小学五年级数学《相遇问题》教案(通用16篇)
作为一名专为他人授业解惑的人民教师,可能需要进行教案编写工作,教案是教学蓝图,可以有效提高教学效率。如何把教案做到重点突出呢?下面是小编收集整理的小学五年级数学《相遇问题》教案,仅供参考,欢迎大家阅读。
小学五年级数学《相遇问题》教案 1
教学内容:
人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。
教学目的:
1、使学生理解相遇问题的意义及特点。
2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。
3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。教学难点:理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学准备:
计算机辅助教学软件一套。
教学过程:
一、动画引入,揭示课题
1、通过电脑演示了解相遇问题中两个物体的运动情况。
电脑演示一声枪响后,两人相向而行,相遇前停下来。提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?(板书:同时出发、相向而行)如果他们继续走下去,结果可能会怎样?(相遇、不相遇就停下来、相遇以后相交而过)结果究竟怎么样呢?请同学们继续观察。电脑演示两人相遇。(板书:结果相遇)谁能完整的说说他们是怎样运动的?评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行"、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。
2、揭示课题:
像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。(板书课题:相遇问题)
过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时间、路程三者之间有什么样的关系?(板书:速度×时间=路程)
今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天我们就一块儿来研究这个问题。
二、引导探究,教学新知
(一)教学准备题。
1、电脑配音显示准备题。我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。走的时间张华走的路程李诚走的路程两人所走的路程和现在两人的距离1分60米79米2分3分讨论:
①出发3分后,两人之间的距离变成了多少?说明了什么?
②相遇时,两人所走路程的和与两家的距离有什么关系?
2、观察填表,讨论分析。
(1)学生填写表格,并讨论屏幕上的.两个问题。
(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)
(3)学生回答讨论的两个问题。小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。
评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。
(二)教学例5。
1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?
2、学生尝试解答,两生上台板书。65×4+70×4(65+70)×4=260+280=135×4=540(米)=540(米)
3、学生自己分析解题思路:
①请用第一种方法的同学说说你是怎样想的?提问:题中只有一个4,为什么算式中出现了两个4?
师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。
②请用第二种方法的同学说说你的解题思路又是什么?
评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。
4、通过电脑演示强化两种解法的解题思路。
通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。
电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。
评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。
5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?(板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?
6、学生看书质疑。
三、巩固练习,深化提高
1、根据题意连线。
两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
44×2.5两人的速度和52×2.5两地的距离44+52相遇时甲车所行的路程(44+52)×2.5
相遇时乙车所行的路程44×2.5+52×2.52、用两种方法解答。(59页做一做第1题)
3、只列式不计算。(练习十三1、2题)学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。
评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。四、闯关游戏,拓思创新:电脑演示闯关画面,配音出示游戏规则。
1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?提问:用速度和乘以时间得到了路程,为什么还要加120?
2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?
3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?提问:为什么每一种算法都要减90?
4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。
评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
小学五年级数学《相遇问题》教案 2
教学内容:
课本应用题例5及练一练
教学目标:
1、通过教学,引导学生认识相遇问题(求相遇路程)的特征,理解数量关系,并能解答相遇问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:
相遇问题的特征和解题方法。
教学难点:
相遇问题的特征和解题方法。
教学用具:
多媒体课件一套。
教学过程:
一、激趣引入,复习旧知
1、根据已知条件解答问题。
电脑演示一位学生边走边唱上学的情景。
我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。
学生提出问题:你知道我家到学校有多远吗?
2、学生口答列式:704=280(米)。
复习速度、时间、路程三者之的数量关系。(板书:速度时间路程)
二、揭示特征,化解难点
1、想想,说说
电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识相遇问题的特征。
①两个学生是怎么上学的?(板书:同时相对相遇)
②相遇的意思懂吗?请两个学生上台合作表演一下。
2、填填,议议
①介绍人物及行走的速度和时间。
小明每分走70米,小红每分走60米,有一天,他们约好,从家里同时出发,相对而行3分钟后恰好在校门口相遇。
②分组合作,完成以下表格:
比一比,看哪个组填得又对又快?
③分组汇报表中所填数据。
④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对相遇问题特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。
130米是什么?表示两人每分所走的路程和即速度和(板书:速度和)
260米是怎么得来的?渗透两种方法即:140+120,1302。同时说2分是相遇时间。(板书:相遇时间)
390米是怎么得到的?强调两种方法,即把各自的路程相加210+180;用速度和乘相遇时间(1303)。
390米表示什么?两人3分钟所走路程的和,实际上就是两家之间的离。
三、解答例题,理清思路
1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。
①将上题中同时行3分钟改成同时行4分钟,其余条件不变,仍然求两家相距多远?学生读题后尝试练习。
②评讲板演,理清解题思路,概括两种方法。
先求两人4分钟各走多少米。
⑴分步列式解答704=280(米)604=240(米)280+240=520(米)
⑵综合列式解答704+604
=280+240
=520(米)
先求两人1分钟一共走多少米。
⑶分步列式解答70+60=130(米)1304=520(米)
⑷综合列式解答(70+60)4
=1304
=520(米)
2、质疑小结,揭示课题。
①想一想,这两种解法有什么联系?
