图上距离比实际距离缩小了 多少倍?

  3、算一算、每幅图的图上距离与实际距离的比。

  同学们刚才算出的各幅图的图上距离和实际距离的比就叫做这幅图的比例尺。我们把教室实际的长和宽叫做实际距离,把画在纸上的教室的长和宽叫做图上距离。

  请学生重复说一遍什么叫做比例尺。

  板书:图上距离:实际距离=比例尺

  请每个人算一算自己所画的教室的平面图的.比例尺是多少。

  (2)观察地图,自由交流。

  课件出示世界地图、中国地图和学校的平面图,再请同学拿出自己事先准备的地图,在小组内观察、交流并思考:不同地图的比例尺有什么不同的地方?

  引导学生充分发表意见,教师辅助讲解:

  1比较出比例尺的两种不同表现形式――数值比例尺和线段比例尺 2比例尺的大小不同,同样的佛山市在中国地图、广东地图和佛山地图上的大小都不一样,这就是采用了大小不同的比例尺。

  (3)学习不同的比例尺。

  课件出示教材第49页的机器零件图,引导学生观察后提问:请你观察这幅图的比例尺,和我们刚才所观察的比例尺有什么不同之处?

  在生产中,有时由于机器的零件比较小,这是就需要把实际的距离扩大一定的倍数以后,再画在图纸上这幅图就是这样的,比例尺2:1,你知道是什么意思吗?

  补充说明:为了计算方便,我们通常把比例尺改写成前项或后项是1的比。

  (4)学习例1。

  课件出示例1的题目,提问:线段比例尺怎么改写成数值比例尺?数值比例尺是怎么求的?图上距离和实际距离的单位不同该怎么办?

  板书:图上距离:实际距离

  =1cm:50km

  =1cm:cm

  =1:

  请学生根据刚才的解答,说说求比例尺需要知道哪些条件,怎样求比例尺,谁是前项,谁是后项。

  2.知识运用。

  (1)即时训练。

  学生独立完成教材第49页的“做一做”,教师巡视指导,帮助个别有困难的学生。

  集体订正后引导学生通过交流讨论,明确根据图上距离与实际距离求比例尺的方法:首先依据比例尺的意义写出比的前项后项,写出比,图上距离与实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

  (2)拓展训练。

  课件出示下列四个问题:

  1每年十月,莫斯科红场将举行盛大的阅兵仪式,以庆祝“十月革命”的胜利,如果我们坐飞机前去观看,请你仔细观察手中的世界地图,算出首都北京到俄罗斯首都莫斯科的距离。

  2天津是2008北京奥运会足球赛区城市之一,如果你是设计师,请你设计出足球场的平面图,并标出比例尺。(足球场的长是90~120米,宽是60~90米)

  3眼镜上的螺丝钉长是3毫米,螺帽宽1毫米,假如你是技术员,请你画出它的平面图,你有什么困难?怎么办?

  4这里有比例尺1:20、20:1和1:1,它们的意义相同吗?请举例说明。

  请学生在这四个问题中任选一个,给充足的时间独立思考,也可以在四人小组内选择其中一个问题合作研究,小组长做好分工。完成任务后,集体汇报,教师根据学生完成的情况进行小结,并给予适当的指导。

  3.教学例2。

  多媒 图上距离 15cm 实际距离 450km

  回家找一找自己或爸爸妈妈今年的全身照片,算一算照片的比例尺。

小学《比例尺》数学教案4

  一、教学目标:

  1、让学生在实践活动中体验生活中需要比例尺。

  2、透过观察、操作与交流,体会比例尺实际好处,了解比例尺的含义,并且明白什么是图上距离,什么是实际距离。

  3、运用比例尺的有关知识,透过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  4、学生在自主探索,合作交流中,逐步构成分析问题、解决问题的潜力和创新的意识,体验数学与生活的联系,培养学生用数学眼光观察生活的习惯。

  二、教学重点:

  1、正确理解比例尺的含义。

  2、利用比例尺的知识,解决生活中的实际问题。

  三、教学难点:

  运用比例尺的有关知识,透过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

  四、教学准备:

  多媒体课件,地图,简易建筑图纸。

  五、教学过程:

  (一)激趣导入

  1、教师:这天,老师要测试一下同学们的反应潜力,你们准备好了

  吗?请看大屏幕?(课件出示“单位转换”)

  2、学生群众回答。(个别难题,教师引导计算,并且提问学生:你是怎样想的?注意学生的鼓励表扬)

  3、创设情境

  (1)师:这天我们班的两位同学产生了一场争论,你们想明白是怎样回事吗?

