- 相关推荐
小学五年级数学《解决问题的策略——倒推》教案
作为一位无私奉献的人民教师,总归要编写教案,教案有助于学生理解并掌握系统的知识。那么优秀的教案是什么样的呢?下面是小编为大家整理的小学五年级数学《解决问题的策略——倒推》教案,仅供参考,欢迎大家阅读。
小学五年级数学《解决问题的策略——倒推》教案1
一、激活经验,感知策略
1.猜一猜:老师的年龄加上9的和再除以4,恰巧是10岁。老师今年是多少岁?
2.谈话:这是老师每天上学从家到学校的路线,你能说说老师每天放学从学校回家的路线吗?(多媒体呈现:老师家→向东50米到苍梧绿园→向北200米到教育局→向西150米到学校)
3.揭题:
刚才,我们算出了刘老师的年龄,研究了刘老师返回的路线。大家有没有感觉到,解决这两个问题时都分别使用了一些方法,这些方法之间有没有什么相同之处呢?(板书:倒过来推想)
这种“从结果出发,倒过来推想”的策略,在我们的日常生活和数学学习中经常使用,是一种重要的解决问题的策略,不信,咱们继续看——
设计意图:学生数学知识的形成是以一种积极的心态,调动原有的知识和经验尝试解决新问题的过程。因此,通过“猜年龄”和“返回路线”两个已有经验的唤醒,为倒推策略的探索提供了清晰地新旧知识间的“固着点”,促进新认知的高效建构。
二、初步体验,建立模型
1.出示例l
师:这儿有两杯果汁,从图中你可以了解到哪些信息?
生:一共有400毫升。
生:甲杯果汁比乙杯的多。
师:假如有两人来喝这两杯果汁,你觉得要怎样做才公平一点呢?
生:把两杯倒在一起,然后平均分。
生:甲杯倒给乙杯一点,使两个杯子同样多。
师:现在从甲杯倒人乙杯40毫升,甲乙两杯的果汁数量各发生了怎样的变化?
生:甲杯减少了40毫升,乙杯增加了40毫升。
提出问题:要求原来两杯果汁各有多少毫升?
2.解决问题
填写课本第88页的表格。填完后说说你是怎么推算的。
甲杯/ml
乙杯/ml
现在
原来
结合回答演示:甲杯的果汁数就在现在200毫升的基础上增加多少,乙呢?
交流:展示学生的表格,说一说想法?
追问:要求原来的情况,我们是从哪儿开始想起呢?原来的变化过程是甲杯倒人乙杯40毫升,倒推时是怎样变化的?(强调:变化过程相反)
3.回顾反思
师:回想一下,刚才解决问题的过程中运用了什么方法,我们先算的是什么?我们是从哪里开始倒推的呢?
小结:看来当我们知道现在的量,要求原来的量时(板书),我们就可以用倒推的方法来解决。(完成板书:原来: ←倒过来想一想 现在)
其实.用倒推的方法解决问题在前面的学习中我们已经接触过,请看:填一填:
在解决这些问题时有什么小技巧吗?先倒推哪一步?
小结:倒过来推想就要从现在的数据出发,根据各自发生的变化往回推算出原来的数据,也可以简称倒推的策略。(板书课题:解决问题的策略——倒推)
设计意图:如何将作为思维结果的教学内容转化为思维过程的材料?在例l的教学过程中,借助多媒体动态展示题中的信息和问题,;揭示了倒推问题的三要素:原来状态、变化过程和结果,使学生感受到这类问题的结构特征,师生在互动对话中建构数学模型。接下来的'“填一填”,再次让学生体验到倒推过程与变化过程的相反性,感悟倒推的顺序,为例2多步倒推的探究过程做好了良好的心理定向和认知铺垫。
三、自主探究,深化理解
1.探索例2
出示例2:小明原来有一些邮票,今年又收集了24张。送给小军30张,还剩52张。小明原来有多少张邮票?
师:哪位同学来读读上面的信息?