②概括相遇问题的特征和解题方法。
③揭示课题。
这两种解法都是利用速度时间=路程这一数量关系式。不过,第一种方法是用各自的速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的主要内容相遇问题(板书:相遇问题),决这样的问题可以用两种方法。
四、深化理解,应用拓展
1、基本练习。
用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?
2、变式练习。
电脑演示小明和小芳放学的`情景。
①认识相背而行(板书:相背)
②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?
揭示相背而行和相对而行求总路程时的解题思路是一样的。
3、拓展练习。
结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。
对话实录如下:
张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。
李经理:知道了,张教授,你车子的速度怎样啊?
张教授:大概每小时行70千米吧!
李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!
张教授:杭州见!一路平安!
李经理:好,一路平安,杭州见!
分组合作,进行探究。
①请同学们认真听,仔细看,从对话中能捕捉到哪些信息?
②根据刚才捕捉的信息,能解决哪些问题?比一比,看哪个组提出的问题多?
③汇报提出的问题,交流解决的方法。
④生活中的行程问题,是不是一定都是这样?有没有别的情况?
4、全课总结。
今天这节课主要学习了什么内容?你获得什么本领?
同学们,只要你们留心观察,善于思考,就会发现许多数学问题,刚才大家出的问题,都有一定价值。有些问题现在我们可以解决了,有些问题还需要续学习,深入研究,将来去解决。
小学五年级数学《相遇问题》教案 3
教学内容:
相遇问题(教材第71、72页)
教学目标:
1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。
2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。
教学重点:
理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、复习旧知
1、说一说速度、时间和路程三者之间的关系。
2、应用。
(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?
(2)一辆汽车每小时行驶40千米,200千米要行几小时?
3、列方程解应用题,关键是要找出题中的'什么?,再根据找出的什么列出方程。
二、探索新知
1、揭示课题。
师:数学与交通密切相联。今天,我们一起来探索相遇问题。
板书课题:相遇问题。
2、创设结伴出游的情境。课件出示教材第71页的情境图。
从图中找出相关的数学信息。
生1:淘气的步行速度为70米/分,笑笑的步行速度为50米/分。
生2:淘气家到笑笑家的路程是840米。
生3:两人同时从家里出发,相向而行。
第一个问题:让学生根据信息进行估计,两人在何处相遇?
因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。
第二个问题:画线段图帮助学生理解第二、第三个问题。
通过画线段图帮助学生找出等量关系。
淘气走的路程+笑笑走的路程=840米
第三个问题:根据等量关系列出方程。
解:设出发后x分相遇,那么淘气走的路程表示为:70x米,笑笑走的路程表示50x米。则方程为
70x+50x=840
学生独立解答。
3、在这个相遇问题中,除了用方程来解答外,还可以用什么方法来解决问题?试一试。
根据路程速度和=相遇时间列出算式
840(70+50)
三、应用新知,拓展练习
1、如果淘气的步行速度为80米/分,笑笑的步行速度为60米/分,他们出发后多长时间相遇?请写出等量关系并列方程解答。
小学五年级数学《相遇问题》教案 4
教学内容:
教学目标:
1.探究并掌握解决相遇问题的方法,并能正确解答相遇问题。
2.学会运用所学的知识,解决实际问题。
3.养成认真分析问题以及细心计算的习惯。
教学重难点:
教学重点:用画线段图的方法分析“相遇问题”的数量关系,构建数学模型。
教学难点:理解相遇问题的基本特征,构建“速度和×时间=总路程”这一数学模型。
教具准备:
多媒体课件
教学过程:
课前互动:平时你是怎样上学的?
你知道自己家到学校有多远吗?
一、创设情境,提出问题
谈话:同学们,奥运会在青岛举办期间,每天到栈桥游玩的人很多,这一天小萍和小明也去了,下面就让我们一起来看看当时的情况吧。(出示课本46页第三个红点信息图)
师:仔细阅读信息图中的信息,说说你知道了哪些信息?
生:我知道他俩经过6分钟在栈桥相遇了……
师:今天我们所要学习的内容就是相遇问题。板书课题:相遇问题。
二、自主学习,小组探究。
1、初步感知,理解题意
读题,问:你从题中知道了什么信息?(生汇报师补充完成线段图)
问:例题与复习题有什么不同?
复习题是研究一个物体的运动情况,而今天例题研究的是两个物体的运动情况。
2、学生表演,加深理解
同时:同一时间、一起开始。
相遇:在栈桥相遇上或碰面。
相距:小萍家和小明家的距离是多少米。
学生上台表演,师问:小萍,你走了几分钟?小明,你走了几分钟?你们同时走了几分钟?也就是从开始到相遇,经过了几分钟?
三、汇报交流,评价质疑。
1、小组交流,探索方法
四人小组交流想法,要求:
①说说你是怎样列式的?
②说清楚算式里每一步算出的是什么?
