小学数学教案【共9篇】
在教学工作者开展教学活动前,通常会被要求编写教案,借助教案可以更好地组织教学活动。我们应该怎么写教案呢?以下是小编为大家收集的小学数学教案9篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
小学数学教案 篇1
第三单元 测量
第1课时毫米的认识
板书设计: 分米的认识
第5课时吨的认识和换算
教学反思:认识质量单位“吨”,初步建立1吨的质量概念。知道1吨=1000千克,并能进行质量单位的简单换算。 培养学生观察、比较、猜测、推理及解决生活问题的能力和合作意识。
第6课时解决问题
教学内容:教材第33页例9、做一做及练习七第5-8题。
教学目标:
1、使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学重点: 用列表的方法整理各种可能的方案。
教学难点: 分析数量关系。
教学步骤:
一、导入新课
1、完成下列填空
2×( )+3×( )=18
(1)括号里可以填哪些数?其中一个括号的数确定了,是否另一个括号里的数就能确定?
(2)如果前面括号里填3,后面括号里填几?
(3)如果后面括号里填2,前面的括号里填几?
2、导入。
谈话:在日常生活和数学学习中,为了解决实际问题,常常需要运用各种策略。今天这堂课,我们一起运用策略来解决一些问题吧!
二、探究新知。
1、理解题意。
(1)从图中我们获得了哪些信息?
(2)要求的问题是什么?
谈话:求怎样派车恰好把8吨煤运完就是求载质量2吨的车、载质量3吨的车各安排运几次,使得这两辆车运载煤的总质量等于8吨。实际上可以用式子2×( )+3×( )=18表示。要求出满足这个条件的所有情况该怎么办呢?
2、探索方法。
(1)学生在小组内交流,自主探索解决问题的方法。
(2)汇报交流。
师:如果用“载质量2吨”的车子装煤,最多运几次?
生:在不用“载质量3吨”的车子装煤时,次数最多,最多8÷2=4(次),刚好装完。
师:通过这个计算,我们知道“载质量2吨”的车子只可能运0-4次,运4次时符合条件,如果安排这样的车运3次,那么,“载质量3吨的车”应该运几次才能把煤运完呢?
生:“载质量2吨”的车运2次,能运煤2×2=4(吨),剩余4吨需要“载质量3吨”的车运2次才能运完,但是同样的它们的总运量不能恰好等于8吨。
师:如果1次呢?0次呢? 学生独立完成。
(3)列表法解决问题。
师介绍用列表的方法把各种方案列举出来,这样更好的简便、直观。列表如下:
派车方案 载质量2吨 载质量3吨 运煤吨数
1 4次 0次 8吨√
2 3次 1次 9吨
3 2次 2次 10吨
4 1次 2次 8吨√
5 0次 3次 9吨
可以看出方案1和方案4符合条件。
3、回顾与反思。
(1)我们在列举的时候应注意什么?(按照一定的顺序)
(2)如果可能的方案无限多,适合用列举的方案吗?(不适合,在能列举出所有方案的情况下选择用列表法列举)
(3)检验一下方案1和方案4是不是恰好可以运完8吨煤。 学生自我探究。
三、巩固练习
1、完成第33页“做一做”。
(1)由题中我们获得了哪些信息?师明确要求怎么付钱,就是求30元里面有几个5元和几个2元,同时需考虑到5元和2元的张数各自只有6张,即最多只能取6张5元或2元。试问如果没有这个条件,怎么做,加上这个条件后怎么做?这样有什么区别?
(2)学生在小组内讨论,用列表法把各种可能的`方案列出来然后选择合适的方案。
(3)汇报交流结果,集体订正。
2、完成“练习七”第7题。
(1)求“每条船都坐满,怎样租船?”就是求什么?(学生自由发言)
(2)求“哪个租船方案最省钱”怎么做?(学生把每一种合理的租船方案分别按照大船10元,小船8元计算价格,然后比较大小。
四、课堂小结
今天我们学习了解决问题的策略,你有哪些收获?在题中的条件和问题比较多的情况下,我们可以用列表的方法来列举出所有可能的方案,然后选择符合条件的解决问题的方案。对于这堂课的学习,你还有什么不明白的地方吗?