  (2)学生情景表演。(师播放动画)

  (3)透过刚才的观看,你们会支持哪一位同学呢?你有什么办法把操场画进本子吗?

  生:按照必须的比例缩小。

  (4)教师:你的想法很对,那你打算在本子上用多长的距离表示操场的长80米,用多长的距离表示操场的宽60米?

  生1:用8厘米表示80米,用6厘米表示60米。(板书)

  (5)其他同学认为他说的对吗?我们一齐来表扬他。

  4、师:此刻,在我们的黑板上出现了两组量,这两组量中,哪组是我们画在图上的距离?(8厘米和6厘米)哪组是实际生活中的距离?(80米和60米)

  5、小结:我们把画在图上的距离叫图上距离,把实际生活中的距离叫实际距离。(板书)

  6、师:当我们用8厘米表示80米时,实际上把80米缩小了多少倍?(自由回答)我们一齐来看看他们的比是多少?

  (引导:比的前项和后项单位要统一,再划成最简整数比)

  板书:8cm:80m=8cm:8000cm=1:1000

  7、继续引导,并板书:6cm:60m=6cm:6000cm=1:1000

  8、师:那里的1:1000说明我们用图上距离1cm表示了实际距离多少厘米?(1000厘米)

  9、小结:像这种图上距离与实际距离的比,就叫比例尺。我们这天要学习的就是比例尺。(板书:比例尺)

  (二)探索发现

  1、揭示比例尺的好处。(课件播放)

  教师补充板书:图上距离/实际距离=比例尺

  公式转换:实际距离=图上距离÷比例尺

  (板书)图上距离=实际距离×比例尺

  2、补充说明比例尺的特点:比的前项与后项单位要统一,并且是最简整数比。例如:1:100或1/100说明用图上距离1cm表示实际距离100cm。

  3、小组比赛,说一说:以上比例尺分别说明了什么意思?

  举例:1:200说明用图上距离1cm表示实际距离200cm。

  (分组回答)

  4、师:仔细观察,这些比例尺有什么相同之处?

  生:比例尺的前项都是“1”。

  师:为什么要写成前项是“1”,而不写成前项是别的数字呢?

  生:这样能够清楚的看出图上距离代表实际距离多少厘米。

  师:真了不起,真是一针见血。

  5、师:同学们此刻看到的是老师的房屋平面图,你能从看到哪些呢?(课件出示房屋图,生自由回答)

  生1:父母卧室……

  生2:比例尺1:100.

  6、师:你观察真仔细!比例尺1:100是什么意思?

  (学生讨论、汇报,教师引导)

  学生1:图上1厘米长的线段表示实际100厘米。

  学生2:表示实际距离是图上距离的100倍。

  7、运用知识,尝试解决问题:

  教师:此刻请大家量一量,图中我的卧室,长是()厘米,宽是()厘米。()

  算一算我的卧室,实际的长是()米,宽是()米,面积是()平方米。(生汇报,教师在课件上记录)

  8、说一说:你是怎样算的?(板书:黑板左侧)

  生1:先量出卧室的长4厘米,实际长=4厘米×100=400厘米=4米

  生2:再量出卧室的宽5厘米,实际宽=5厘米×100=500厘米=5米

  生3:卧室的实际面积是5×4=20平方米

  9、师:谁能算一算我家的总面积是多少?10×11=110平方米

  (三)解决问题、巩固提高

  1、师:我打算在父母卧室北墙正中开一扇宽为2米的窗户,在平面图上就应画多长距离呢?

  2、引导计算

  (1)题目中,2米是什么距离?(实际距离)比例尺是多少?(1:100)

  (2)根据实际距离和比例尺,我们就应如何计算图上距离?