师:这时候,老师看到的是一张张自信的面庞,还有的同学拿起了笔,没有人怀疑同学们不会解答这样的问题。不过刘老师关心的不是这个,而是——
多媒体呈现:
①你能把题目中的条件和问题摘录下来进行整理吗?
②你准备用什么策略解决这个问题?在小组内交流想法,列式并解答。
2.整理信息,讨论交流
①把摘录的条件和问题完成在作业纸上。这个变化的过程是什么?
原有?张→又收集24张→送给小军30张→还剩52张
原有?张←去掉24张←跟小军要回30张←还剩52张
或符号表达:
学生说一说想法。
②师:要求小明原来有多少张邮票,整理好条件,你们是用什么策略想这个问题的昵?
可以怎样列式的呢7
第一种:
52+30-24=58(张)
师:先倒推哪一步?再倒推到哪一步?倒推时的过程与原来的变化过程相反吗?
第二种:
52+(30-24)=58(张)
师:原来这两个变化的过程可以合二为一吗?现在比原来少6张,现在有52张,把这少的6张补起来就可以得出原来的张数了,52加6的过程;是不是用的倒推法。我们把它变成了一步倒推的题目了。
③检验。
可以写答了吗?结果是否正确该如何验证呢?
3.回顾反思,对比深化
同学们真了不起!通过自主探索解决了这道问题。那么,解决这个问题,大家用的是什么策略?
师:你认为什么样的情况适合用“倒推”的策略来解决问题呢?怎样运用呢?
小结:如果某种数量经过一系列变化后,已经知道了现在的结果,要求原来的数量,就可以用倒推的策略。先从结果出发,一步一步往前倒推,直至求出答案。在倒推的时候要注意变化顺序。(板书:变化顺序)
设计意图:例2问题解决的过程,是一个学生主动探索,深化理解策略的过程。学生在自主探索的过程中,因为思维的深度参与,必然决定了学生对获得策略过程的经历是深刻的。教学中,让学生在摘录条件进行整理以及讨论交流中,逐渐感悟在倒过去想的时候,不仅要逆着事情变化的顺序进行,还要注意先把后发生的变化倒回去,再把先发生的变化倒回去,直至事情的原来情况。在汇报交流中,对两种方法的比较,体会到倒推不是解决问题的唯一策略,但却是一种重要的思想方法。检验答案是否正确,再次让学生体验事情的变化是有顺序的,从而感悟到有条理的思考是很重要的。
小学五年级数学《解决问题的策略——倒推》教案2
[教学内容]
教科书第88~89页例1、例2和“练一练”,练习十六第1、2题。
[教学目标]
1.使学生在解决实际问题的过程中学会用“倒推”的策略寻求解决问题的思路,并能根据实际的问题确定合理的解题步骤,从而有效地解决问题。
2.使学生在对自己解决实际问题过程的不断反思中,感受“倒推”的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理的能力,发展数学应用意识。
3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
[教学重、难点]
重点:学会运用“倒推”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。
难点:在正确运用策略的过程中感受“倒推”的策略对于解决特定问题的价值。
[教学准备]
多媒体课件
[教学过程]
一、创设情境,引出问题
师:同学们,看老师这儿有两杯果汁(媒体出示两杯果汁),一共有400毫升,给两位同学喝,你觉得公平吗?要怎样才公平呢?(生:从甲杯倒一些给乙杯) 现在从甲杯倒入乙杯····(媒体演示甲杯倒入一些乙杯,直至两杯同样多)。问:现在两杯果汁——(学生齐答:两杯果汁同样多)。
追问:现在每杯是多少毫升呢?你是怎么算的?
(根据学生的回答,相机板书出:400÷2=200毫升 )
二、自主探究,感悟策略
1. 初步感知,一次变化还原。
(1)引导探究,理清思路。
师:那原来这两杯果汁各有多少毫升?(出示问题)我们可以怎样想?