板书设计
解决问题
第1、4两种方案正好运完8吨煤。
1、“载重量2吨”:4次 “载重量3吨”:0次
2、“载重量2吨”:1次 “载重量3吨”:2次
教学反思:、使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
小学数学教案 篇2
[教学目标]:
1.结合具体情境,体会生活中存在着大量互相依赖的变量。
2.在具体情境中,尝试用自己的语言描述两个变量之间的关系。
[教材分析]:
教材通过让学生观察表格、图像、关系式,尝试用自己的语言描述两个变量之间的变化,为后面学习正比例、反比例打下基础,同时体会函数思想。
教材呈现了三个具体情境,鼓励学生在观察、思考、讨论和交流中,体会在生活情境中,存在着大量互相依赖的变量:一个量变化,另一个量也会随着发生变化,两个变量之间存在着关系。这三个情境分别用表格、图像和关系式呈现变量之间的关系,以使学生体会表示变量之间关系的多种形式。
[学校及学生状况分析]:
我校是一所民办实验小学,学校的数学的课堂教学中以学生为本,突显人文性,这样学生喜爱学习数学,敢于在课堂上表现自我,学生有较好的思维能力,探索能力和合作能力。
[教学过程]:
一、创设情境,导入新课。
1、用手势表示出自己从出生到现在身高的变化。
2、用手势表示出自己从出生到现在体重的变化。
3、师:身高、体重都会变化,这些都是变化的量。(板书课题)
二、观察表格,感知变量。
1、出示小明的.体重变化情况表。
师:这是小明的体重变化情况表。
(1)从表中你知道了什么信息?
(2)上表中哪些量在发生变化?
(3)师生共同画一画小明的体重变化情况折线统计图。
(4)说一说小明10周岁前的体重是如何随年龄增长而变化的。
2、说一说。
(1)我发现( )随( )的增加而增加。
(2)我发现( )随( )的减少而减少。
3、师:通过你们举的例子,可以发现什么?
三、通过读图,感受变量。
1、师:骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。
2、出示骆驼体温随时间的变化统计图。
3、读懂统计图。
(1)从图中你知道了什么信息?
(2)一天中,骆驼体温是多少?最低是多少?
4、感受量的周期变化。
(1)一天中,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?
(2)第二天8时骆驼的体温与前一天8时的体温有什么关系?
(3)第二天,在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?第三天呢?第十天呢?
(4)师:每天骆驼的体温总是怎样变化的?
四、建立模型,感悟变量。
1、出示叫的蟋蟀叫的次数与气温之间关系的情境。
2、你能用式子表示这个近似关系吗?
即气温h=t÷7+3。
3、理解式子中量的变化。
师:如果蟋蟀叫了7次,这时的气温大约是多少?
如果蟋蟀叫了14次,这时的气温大约是多少?
如果蟋蟀叫了28次呢?
你能发现蟋蟀叫的次数与气温之间是怎样变化的?
4、举出而变化的例子。
5、通过举例我们可以发现一个量随另一个量变化而变化,这些量就是变化的量。
五、课堂巩固,加深理解。
1、连一连,把相互变化的量连起来。
路程 正方形周长
边长 购卖数量
总价 行驶时间
2、说一说,一个量怎样随另一个量变化。
(1)一种故事书每本3元,买书的总价与书的本数。
(2)一个长方形的面积是24平方厘米,长方形的长与宽。
六、全课小结,谈谈收获。
小学数学教案 篇3
教学目标:
1、初步懂得从数学的角度提出问题,并能解决简单的数学问题。
2、培养学生应用数学的意识。
3、培养学生积极参与数学学习活动的态度,对数学有好奇心和求知欲。
重点
能正确无误地计算出20以内的退位减法。
难点
能根据已知的一个条件提出数学问题。
一、设问题情境。
师:同学们,今天老师带了两串金苹果要奖给发言积极的小朋友和表现突出的小朋友。看到这个你们发现了什么数学信息??
师:你们能根据这数学信息提出什么数学问题吗?
二、提出问题,感受数学问题在生活中的存在。
1、我们经常有这样的体会,当我们遇到不懂的事情时,就会向别人提出问题。其实,在日常生活中还藏着许许多多的'数学问题,你能试着提一提吗?
学生说。
刚才小朋友举了这么多的数学问题,只要善于观察我们就会发现数学在生活中无处不在。这节课我们就来用数学解决问题。
2、出示主题图:提问:你看到了什么?跟你的同桌说一说。
师:根据主题图中小朋友的活动,你能提出什么数学问题吗?(引导学生既能提出关于加法的问题又能提出关于减法的问题。)
小组讨论、汇报。
三、问题解决
参加了小朋友有趣的郊外活动,我们再去看看可爱的小动物在着美丽的春天里干些什么?