  板书:2米=200厘米200×1/100=2(厘米)

  3、师:笑笑在本子上用8厘米表示了我的卧室的长,图上1厘米表示了实际距离多少厘米?你是怎样算的?

  板书:4米=400厘米400÷8=50(厘米)

  4、她画的平面图的比例尺是多少?(1:50)

  5、(课件出示:北京到上海的情景)

  师:题目中,已知哪些条件?(图上距离6厘米,比例尺1/)

  师:根据以上条件,北京到上海的实际距离是多少?

  (生独立计算,群众回报)

  (四)总结深化、拓展延伸

  1、师:这天我们主要学习并认识了比例尺,明白图上距离与实际距离的比叫比例尺。这天所学的比例尺主要是把大的距离缩小,我们能够把它叫做缩小比例尺,为了计算方便,前项一般为1。但是有时我们也需要把一些小的东西放大,因此我们把这样的比例尺叫做放大比例尺,后项一般为1。

  2、师:透过这天的学习,你们还学会了哪些?

  六、板书设计

  比例尺

  图上距离:实际距离=比例尺……2米=200厘米

  实际长……8cm:80m=8cm:8000cm=1:1000

  200×1/100=2(厘米)

  实际宽……6cm:60m=6cm:6000cm=1:1000

  4米=400厘米

  图上距离=比例尺×实际距离400÷8=50(厘米)

  实际距离=图上距离÷比例尺答:比例尺1:50

  七、课后反思

  《比例尺》是在学生已经掌握了化简比以及比例的知识的'基础上进行教学的。我在设计教学环节时,仔细分析了教材的设计意图,同时又思考如何将概念教学恰到好处的与学生的生活实际联系起来。反思整个教学过程,我认为成功的关键有以下几点:

  1、情境再现,建立数学与生活的紧密联系。

  本课资料距离学生生活较远,虽然在今后的地理,制图等知识中,会有所体现,但是以目前六年级学生的生活经验来讲,却不会接触。所以,我将导入情境设置在学校的范围内,透过让学生表演谈话情境,引出问题:“你能把学校的操场画进本子吗?”利用这样的导入,很快拉近了本课教学与学生生活经验之间的距离。在讲授知识的时候,教师又以卧式的建筑图引出了计算练习,有一次加深了数学与生活的联系。

  2、在动手操作中得出概念。

  透过让学生设计制作校园平面图,亲身体验设计师的感觉,让他们在实践中体会如何确定比例尺的大小,如何计算数据,如何作图等。在汇报交流时,恰当的传授知识。这一环节让学生充分总结出比例尺的定义,认识缩小比例尺,针对学生们得到的很多结论,我将他们的作品一一展示给同学们看,课堂充满了探索的气息。

  3、适当点拨,大胆放手。

  新课标提倡把课堂还给学生,让学生成为课堂的主人。而教师只是教学活动的组织者、引导者和参与者,教师如何充当号者一主角呢?我认为,教师既然是引导者,教学中的讲解和点拨是必需的,教师既然是组织者、参与者,讲解和点拨又应是适时适度的。在将本课概念讲授清楚以后,教师大胆放手,引导学生透过独立思考,小组讨论的方式,自主完成任务,而教师的大胆放手也取得了很好的效果。在交流汇报的过程中,教师再进行一些适当地点拨,即实现了教学目标,又使教师的教学过程变得简单自如。

  4、对于学生的理解要及时给予肯定和评价。

  以人为本是新课标的基本理念,在这一理念指引下,数学课堂教学中应重视数学学习的个性化发展,教师要尊重学生的学习,既要尊重学生的数学的不同理解,又要尊重学生的数学思维成果。

  在教学中,求比例尺时,学生出现了多种求法,我就循着学生的思路展开教学,我和学生在认真倾听学生讲解的同时,对不同的方法加以肯定与评价,得出求比例尺的基本方法,并且说明,学生能够有自己不一样的解法,但要注意书里的规范与完整。

  总之,要遵循学生学习心理规律,就要尊重学生的理解,让学生在不断的体验和感悟中总结和调整自己的学习,在掌握知识,提高潜力的同时,学会学习。

小学《比例尺》数学教案5

  教学目标

  1.使学生理解比例尺的意义并能正确地求出平面图的比例尺.