③记住用手指指着你列的式子说。
汇报:注意让学生说清楚①你是怎样列式的,②算式里每一步算出的是什么?(学生出示,自己讲解,师板书。)
第一种方法:小萍6分钟走的路程+小明6分钟走的路程=两家相距的路程
65×6+75×6
=390+450
=840(米)
小结:通过这种方法,我们可以知道两家相距的`路程,其实包括哪两部分?
第二种方法:两人每分钟所走的路程和×走的时间=两家相距的路程
(65+75)×6
=140×6
=840(米)
多媒体演示,介绍:1分钟,她们一共走了1个(65+75)米;2分钟,一共走了2个(65+75)米;6分钟,一共走了几个(65+75)米?走完6个(65+75)米她们就相遇了。
小结:第二种方法先求出两人每分钟所走的路程和,再求出两人6分钟所走的路程和。
提醒:做解决问题最后别忘了作答。
2、看书质疑,提高认识
师:类似这样的题目,我们称为相遇问题,看书本P46,再想一想还有没有不明白的地方?
质疑:(65+75)×6中没有小括号,行吗?
四、抽象概括,总结提升。
我们要注意每一道题都有它不同的解决方法,不要因为一时想不到而气馁,我们应该要认真去读懂题,分析清楚,理解它们之间的关系,题目就会迎韧而解。
五、巩固应用,拓展提高
1、练一练
师:同学们学会了吗?下面老师就来考一考大家,你们有信心接受挑战吗?(出示题目)
(1)、小方和小丽同时从家出发,经过6分钟两人在少年宫相遇。她们两家相距多少米?
(2)、两列火车分别从甲、乙两地同时相对开出,5小时后相遇。甲车每小时行110千米,乙车每小时行100千米。甲、乙两地间的路程是多少千米?
指两名“学困生”上台板演,其余同学做在练习本上。
师:比一比谁做题最认真、最细心,书写最端正!(教师台下巡视有无典型错误)
2、议一议
(1)更正
①观察。师:做完的同学认真看黑板上同学做的和你是否一样。
②纠错。师:和黑板上同学不一样的请举手!(点名让学生上台用不同颜色的粉笔在原题旁边更正,不要擦去原来的)下面的同学如果你发现自己错了,在下边要及时改正过来。
(2)讨论
师:到底谁对谁错呢?下面我们来评议一下。
①先评议第一题。师:第一题是对还是错?为什么对?错在哪里?重点分析对比两种不同算法。
追问:每一步求的什么?如:70+60求的是什么?乘6表示什么意思?
②评议第二题。师:第二题是对还是错?为什么对?错在哪里?重点分析对比两种不同算法。
追问:每一步求的什么?如:110+100求的是什么?乘5表示什么意思?
③评价黑板上的板演。师:谁做对了而且写也字得漂亮?(可实行等级评价或分数评价)
④同位互改,调查统计。师:下面的同学同位之间互相批改一下。做全对的同学请举手;做错的同学请举手,说一说你怎么错的?(指名说一说)请做错的同学抓紧时间订正一下。
3、全课小结
师:今天这节课我们学习了相遇问题,谁能总结一下相遇问题方法?(个别学生说)
4、作业
师:下面我们就利用今天所学的知识来做作业,比一比谁做题最认真、最细心、书写最整洁!
作业:配套练习册相关内容。
练习:课本第47—48页“自主练习”第3题、第6题。
板书设计:
相遇问题
解法1:65×6+75×6解法2:(65+75)×6=390+45=140×6
小学五年级数学《相遇问题》教案 5
教学目标:
1、了解相遇问题的特点,并学会解答求路程的相遇问题。
2、通过操作、观察、比较、分析,提高学生灵活解答的能力。
3、培养学生学习数学的兴及趣创新意识。
教学重点:
掌握求路程的相遇问题的解题方法。
教学难点:
理解相遇时,两人所走路程的和正好是两地的'距离,相遇时间为两人共同所走的同一时间。
教学时间:
一课时
教具准备:
实物投影仪、多媒体CAI、小黑板
教学过程:
一、复习
1、列式计算
(1)李诚从家到学校,每分钟走70米,4分钟到达,他家离学校有多远?
(2)张华从家到学校,每分钟走60米,4分钟到达,他家离学校有多远?
2、板出关系式:速度×时间=路程
二、引入
过去,我们研究的是一个物体运动时速度、时间与路程之间的关系,今天我们就来研究两个物体运动时速度、时间与路程之间的关系。
三、新授
1、教学准备题
(1)点击课件中准备题,出示题目。
(2)学生理解题意。
(3)找出出发时间、地点、运动方向。
相向而行
时间
(4)点击热键和强调出发时间和运动方向。
(5)用课件演示两人同时从两地向对方走去,引导学生思考会出什么情况。利用课件继续演示会出现的三种情况(相距、相遇、交叉而过)。
(6)利用课件出示准备题的表格,指导学生填表格的一、二行并课件演示填空内容。
(7)请一学生上来利用交换性课间完成表格第三行的填写。
(8)引导学生讨论:出发三分钟后,两人之间的距离变成了多少?这时,张华走了几分钟?李诚呢?他们俩人共走了几分钟?两人所走路程的和与两家有什么关系?