1、出示做一做的插图。说一说你看到了什么?
2、再次看图:提问:图中的小动物有什么变化?
鱼有集中寻食的,有向远处游走的。
3、师:同学们说的很好,观察得很仔细!那么你们能不能根据这些信息提出一些问题呢?
4、教师从学生提的问题中选出若干个进行板演。
说明:你喜欢解答哪题就解答哪题,你也可以自己提个问题进行解答。
四、评价总结
1、说一说:今天这节课你有什么收获?
2、回家后仔细观察家中的物品,向爸爸妈妈提三个数学问题,再让他们解答。
教学反思:
这是一堂公开课,我的意图是:解决问题就是解决生活中的问题,那么课的设计应该是从生活中来回到生活中去,所以设计了上面这样一个课例:从实际物品中发现信息找寻信息——根据自身体验在生活中发现信息找寻信息
——能根据图片自己发现信息找寻信息。。我的愿望并没有如我的愿。在实际教学后这堂课遭到了大家的否定。我思考着问题出在哪里?这样的课究竟怎样才能上出精彩?很迷茫,所以恳请同仁们提出宝贵意见。告诉我好的思路和设计。
小学数学教案 篇4
教学内容:三角形的面积第84-85页
教学目标:
1、经历三角形面积计算公式的探索过程,理解三角形的面积计算公式。
2、通过操作和对图形的观察、比较,发展学生的空间观念。使学生知道转化的思考方法在研究三角形的面积时的运用,培养学生的分析、综合、抽象、概括和运用转化方法解决实际问题的能力。
3、培养学生的创新意识和合作精神。
教学重点: 理解三角形面积计算公式,正确计算三角形的面积.
教学难点: 在转化中发现内在联系及推导说理。
学具准备: 每个学生准备三种类型三角形(每种类型准备2个完全一样的)和一个平行四边形。红领巾等。
教学过程
复习导入:
1、复习:想一想,平行四边形的面积怎样计算?这个公式是怎么推导出来的?
指名说一说,师可再现推导过程。
2、导入:出示红领巾,它是什么图形?它的面积该怎么计算?揭示课题。
二、探究三角形的面积公式.
1.启发提问:你能否依照平行四边形面积的方法把三角形转化成已学过的图形,再计算面积呢?
2.用两个完全一样的直角三角形拼.
(1)教师参与学生拼摆,个别加以指导
(2)演示课件:拼摆图形
(3)讨论
①两个完全一样的直角三角形拼成一个大三角形能帮助我们推导出三角形面积公式吗?为什么?
②观察拼成的长方形和平行四边形,每个直角三角形的面积与拼成的平行 四边形的面积有什么关系?
3.用两个完全一样的锐角三角形拼.
(1)组织学生利用手里的学具试拼.(指名演示)
(2)演示课件:拼摆图形(突出旋转、平移)
教师提问:每个三角形的面积与拼成的平行四边形的面积有什么关系?
4.用两个完全一样的钝角三角形来拼.
(1)由学生独立完成.
(2)演示课件:拼摆图形
5.讨论:
(1)两个完全相同的三角形都可以转化成什么图形?
(2)每个三角形的面积与拼成的平行四边形的面积有什么关系?
(3)三角形面积的计算公式是什么?
6、引导学生明确:
①两个完全一样的三角形都可以拼成一个平行四边形。
②每个三角形的面积等于拼成的平行四边形面积的一半。(同时板书)
③这个平行四边形的底等于三角形的底。(同时板书)
④这个平行四边形的高等于三角形的高。(同时板书)
(3)三角形面积的计算公式是怎样推导出来的?为什么要加上“除以2”?(强化理解推导过程)
板书:三角形面积=底×高÷2
(4)如果用S表示三角形面积,用a和h表示三角形的底和高,那么三角形面积的`计算公式可以写成什么?
7.教学例1
红领巾的底是100cm,高33cm,它的面积是多少平方厘米?
1.由学生独立解答.
2.订正答案(教师板书)
三、总结: (一)总结这一节课的收获,并提出自己的问题.
(二)教师提问:要求三角形面积需要知道哪两个已知条件?求三角形面积为什么要除以2?