  2.使学生能够应用比例知识,根据比例尺求图上距离或实际距离.

  教学重点

  理解比例尺的意义,能根据比例尺正确求出图上距离或实际距离.

  教学难点

  设未知数时长度单位的使用.

  教学步骤

  一、复习准备

  (一)填空.

  1千米=( )米 1分米=(???)厘米

  1米=( )分米 1厘米=( )毫米

  30米=( )厘米 300厘米=( )分米

  15千米=( )厘米 40毫米=( )厘米

  (二)解比例.

  二、新授教学

  谈话导入:(出示准备好的地图、平面图)同学们请看,这些分别是祖国地图、本省地图和学校的平面图.在绘制这些地图和平面图的时候,都需要把实际的距离按一定的比例缩小,再画在图纸上.有时由于机器零件比较小,需要把实际距离扩大一定的倍数以后,再画在图纸上.不管是哪种情况,都需要确定图上距离和实际距离的比.今天我们就来学习这方面的知识--比例尺.

  板书课题:比例尺

  (一)教学例4(课件演示:比例尺)

  例4.设计一座厂房,在平面图上用10厘米的距离表示地面上10米的距离.求图上距离和实际距离的比.

  1.读题回答:这道题告诉了我们什么?要求什么?

  教师板书:图上距离∶实际距离

  2.思考.

  (1)要求图上距离与实际距离的比,能不能直接用题中给出的两个数列式?为什么?应该怎么办?

  (2)是把厘米化成米,还是把米化成厘米?为什么?应该怎样化?

  教师板书:10米=1000厘米

  3.求出图上距离和实际距离的比.

  教师板书:10∶1000=1∶100或??=

  答:图上距离和实际距离的比是1∶100.

  4.揭示比例尺的意义.

  教师说明:因为在绘制地图和其他平面图时,经常要用到“图上距离和实际距离的比”,所以就给它起了个新的名字--比例尺.(教师在“图上距离∶实际距离”的后面板书:=比例尺)有时图上距离和实际距离的比也可以写成分数形式.

  板书:

  图上距离是比的前项,实际距离是比的后项,比例尺是图上距离比实际距离得到的最简单的整数比.

  教师强调:

  (1)比例尺与一般的.尺不同,它是一个比,不应带有计量单位.

  (2)求比例尺时,前、后项的长度单位一定要化成同级单位.

  (3)比例尺的前项,一般应化简成“1”.如果写成分数的形式,分子也应化简成“1”.

  5.练习

  北京到天津的实际距离是120千米,在一幅地图上量得两地的图上距离是2厘米,求这幅地图的比例尺.

  (二)教学例5(课件演示:比例尺)

  例5.在比例尺是1∶的地图上,量得南京到北京的距离是15厘米.南京到北京的实际距离大约是多少千米?

  教师提问:题目中告诉了我们什么已知条件?要求什么?

  根据比例尺的意义,已知比例尺和图上距离,能不能用解比例的方法求出实际距离呢?怎样求?

  (因为??,已知图上距离为15厘米,比例尺为??,要求的实际距离不知道,可用??表示,所以可列比例式??)

  1.讨论:这个比例式中的??指的是实际距离.题中要求的是南京到北京的实际距离为多少千米,根据本题的已知条件,所设未知数??应用什么单位??为什么?

  2.订正并追问

  (1)为什么要设南京到北京的实际区高为??厘米?

  (2)这个比例式表示的实际意义是什么?

  (3)解这个比例式的依据是什么?

  (4)在求出??=后,为什么还要化成900千米?

  3.反馈练习.

  先说出下图中的比例尺是多少;再用直尺量出图中河西村与汽车站间的距离是多少厘米,并计算出实际的距离大约是多少千米.

【小学《比例尺》数学教案】相关文章:

小学《比例尺》数学教案01-23

小学《比例尺》数学教案05-24

小学《比例尺》数学教案(6篇)01-23

小学《比例尺》数学教案6篇01-23

比例尺的应用教案02-19

《比例尺》教学反思(精选20篇)12-26

最新小学数学教案 小学数学教案范文01-24

小学数学教案06-12

小学数学教案(精选)07-06