(9)小结:出发一段时间后两人之间的距离变成了零,这时两人就相遇了,这就是我们这节课要研究的——相遇问题。(板书课题:相遇问题)
2、教学例5。
(1)点击新课出示例5。
(2)理解题意。
(3)四人小组讨论:
a、两人是怎样走向学校的?
b、4分钟后两人怎样?
c、两人所行的路程与全路程有什么关系?
(4)学生试做。
(5)用电脑课件演示解题思路并讲评。
(6)学生看书、质疑。
(7)小结:我们解例5时用了哪两种方法?
三、巩固练习
1、学生做课本第59页的第1题和第2题。
2、利用课件出示选择题:
两人同时从两地走来,甲每分走52米,乙每分走48米,走了10分钟,两地相距多少米?
(1)2000米(2)1000米(3)无法确定。
四、全课总结
1、今天学了什么内容?
2、解决这样的问题,我们用了哪几种方法?
3、质疑。
五、聪明题
小华和小明相向而行,小华以每分钟20米的速度走了3分钟后,小明才开始出发,他每分钟走25米,5分钟后两人相遇,两地相距多少米?
小学五年级数学《相遇问题》教案 6
教学目标:
1、结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2、能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3、体验用方程解决问题的优越性,获得自主解决问题的积极情感,增强学好数学的信心。
教学重点:
正确地寻找数量之间的相等关系。
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的'应用题的解法。
教学过程:
一、激发
1.在相遇问题中有哪些等量关系?
板书:甲速×相遇时间+乙速×相遇时间=路程
(甲速+乙速)×相遇时间=路程
2.出示复习题:甲乙两列火车分别同时从北京和上海开出,相向而行。甲车每小时行122千米,乙车每小时行87千米,经过7小时相遇。北京到上海的路程是多少千米?
生做完后,指名说一说自己是怎样解答的,师画出线段图,并板书出两种解法。
甲车相遇乙车
每小时122千米每小时87千米
北京上海
第一种解法:用两车的速度和×相遇时间:(122+87)×7
第二种解法:把两车相遇时各自走的路程加起来:122×7+87×7
3.揭示课题:如果我们把复习准备中的第2题改成“已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度”,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。(板书课题)
二、尝试
1.出示例题:北京到上海的路程是1463千米,甲乙两列火车分别同时从北京和上海开出,相向而行。乙车每小时行87千米,经过7小时相遇。甲车每小时行多少千米?
2.指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。
3.根据线段图学生找出数量间的相等关系:
甲车7小时行的路程+乙车7小时行的路程=1463千米
4.设未知数列方程并解答。
解:设甲车平均每小时行x千米。
87×7+7x=1463
609+7x=1463
7x=1463-609
7x=856
x=856÷7
x=122
答:甲车平均每小时行40千米。
4.启发学生用不同方法列方程,并说说方程所表示的数量关系。表示相遇时,两车的速度和与时间的积等于两地间铁路的长度。
三、应用
试一试,试着让学生列出两种方程,如:
32x+32×7=480,
480-32x=32×7
四、体验
相遇问题中求速度的应用题,列方程解比较简便。列方程解求速度、时间等问题时,首先要根据以前学习的相遇问题中数量间的相等关系,设未知数列方程,再正确地解答。
五、作业
练一练
教学后记:
这节课的最大特点是演示取代了教师的讲解和灌输,激发了学生浓厚的学习兴趣和求知欲望,学生学得比较轻松、愉快。不仅掌握了应用题的两种解答方法,而且明白了知识的形成过程,也培养学生自主探究、合作交流的意识和提出问题、分析问题、解决问题的能力。通过这节课,我体会到学生学习需要经历亲身的体验,才能获得切实的感受,感受越深,理解数学知识。
小学五年级数学《相遇问题》教案 7
教学内容:
教科书P14~P15例10、练一练P16第4~7题
教学目标:
1.使学生在解决实际问题的过程中,进一步理解并掌握形如ax+bx=c的方程的解法。结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2.能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信心。
教学重点:
正确地寻找数量之间的相等关系
教学难点:
掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:
一、复习导入
1.在相遇问题中有哪些等量关系?
甲速相遇时间+乙速相遇时间=路程(甲速+乙速)相遇时间=路程
2.一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是85千米/时。两地相距多少千米?
第一种解法:用两车的速度和相遇时间:(95+85)3
第二种解法:把两车相遇时各自走的路程加起来:953+853
师:画出线段图,并板书出两种解法
3.揭示课题:如果我们把复习准备中的第2题改成已知两地之间的路程、相遇时间及其中一辆车的.速度,求另一辆车的速度,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。(板书课题)
二、教学新课
1.出示P14例10
一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。客车的速度是95千米/时,货车的速度是多少?