四、反馈练习 计算下面每个三角形的面积.
1.底是4.2米,高是2米;
2.底是3分米,高是1.3分米;
(三) 判断
一个三角形的底和高是4厘米,它的面积就是16平方厘米。( )
2、等底等高的两个三角形,面积一定相等。 ( )
3、两个三角形一定可以拼成一个平行四边形。 ( )
4、三角形的底是3分米,高是20厘米,它的面积是30平方厘米。( )
板书设计
三角形的面积 平行四边形的面积=底×高,
三角形面积=拼成的平行四边形的一半, 100×33÷2=1650(cm)
三角形面积=底×高÷2
S=ah÷2
上一篇:上一条:小学数学教案:万以内的加法和减法(二) 应用题的对比
下一篇:下一条:小学数学教案:《梯形的面积计算》教学设计
小学数学教案 篇5
设计说明
“面积单位的换算”这部分内容是在学生初步掌握了面积、面积单位及长方形、正方形面积计算方法的基础上进行教学的。结合教学重、难点及学生的认知水平,本节课主要采用猜想、设计实验验证、迁移类推、实践应用等形式进行教学。
1.激趣导入,让学生体会合作的妙处。
上课伊始,以游戏的形式导入,让学生轻松愉快地投入到课堂学习中。在这个过程中让学生体会合作的妙处,从而提示学生可以利用合作的形式探究本节课的学习内容。
2.复习与思考。
复习题的设计是为了让学生在寻找解决问题的过程中发现新旧知识间的联系,为学生猜想面积单位之间的进率作铺垫。同时设计贴近生活的实际问题,既提高了学生解决问题的能力,又体现了数学知识来源于生活,又应用于生活的.理念。
3.自主探究新知。
学生首先猜想、讨论“1平方分米与1平方厘米有什么关系”,然后通过操作得出:1平方分米=100平方厘米,最后利用迁移类推明确1平方米=100平方分米。学生在猜想、操作、探究的过程中,获取了新知识,树立了学好数学的自信心,提高了自主探究的能力。
课前准备
教师准备 PPT课件 面积是1平方厘米的正方形纸片 面积是1平方分米的正方形纸片 面积是1平方米的正方形纸片
学生准备 直尺 面积是1平方分米的正方形纸片 面积是1平方厘米的正方形纸片
教学过程
⊙创设情境,问题导入
师:同学们,让我们一起来做一个小游戏吧。(出示课件)
1.抢答比赛1。
1米=( )分米 1分米=( )厘米
1厘米=( )毫米 1米=( )厘米
师:同学们,常用的长度单位有哪些?相邻两个常用的长度单位之间的进率是多少?(学生思考后回答)
2.抢答比赛2。
师:常用的面积单位有哪些?1平方厘米大约有多大?1平方分米大约有多大?1平方米呢?
(学生讨论后汇报)
师:看来大家都有各自的想法,那么相邻两个常用的面积单位之间的进率是多少呢?这节课我们就来共同探究。(板书课题:面积单位的换算)
设计意图:用游戏的方式复习已经学过的知识,为学习新知识作铺垫,这样既调动了学生学习的积极性,又使学生对本节课所学的知识有了初步的感知,并能够正确区分面积单位与长度单位。
⊙探究新知,实验验证
1.教学教材56页上面例题。(课件出示)
(1)这张正方形纸片的面积是多少呢?请同学们拿出自己准备的正方形纸片。(拿一个同学的学具与老师手中的正方形纸片比较一下,确定大小是相等的,老师把这张正方形纸片贴在黑板上)
(2)先用直尺量一量这张正方形纸片的边长,再计算它的面积。(有的同学以分米为单位,量出这张正方形纸片的边长是1分米,所以这张正方形纸片的面积就是1平方分米;有的同学以厘米为单位,量出这张正方形纸片的边长是10厘米,所以这张正方形纸片的面积就是100平方厘米)
(3)提问:想一想,计算的是同一张正方形纸片的面积,为什么会出现两个答案,并且这两个答案都是正确的呢?(用的单位不同)
(4)猜想、讨论:平方分米与平方厘米之间有什么关系?为什么?