学生独立思考后,同桌说一说。
组织全班交流,说说怎样想的,老师同时引导学生澄清思路,并借助媒体进行直观演示:乙杯倒回甲杯40毫升。
师:现在乙杯剩下——(生齐答:160毫升),为什么?怎么算的?板书出。
续问:甲杯呢?(生齐答:240毫升)为什么?怎么算?板书出。
(2)填表整理,加深体验。
师:你能把刚才的想法填在表格里吗?
学生独立填写后,组织交流,让学生说出:甲杯为什么是200+40呢?乙杯为什么是200-40呢?
(3)回顾小结,得出策略。
师:同学们,刚才我们在解决原来两杯各有多少毫升这两个问题时,你们是怎么想的?
学生讨论、交流,全班交流时,抽象概括(师随机出示课题:解决问题的策略——倒推)。
2. 应用深化,多步变化还原。
(1)出示情境,整理信息。
出示例2:小明原来有一些邮票,今年又收集了24张。送给小军30张,还剩52张。小明原来有多少张邮票?
学生读题、审题后,问:用什么方法可以将题目的意思更清楚地表示出来?
学生讨论后,得出:可以用摘录条件的方法进行整理。
放手让学生尝试整理,然后,抽样展示,组织交流,并借助媒体出示箭头图:
原来?张→ 又收集了24张→ 送给小军30张→ 还剩52张
(2)自主探究,理清思路。
师:根据这些信息,你准备用什么策略来解决这个问题?
学生独立思考、同桌交流后,说出:可以用“倒过来想的方法”。
师:你能依照上图的样子,表示出“倒推”的过程吗?
学生尝试画出“倒推”的示意图。组织交流时,媒体出示下图:
原来?张 去掉收集的24张 跟小军要回30张 还剩52张
(3)深化思路,列式解答。
师:根据上面的箭头图,你能列式解答吗?
学生独立列式解答,抽样展示出学生的算法,组织交流,并让学生说出每一步表示的意思。
(4)检验对比,体会策略。
组织学生进行检验。
比较检验的思路和解决问题的思路。
师:这和我们解决问题的想法有什么不同呢?
(5)引导反思,深化策略。
师:解决上面的.问题时,是怎样运用“倒过程推想”的策略的?你认为适合用“倒推”的策略来解决的问题有什么特点?
学生讨论、交流后,达成共识。
三、联系实际,解决问题
1.在一次向灾区学校的援助活动中,李清同学把自己收藏图书的一半还多3本捐给了灾区的学校,自己还剩27本。他原来有多少本图书?
学生读题、审题后,问:“收藏图书的一半”表示什么意思?
学生理解之后,在作业纸上解答。全班交流,说说解决问题的方法。
2.填一填:学生口答。
师:仔细观察这两道题,你发现了什么?
3.想一想:媒体出示:白果、栗子和柿子图片.
学生观察图,交流从图中获取到的信息(媒体出示相关信息):
5粒白果的重量=2粒栗子的重量,8粒栗子的重量=1个柿子的重量,1个柿子的重量=80克。
学生独立在作业纸上完成后,全班交流。
4.画一画:学生明确题意后,独立完成。
全班交流,说说怎样想的。
四、课堂总结
师:同学们,刚才我们解决了这么多问题,有没有发现都是用了哪一种策略?在运用“倒推”的策略来解决问题时,可以用什么样的方法整理信息?
五、课外拓展
今天我们研究的这类问题,其实在古代早就有人研究了。我国唐代的天文学家、数学家张遂曾以“李白喝酒”为题材编了一道算题:李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?请大家课后去研究。
【小学五年级数学《解决问题的策略——倒推》教案】相关文章:
《解决问题策略——倒推》教案范文08-26
解决问题的策略五年级数学教案04-04
小学数学《解决问题》教案01-14
数学《解决问题》教案02-24
小学数学《解决问题》教案(15篇)01-14
小学数学《解决问题》教案(精选16篇)01-29
小学数学《运用连除解决问题》教案12-11
解决问题的策略四年级数学教案04-09