(1)指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。
(2)根据线段图学生找出数量间的相等关系
甲速相遇时间+乙速相遇时间=路程
(甲速+乙速)相遇时间=路程
(1)列方程
设未知数列方程并解答。启发学生用不同方法列方程。
解:设货车的速度是为x千米/时。
953+3x=540(95+x)3=540
285+3x=146395+x=5403
3x=540-28595+x=180
3x=255x=180-95
x=2553x=85
x=85
答:货车的速度是为85千米/时。
(4)检验
三、拓展应用
1.P15练一练
(1)先画线段图整理条件和问题
(2)找出数量间的相等关系
(3)列方程并解方程
2.P16第4题
1.5x-x=1
4x-85=20
0.22+0.4x=5
3.看图列式
(1)求路程
(2)求相遇时间
(3)求乙汽车速度
4.P16练习三第7题
四、课堂小结
今天这节课我们学习了什么内容?你有哪些收获?
五、课堂作业
P16练习三第5、6题。
小学五年级数学《相遇问题》教案 8
教学目标:
1、通过研究学习,帮学生理解相遇问题的意义及特点,学会分析相遇问题的数量关系,会解决相遇求路程的问题。
2、培养学生的自主探究知识的能力和创新实践能力,提高学生的质疑水平。
3、培养学生的应用意识,提高学生学习数学的兴趣和自信心。
4、培养学生团结协作精神。
教学重点:
1、学会分析相遇问题的数量关系,会解决相遇求路程的问题。
2、提高学生自主探究知识的能力。
教学难点:
理解分析相遇问题的数量关系。
教学过程:
一、联系实际,复习导入
谈话:从你家到学校的路同学们都很熟悉了,那你能说一说从你家到学校的路程是多少吗?怎样能知道呢?(指名学生说)
学生发言交流。
教师点拨:用速度时间=路程的方法。
二、探索新知。
(一)、理解相向而行、相背而行
1、教师:如果找你的一个好朋友来,你们两人合作,怎样走能计算出路程?
小组讨论,全班交流。
引导学生说出两种方法:
①一人从家里走,一人从学校走,一直到两人相遇,两人所走的路程相加。
②从两地之间一人走到学校,一人走到家,所走的路程相加。
结合两种方法,借助手势,帮学生理解相向、相背的含义。
2、课件演示:
同学们仔细看,把你看到的和同学们说一说。
小组交流,小组汇报。
出示线段图,教师点拨:两辆汽车同时从两地出发,相向而行,相遇了。(板书:两地同时相向)
接着看,把看到的和同学们说一说。
小组交流,小组汇报。
出示线段图,教师点拨:两辆汽车同时从同地出发,向相反的方向行驶,各自走了一段路。(板书:同地同时相背)
(板书:)
相向而行、相背而行都属于相遇问题这节课我们一起来研究有关相遇问题的知识。(板书:相遇问题)
问你想研究哪一种运动方式?看到这两种运动方式,你想知道什么呢?指名说。
3、教师:这节课我们重点研究相遇求路程的问题,要求路程需要知道什么条件?指名说:速度和时间。现在,小组合作编一道相遇求路程的应用题,然后再解答出来。
小组编题解题。(指做的最快的一组板演,板演两种方法)
全班交流:先看板演同学做的.,听这一组编的题,看解答对不对。这两位同学这样解答,你有什么问题要问吗?(指名问,学生相互解答)
你喜欢那种解答方法,说一说理由。
选择一种适合自己的方法解应用题就可以了。
指2组汇报编的题及解答方法。
三、练习提高。
1、只列式,不计算。指名说。
两辆汽车同时从邹平和滨州相对开出,从邹平开出的汽车每小时行45千米,从滨州开出的汽车每小时行50千米,经过1.2小时相遇,邹平到滨州的路程是多少千米?
两艘轮船同时从同一个地方向相反的方向开出。甲船每小时行26千米,乙船每小时行17千米,经过2.5小时,两船相距多少千米?
2、提问题,列出算式。
张强和王朋两人同时从两地相向而行,张强骑摩托车每小时行30千米,王朋骑摩托车每小时行40千米,经过0.5小时相遇,?
小组合作,提出一个问题,列出算式,看哪个小组提的问题最多。全班交流。
3、选择。
①小伟和小洁同时从自己家里相对向学校走去,小伟每分钟走60米,小洁每分钟走70米,经过8分钟,两人还相距260米,他们两家相距多少米?()
②小伟和小洁同时从自己家里相对向学校走去,小伟每分钟走60米,小洁每分钟走70米,经过8分钟,两人交叉而过又相距260米,他们两家相距多少米?()
(60+70)8(60+70)8+260(60+70)8260
学生读题后,指名说。
4、思考:一辆客车和一辆货车从两地相对行驶,客车每小时行60千米,货车每小时行65千米,客车开出1小时后,货车才开出,再过2小时两车相遇,两地之间的路程是多少千米?