(学生讨论后汇报结果)
预设
生1:1平方分米=100平方厘米。因为1平方分米和100平方厘米都是这张正方形纸片的面积,所以1平方分米=100平方厘米。
生2:边长是1分米的正方形的面积是1平方分米,又因为1分米=10厘米,边长是10厘米的正方形的面积是10×10=100(平方厘米),所以1平方分米=100平方厘米。
小学数学教案 篇6
教材简析
这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。教学重难点是结合具体情境理解等式和方程的意义和用方程表示简单的等量关系。
本信息窗展示的是国家一级保护动物白鳍豚、大熊猫、东北虎的图片以及相关文字说明。其主要信息有白鳍豚数量的变化情况;野生和人工养殖的大熊猫数量的关系;20xx年与20xx年人工繁育东北虎数量的比较。根据上述信息,引导学生提出相应问题,进而研究方程的意义。
教学目标
1、结合具体情境理解方程的意义,会用方程表示简单的等量关系。
2、借助天平让学生亲自参与操作和实验,在经历天平由平衡不平衡平衡的动态过程中,加深对方程及等式意义的理解。
3、使学生在学习数学知识的同时,体会数学与生活的密切联系,唤起学生保护珍稀动物的意识。
教学过程
一、创设情境 激趣导入
谈话:同学们,你们喜欢小动物吗?今天老师带来了国家一级保护动物的几幅图片。(课件出示信息窗1的三幅动物图片)
我们应该保护这些濒临灭绝的珍稀动物。今天这节课,就以这三种动物为话题,来研究其中的数学问题。
【设计意图】通过介绍国家一级保护动物白鳍豚、大熊猫、东北虎的数量变化情况的情境引入课题,学生比较感兴趣,乐于探究,激发了学生的研究兴趣。
二、合作探究 获取新知
1、找出白鳍豚这组资料的等量关系,用字母表示。
(1)提问:我们先来看白鳍豚的这组资料,你获得了哪些信息?
白鳍豚是国家一级保护动物,濒临灭绝。1980年约有400只,比20xx年多300只。
(2)根据情境图所提供的信息你能提出什么问题?引导学生提出:根据1980年约有400只,比20xx年多300只这句话写出等量关系式。
(3)先自己写一写,再与小组内的同学交流。
20xx年只数 + 300只=1980年只数
1980年只数 - 20xx年只数=300只
1980年只数-300只=20xx年只数
(4)教师板书20xx年只数+300只=1980年只数这个等量关系式,并提问:你能用含有字母的式子表示这个等量关系吗?先自己想一想,再把你的想法在小组里交流。
学生汇报:如用a表示20xx年的白鳍豚只数,上面的等式就可写成a+300=400。
(5)教师小结:刚才大家用了不同的字母来表示未知数。其实一般情况下,我们用字母x来表示未知数。上面的等式就可写成x+300=400(板书)。
【设计意图】由于直接让学生用含有字母的等式表示出白鳍豚20xx年只数和1980只数之间的关系,对于学生来说有一定的难度,因此把这个问题进行细化,减少坡度,学生容易理解掌握。
2、借助天平理解等式的意义。
根据x+300=400:等号左边求得是哪一年的只数?(1980年的只数)等号右边是哪一年的只数?(1980年的只数)
像上面这样表示左右两边相等的等式有哪些特点呢?下面,我们借助天平来研究一下。(出示天平)
(1)提问:你对天平有哪些了解?(如果学生对天平的用途、构造及使用方法不了解,教师可以做简单的介绍。)
(2)天平的左盘放了一个正方体,右盘是100克的砝码。放正方体的一头重。
提问:你发现了什么?你能想办法让天平平衡吗?
右盘加上50克的砝码,天平平衡了。
(3)天平左盘放入10克砝码,右盘放入20克砝码。
提问:观察天平平衡了吗?如何使它平衡?(左边再加上10克的砝码就平衡了。)
提问:根据天平平衡的道理,你能用一个等式表示这个天平左右两边的关系吗?
10+10=20(板书)
(4)天平左盘放入一个20克砝码和一个小正方体,右盘放入50克砝码。
谈话:小正方体的重量我们不知道,可以用X克来表示。用一个等式表示天平左右两边的关系,可以怎样写。
20+x=50(板书)
(5)出示两台平衡的天平:一台左盘放两个50克砝码,右盘放一个100克砝码。另一台左盘放4个x克的小方块,右盘放一个200克砝码。
要求:用等式表示出天平左右两边的关系。
50+50=100 4x=200(板书)
(6)谈话:通过前面的实验,我们知道天平平衡的现象可以用等式来表示。像前面我们研究的x+300=400借助天平就容易理解了。
【设计意图】此处这样设计旨在让学生借助天平的平衡原理,引导学生通过动手操作和实验,在经历天平由平衡不平衡平衡的动态过程中,初步体验和感受方程的含义。
3、找出大熊猫这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看大熊猫的资料,你获得了哪些信息?
20xx年,我国野生大熊猫约有1600只,是人工养殖大熊猫数量的10倍。
(2)你能用含有字母x的等式表示出大熊猫20xx年人工养殖的只数与野生的只数的关系吗?
师生总结:
您现在正在阅读的青岛版小学数学五年级上册《方程的意义》教学设计文章内容由收集!本站将为您提供更多的精品教学资源!青岛版小学数学五年级上册《方程的意义》教学设计人工养殖的只数10=野生的只数
10x=1600
如果用x表示人工养殖大熊猫的只数,那么x10=1600
(3)学生打开教科书57页,结合图示进一步理解以上等量关系。
【设计意图】通过用含有字母x的等式表示情境中数量间的相等关系,引导学生进一步体会方程的意义。
4、找出东北虎这组资料的等量关系,再写出含有未知数x的等式。
(1)提问:继续看东北虎的资料,你获得了哪些信息?
预计到20xx年,全国最大的东北虎繁育基地的东北虎数量将达到1000多只,比20xx年的3倍还多100只。
(2)提问:根据以上信息你能提出什么问题?
引导学生提出:先用文字表示出东北虎20xx年的只数与20xx年只数的等量关系,再用含有X的等式表示,最后画一画,在天平上表示出这个等式。
(3)先自己写一写,再与小组同学交流。
学生汇报:
20xx年的只数3+100=20xx年的只数
列式为: 3X+100=1000 (板书)
画图为:天平的.左盘是3个X和一个100,右盘是1000。
提问:这里的X表示什么?(x表示20xx年的只数。)
【设计意图】有了前面合作学习的基础,第三幅情景图的学习完全可以放手让学生自己研究,符合学生的认知学习规律。
5、揭示方程的意义。
(1)提问:刚才我们研究出这么多的等式,像x+300=400 10+10=20 20+x=50 50+50=100 4x=200 10x=1600 3X+100=1000,你能给它们分分类吗?
引导学生分成两类:含有字母的是一类,不含字母的是一类。
我们把含有未知数的这类等式叫做方程。(板书)
(2)组织学生讨论:X+5是不是方程?2+3=5是不是方程?说明理由。
(3)组织学生交流:判断是不是方程,你觉得必须符合什么条件?
方程必须含有未知数,还必须是等式。
【设计意图】通过分类比较、归纳总结,让学生发现方程的本质特征,进而提高学生比较、分析、判断、归纳的学习能力。
三、巩固练习 加强应用
1、出示自主练习1下面哪些式子是方程?让学生说说判断的依据是什么。
2、出示自主练习2,看图列方程。
学生独立完成,说说自己是怎样想的。
3、出示自主练习3,填一填。
学生独立完成。
【设计意图】练习题的设计是有层次性的,第1题判断哪些式子是方程,考察了学生对方程意义的理解;第2题重点使学生明确要根据天平平衡时左边质量=右边质量的关系列出方程;第3题则结合具体的情景,让学生写出等量关系式并列出方程,进一步加深了学生对方程意义的理解。
四、回顾反思 总结提升
谈谈这节课你有哪些收获?