小组交流,全班汇报。
四、课堂小结:
说一说通过这节课的研究学习你学到了什么知识?指几名学生说一说。
小学五年级数学《相遇问题》教案 9
教学要求:
使学生掌握相遇问题应用题的相等关系,含用方程分析解答相遇时求其中一个速度的应用题。
教学过程:
一、复习准备
1、解下列方程
(0.9+x)×3=3.6
0.32×5+5x=4.6
2、出示准备题
(1)全体学生审题后列式解答(用两种方法解答)
(2)解题后口述解题思路:
(58+54)×1.5(先算速度和,在求两地路程)
58×1.5+54×1.5(先分别算出两车相遇时行的路程,再求总路程)
二、学习例6:
1、审题:
(1)与准备题比较不同在哪里?
(2)如果设乙车每小时行X千米,列方程解你会么?
2、解答后反馈:
(1)你是如何解答的?
(58+x)×1.5=168
(2)还能列出怎样的方程?
58×1.5+1.5x=168
1.5x=168-87
(2)比较这两个方程在思路上有什么不同?
3、与这两种方程相应的算术解法是怎样的?
4、师小结:用方程解这类应用题一般根据速度和×相遇的时间=两地的'路程这个等量关系来列出方程。
三、巩固学习
1、独立练习:练1练第1、2两题。
全体学生解答后同坐两人互相说说解答的方法步骤。
2、出示试一试。
(1)弄清问题和要求要求。(怎样解方便就怎样解
(2)解答后讨论:与例6有比较有什么不同?
你是如何解答的?能否求速度和?
(3)你能列出与这两个方程相应的算术解法吗?
1、独立作业。
(1)练一练第三题,学生独立完成
(2)反馈:与例6比较有什么不同?解题方法呢?
师指出:运动物体行驶的方向不同,行驶的结果也不同,一种是相遇,而另一种则是相离,但计算方法相同。
四、课堂总结
今天这节课我们学习用方程解什么应用题?这类应用题有有哪几种情况?
列方程解这类应用题应注意什么?
五、布置作业
作业本59。
小学五年级数学《相遇问题》教案 10
教学内容:
教材第36—37页例5和“练一练”,练习八第1~4题。
教学要求:
使学生认识相遇问题,初步认识相遇问题求路程应用题的数量关系,理解和掌握相遇问题求路程应用题的解题思路和解题方法,学会用不同方法解答,并认识两种不同解法之间的联系,提高分析推理的能力。
教具准备:
男学生和女学生的人像、学校图片,复习题的问题卡片。
教学过程:
一、复习准备
1.做第36页复习题。
小黑板出示。
让学生依次提出问题,老师用卡片贴出问题卡片,并让学生口头列式,老师板书算式和结果。
结合前两题解答提问:
前两题是已知两个什么数量,可以求什么问题?是按怎样的数量关系解答的?
结合第(3)题解答说明:
第(3)题求的是两人每分行的总米数,我们可以把它叫做两人的速度和。(板书:速度和)1
追问:什么叫做两人的速度和?第(3)题小明和小芳的速度和是多少?
2.演示相遇问题。
我们过去已经学过一个物体运动的速度、时间和路程的关系,今天开始,我们研究两个物体的运动问题。现在我们用一条线段表示一段路程,两名学生同一时间从路程的两端出发,(演示)这叫“同时出发”;(板书:同时出发)面对面走来,(演示)这叫做“相向而行”;(板书:相向而行)(继续演示)请大家看,两人在途中怎样了?(板书:相遇)
提问:刚才我们看到的是两名学生从两地怎样出发的?是怎样行走的?结果怎样了?
说明:像这样两人分别从两地同时出发,相向而行,结果在途中相遇的问题,就是我们今天要研究的两个物体运动中的相遇问题。(板书:相遇问题)
(评析:先通过演示明确相遇问题里物体运动的特点,可以分散教学中的难点,有利于学生学习下面的例题。)
二、教学新课
1.教学例5。
(1)出示例5,同时贴出男、女学生人像和学校图片。
提问:从图上看,小明和小芳同时从家里出发走向学校,他俩的行走有什么特点?在哪里相遇?
题里告诉我们什么条件?(在线段上表示条件)要求什么问题?(表示出问题)
提问:从图上看,他们两家相距的米数,是哪两部分路程的和?求两家相距的米数就是求什么?
要求两人4分所走路程的和,要先求什么?这道题要分哪几步来做?
让学生在课本上先分步列式解答,再列综合算式解答,同时指名两人板演,分别用分步算式和综合算式解答。
集体订正,说一说每一步求的什么。
提问:这样解答是怎样想的?
(2)教学第二种解法。
提问:按照刚才的复习题,根据题里小明每分走70米,小芳每分走60米,可以求出怎样的数量?线段图上指的哪两部分的和?
(用红色在线段上表示)他们经过4分相遇,两人4分走的路程就是几个这样的`速度和?(用手势在图上表示)
按照这样的分析想,要求两人4分所走路程的和,就要先求什么,再求什么?
让学生在课本上先分步列式解答,再列综合算式解答。
学生口答综合算式与计算过程,老师板书。
提问:这里第一步求的什么?第二步为什么乘以47这样解答的数量关系式是什么?(板书:速度和x时间=路程)
指出:速度和是两人每分一共走的路程,乘走的时间,就表示有几个这样的速度和,这样就可以求出两家相距的米数,也就是路程。
(3)解法比较。
想一想,这两种解法各是怎样的数量关系?两种解法有什么联系?