总结:这节课我们以国家保护动物为话题,认识了方程,方程可以为我们的解决问题带来很多方便。
总设计意图:
本节课的设计充分关注了学生已有的知识经验,结合具体的问题情境,引导学生通过操作、实验、分析、比较,归纳出了方程的意义。教学中教师没有将等式、方程的概念强加给学生,而是充分尊重学生原有知识水平,结合具体情境,引导学生分析数量间的相等关系,再用含有未知数X的等式表示出等量关系,并用天平平衡原理来解释各数量之间的相等关系,使学生理解等式及方程的意义,尊重了学生年龄特点和认知水平。
教学中为学生创设了多次问题情境,引导学生独立思考和小组合作研究。如用含有字母的式子表示出白鳍豚20xx年和1980年数量关系式,用含有x的等式表示熊猫、东北虎的数量变化情况等。
总之,本节课从学生认知规律和知识结构的实际出发,让他们通过有目的的交流、讨论,主动构建自己的认知结构,一方面调动了学生的学习热情,另一方面使学生借助集体思维,加深对方程意义的认识,激发了学生的探究欲望,培养了学生的学习兴趣。
小学数学教案 篇7
教学内容:课本P35、36页。
教学目标:
1、通过整理和复习,进一步体验除法运算与生活的密切联系。
2、促使学生加深对除法含义的认识。
3、巩固用2~6的乘法口诀求商。
4、巩固用乘、除法解决简单的实际问题。
教学重点:让学生对自己在本阶段所学的知识技能、数学思想和方法及情感等方面进行归纳总结与反思。
教学难点:培养学生提出问题和解决问题的能力,体验数学与日常生活的'密切联系。
教学准备:主题图或课件等。
教学过程:
一、创设情景
1、出示口算题
2、请根据他们的特点分类。(学生汇报交流)
3、板书:整理和复习。
二、探索体验
1、复习除法的意义。出示第35页第1题主题图:
(1)看图列出乘法算式和除法算式。
(2)指出除法算式中的被除数、除数和商。
(3)通过列式你觉得乘法和除法有怎样的关系?
2、出示第35页第2题复习除法计算。
比一比看谁算得又对又快;说一说你是根据什么进行口算的。
总结:我们可以用乘法口诀来求商,这样可以算得又对又快。
3、出示第36页第3题复习除法应用题。
(1)独立思考并列出算式。
(2)汇报交流,说说你是怎样想的?
4、小结:这几种分法都是平均分,都用除法计算。
三、拓展应用
1、引导学生完成P36第1题。
(1)学生独立完成,教师巡视。
(2)集体交流。
2、引导学生完成第2题。先独立完成后汇报交流,订正。
3、引导学生完成第35页第3题、第36页第4题。
(1)出示情境图,学生看图并在小组中提出问题进行解答。
(2)全班交流汇报,评价。
4、联系身边的事,提出用除法计算的问题。
四、课堂总结:今天的学习你有什么收获?
小学数学教案 篇8
8.3 同底数幂的除法 教学设计
教学设计思路
教科书中根据除法是乘法的逆运算,从计算 和 这两个具体的同底数的幂的除法,到计算底数具有一般性的 ,逐步归纳出同底数幂除法的一般性质.教师讲课时要多举几个具体的例子,让学生运算出结果,接着,让学生自己举几个例子,再计算出结果,最后,让学生自己归纳出同底数的幂的除法法则.
教学目标
知识与技能
1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.
2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.
过程与方法
在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力.
情感、态度与价值观
1.提高学生观察、归纳、类比、概括等能力;
2.在解决问题的过程中了解数学的价值,发展“用数学”的.信心,提高数学素养.
教学媒体
投影仪
课时安排
1课时
教学重难点
教学重点:同底数幂除法的运算性质及其应用.
教学难点:零指数幂和负整数指数幂的意义.
教学过程
一、创设问题情景,引入新课
一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
[师]1012÷109是怎样的一种运算呢?
通过上面的问题,我们会发现同底数幂的除法运算和现实世界有密切的联系,因此我们有必要了解同底数幂除法的运算性质.
二、了解同底数幂除法的运算及其应用
一起探究:计算下列各式,并说明理由(>n).
(1)
(2)
(3)
(4)
[师]我们利用幂的意义,得到:
(1)
(2)
(3)
(4)
[生]从以上三个特例,可以归纳出同底数幂的运算性质:a÷an=a-n(,n是正整数且>n).
[生]小括号内的条件不完整.在同底数幂除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a≠0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.
[师]很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:
(a≠0,、n都为正整数,且>n)运用自己的语言如何描述呢?
[生]同底数幂相除,底数不变,指数相减.
[例]计算:
(1) (2) (3) (4)
三、探索零指数幂和负整数指数幂的意义
想一想:
10000=104, 16=24,
1000=10( ), 8=2( ),
100=10( ), 4=2( ),
10=10( ). 2=2( ).
猜一猜
1=10( ), 1=2( ),
0.1=10( ), =2( ),
0.01=10( ), =2( ),
0.001=10( ). =2( )
大家可以发现指数不是我们学过的正整数,而出现了负整数和0.
正整数幂的意义表示几个相同的数相乘,如an(n为正整数)表示n个a相乘.如果用此定义解释负整数指数幂,零指数幂显然无意义.根据“猜一猜”,大家归纳一下,如何定义零指数幂和负整数指数幂呢?