2.小结。
这里第一种解法是先算每人4分走的路程,再加起来就是两人一共走的路程;第二种解法是先求每分的速度和,再乘以时间就是两人4分一共走的路程。两种解法的算式正好符合乘法的分配律。
三、巩固练习
1.做“练一练”的题。
学生读题。
提问:第一种解法可以按怎样的数量关系来算?第二种解法可以按怎样的数量关系来算?
指名两人各用一种方法解答,其余学生用两种方法解答在练习本上。
集体订正,说明每一步求的什么。
2.做练习八第3题。
让学生读题。
提问:这里的题目和刚才做的有什么地方不同?从图上看,求两人相距多少米就是求什么?根据线段图上表示的题意,求两人4分所走的路程和可以怎样算?
让学生做在练习本上。
四、课堂小结
这堂课学习的是相遇问题里求什么的应用题?(接相遇问题板
书:求路程的应用题)怎样解答相遇问题求路程的应用题?
五、布置作业
课堂作业:练习八第1、2题。
家庭作业:练习八第4题。
小学五年级数学《相遇问题》教案 11
教学目的:
1.通过学习,帮助学生理解"相遇问题"的意义及特点,培养学生初步的空间观念。
2.学会分析"相遇问题"的数量关系,掌握其两种解答方法。
教学重点:
掌握相遇问题的结构特点及两种解答方法。
教学难点:
理解相遇问题的解题思路。
教学准备:
1.计算机辅助教学软件一套。
2.每个学生两个剪贴人。
教学过程:
一、复习
口答:张华从家向学校走去,每分60米,3分走多少米?
学生列式解答。说出数量关系。
二、新课教学
1.导入新课。
(1)通过电脑演示了解两个物体的运动方向。
多媒体演示三种运动方向,学生依次答问。
说明:面对面的走就是相向而行,或者称相对而行;背对背的走就是背向;一起向同一个方向走就是同向。(屏幕显示"相向""背向""同向")
(2)通过电脑演示探究两个物体在相向运动中出发的地点、时间和运动结果。
出发的地点:两地
出发时间:同时或不同时
运动结果:相遇、相距或相遇后相距
(3)揭示课题:两个物体在运动的过程中会出现一些情况,其中也包括相遇的情况。下面,我们就来研究相遇问题(板书:相遇问题)
2.学习准备题。
(1)出示准备题。
(2)学生填表,全班检查。
(3)全班讨论:
①出发3分后,两人之间的距离变成了多少?
②相遇时,两人所走路程的和与两家距离有什么关系?
③1分两人所走路程的和130米是怎样来的?我们可以用哪些方法求出2分两人所走路的和260米呢?390米呢?
师:通过讨论,我们知道了用不同的方法可以求出260米和390米,还知道了两个物体从两地同时出发,相向而行,相遇时,两人所走路程的和等于两地之间的距离。
3.教学例5。
(1)出示例5:
小强和小丽同时从自己家里走向学校(如下图)。小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?
提问:这题的'已知条件和问题是什么?
这道应用题讲了两个物体的运动,当两个物体运动时,我们还要注意哪些问题?
(2)启发学生利用已学知识尝试解答例5。
(3)指名回答,教师板书在黑板上。
65×4+70×4还有不同的解法吗?(65+70)×4
=260+280=135×4
=540(米)=540(米)
(4)分析解题思路。
①通过线段图来分析"解法一"的解题思路。
提问:65×4表示什么?70×4呢?把两人各自走的路程加起来,又是什么?
谁能说说这种解法的思路?
②通过多媒体演示分析"解法二"的解题思路。
提问:65+70求什么?为什么要这样列式?能说说你的想法吗?
学生讲想法,教师以电脑演示引导学生观察,使学生认识"每分两人所走路程的和"。然后提出:4个每分两人所走路程的和与两家的距离有什么关系?(电脑演示)
(5)检验作答。
(6)比较两种解法。
(7)小结:今天这节课,我们学习了什么内容?(相遇问题)在解答这种应用题时,首先,我们耍弄清两个物体运动的哪些问题(方向、地点、时间、结果),再灵活运用我们刚才学的这两种方法解答。
三、巩固练习
1.基本练习。
①用两种方法列式解答。
小东和小英同时从自己家里出发,相向而行,到"迎澳门回?quot;展览馆去参观,小东每分走50米,小英每分走40米,经过3分两人在展览馆相遇,他们两家的距离是多少米?
②用第二种解法只列式,不计算。
两列火车从两个车站同时相向开出,甲车每小时行80千米,乙车每小时行70千米,经过5小时两车相遇,两个车站之间的铁路长多少千米?
2.综合练习。(抢答)
①甲乙两人同时从两地相向而行,甲骑摩托车每小时行36千米,乙骑自行车每小时行12千米,求两人每小时行的路程和?
②根据算式补充条件。
一列货车和一列客车同时从两站相对开出,货车每小时行48千米,客车每小时行52千米,___两车相遇,两地相距多少千米?