[生]由“猜一猜”得
100=1,
10-1=0.1= ,
10-2=0.01= = ,
10-3=0.001= = .
20=1
2-1= ,
2-2= = ,
2-3= = .
所以a0=1,
a-p= (p为正整数).
[师]a在这里能取0吗?
[生]a在这里不能取0.我们在得出这一结论时,保持了一个规律,幂的值每缩小为原来的 ,指数就会减少1,因此a≠0.
[师]这一点很重要.0的0次幂,0的负整数次幂是无意义的,就如同除数为0时无意义一样.因为我们规定:a0=1(a≠0);a-p= (a≠0,p为正整数).
我们的规定合理吗?我们不妨假设同底数幂的除法性质对于≤n仍然成立来说明这一规定是合理的.
例如由于103÷103=1,借助于同底数幂的除法可得103÷103=103-3=100,因此可规定100=1.一般情况则为a÷a=1(a≠0).而a÷a=a-=a0,所以a0=1(a≠0);
而a÷an= ( 因此上述规定是合理的. [例]用小数或分数表示下列各数: (1)10-3;(2)70×8-2;(3)1.6×10-4. 解:(1)10-3= = =0.001; (2)70×8-2=1× = ; (3)1.6×10?-4=1.6× =1.6×0.0001=0.00016. 四、课时小结 [师]这一节课收获真不小,大家可以谈一谈. [生]我这节课最大的收获是知道了指数还有负整数和0指数,而且还了解了它们的定义:a0=1(a≠0),a-p= (a≠0,p为正整数). [生]这节课还学习了同底数幂的除法:a÷an=a-n(a≠0,,n为正整数,>n),但学习了负整数和0指数幂之后,>n的条件可以不要,因为≤n时,这个性质也成立. [生]我特别注意了我们这节课所学的几个性质,都有一个条件a≠0,它是由除数不为0引出的,我觉得这个条件很重要. [师]同学们收获确实不小,祝贺你们! 五、课后作业 课本 A组3、4,B组2、3 六、板书设计 教学目标: ⒈通过测量活动,进一步体会小数在日常生活中的应用。 ⒉通过探索怎样把几分米或几厘米用米单位来表示的过程,进一步体会小数的意义。 ⒊能用小数表示一个物体的长度、质量等。 教学过程:⒈想一想,忆一忆。 同学们,你们还记得1米有多长吗? 用手势表示一下,我们来看看黑板有多长?今天我们学习新课。(板书:测量活动) ⒉量一量 ⑴每组各派一名代表,分别测量黑板的长度。 ⑵汇报结果。 ⑶小组合作学习,怎样以米为单位来表示呢? ⑷汇报:2米85厘米=2 米=2.85米 1米1分米=1 米=1.1米 小结:把几分米或几厘米用“米”作单位来表示的过程,就是我们这节课重点学习的内容。 ⒊再量一量。 ①同学们,在你的`身边有许多物品,选择自己喜欢的量一量?以米为单位记录下来(学生自行完成填一填)。 ②汇报结果。 ⒋试一试 媒体出示燕子 春天来了,燕子也从南方赶来了,它给同学们提了几个问题请你们来回答,你们愿意回答吗?(愿意) 我(燕子)的体重是1千克500克,骨骼重113克,以千克为单位怎么表示? 全班汇报:1千克500克=(1.5)千克 113克=(0.113)千克 小结:同学们都能用千克把燕子的问题回答出来,那么同学们老师的身高用米作单位,你能表示出来吗?(能) ⒌激趣活动。 我请一名学生来测量我(老师)的身高,再请一名学生监督,不当之处,给予纠正。 汇报:1米70厘米=(1.7)米 下面请同学到自己的小组里任选一人,测量同学的身高,并以米为单位表示出来? ⒍多媒体出示,练一练。 (学生自行完成,同桌互批) ⒎同学们学了这节课你有什么收获? ⒏布置作业,试一试1、2题。 【小学数学教案】相关文章: 小学数学教案12-17 小学数学教案06-12 小学数学教案07-13 小学数学教案07-06 小学数学教案07-06 (精选)小学数学教案07-06 小学数学教案07-06 小学数学教案07-06 【精选】小学数学教案07-06 小学数学教案(精选)07-06小学数学教案 篇9