(48+52)×3
③根据算式补充问题。
甲乙两人从两地同时相对走来,甲每分走45米,乙每分走54米,经6分后两人相遇,?
(45+54)×6
④只列式不计算。
两辆汽车同时从一个地方向相反的方向开出。甲车平均每小时行42千米,乙车平均每小时行38千米,经过3小时,两车相距多少千米?
3.思考题:甲乙两人同时从两地相对出发,甲每分行50米,乙每分行40米,行了5分两地相距多少米?
下面哪个答案正确?
1.50+40×52.(50+40)×53.无法解答
四、课堂总结。
小学五年级数学《相遇问题》教案 12
教学目标
1、使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题、
2、提高学生分析问题,解决问题的能力、
3、培养中国学习联盟胆尝试,勇于探索的精神、
教学重点
1、找到与求路程应用题的内在联系、
2、正确分析解答求相遇时间的应用题、
教学难点
掌握求相遇时间应用题的解题思路、
教学过程
一、复习引入
(一)出示复习题
小东和小英同时从两地出发,相对走来、小东每分走50米,小英每分走40米、经过3分钟两人相遇、两地相距多远?
1、画图,列式解答、
2、订正答案
3、小组讨论:试着改编一道求相遇时间应用题、
二、探究新知
例4、两地相距270米、小东和小英同时从两地出发,相对走来、小东每分走50米,小英每分走40米,经过几分两人相遇?
1、讨论:复习题的线段图该怎样改一改、并试着画一画、
2、联系复习题的解法,尝试解答
3、订正思路
想法一:两人相遇时,所走的路程是270米、几分走270米,就是几分相遇、
270÷(50+40)、
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和、
三、反馈调节
两人同时从相距6400米的`两地相向而行、一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
1、学生独立分析解答、
2、订正答案、
3、质疑:对于“求相遇时间”应用题还有什么问题?
4、教师提问
(1)要求“相遇时间”题目中需告诉我们哪些条件?
(2)例4与复习题之间有什么联系?又有什么区别?
四、巩固练习
(一)从北京到沈阳的铁路长738千米、两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米、两车开出后几小时相遇?
(二)两艘军舰同时从相距948千米的两个港口对开、一艘军舰每小时行38千米、另一艘军舰每小时行41千米、经过几小时两艘军舰可以相遇?
教师提问:怎样验证结果是否正确?
(三)两个工程队合开一条670米的隧道,同时各从一端开凿、第一队每天开12.6米,第二队每天开14.2米、这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(四)长沙到广州的铁路长726千米、一列货车从长沙开往广州,每小时行69千米、这列货车开出后开往广州,每小时行69千米、这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米、再过几小时两车相遇?
五、课后小结
我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
探究活动
猜两位数
活动目的
激发学生学习数学的兴趣、
活动方法
表演前请观众心里想好一个两位数,再请观众将自己想的两位数乘167,然后加上2500,请观众把最后得数报出来,表演者就知道观众心里想的是哪一个两位数、
例如:观众想的是59,他按规定计算出
59×167+2500=12353
表演者根据报的得数计算
53×3=159
于是就知道观众想的是59、
活动过程
1、教师进行表演
2、学生探讨其中的奥妙
3、学生自己设计这样的几个游戏、
猜数方法
将得数末两位乘3,取乘积的末两位就是观众心中所想的两位数、
六、板书设计
小学五年级数学《相遇问题》教案 13
教学目标:
1、理解相遇问题的基本特点,并能解答简单的相遇求路程的应用题。
2、培养学生初步的逻辑思维能力和解决简单实际问题的能力。
3、渗透运动和时间变化的辩证关系。
教学重点:
掌握求路程的相遇问题的解题方法。
教学难点:
理解相遇问题中时间和路程的特点。
教学过程:
一、以旧引新
1、口答列式,并说明理由。
(1)一辆汽车每小时行60千米,4小时行多少千米?
(2)一辆汽车4小时行了240千米,每小时行多少千米?
(3)一辆汽车每小时行60千米,行驶240千米需要几小时?
板书:“速度×时间=路程”
2、提出新问题
(1)录音(或录相)“有一天,张华放学回家,打开书包正准备做作业。发现没在意将同桌李诚的作业本带回了家,她赶紧给李诚打电话通知他,两人在电话中商量了一会,如果步行的话,有几种办法可以让张华把作业本还给李诚呢?同学们你能帮助他们想出几种办法呢?”
(2)小组集体讨论
a、张华送到李诚家;
b、李诚来张华家取走;
c、两人同时从家出发,向对方走去,在途中相遇,交给李诚。
(3)认识相遇问题
a、找两名学生表演第三种情况,其余学生观察并说出是怎么走的?
(同时,从两地,相对而行)
b、两个人之间的距离有什么变化?(越来越近,最后变为零)
教师指出:当两个人的`距离为零时,称为“相遇”
具有“两物、同时从两地相对而行”这种运动特点的行程问题,叫做“相遇问题”(板书课题:相遇问题)
3、出示准备题:
张华距李诚家390米,两人同时从家里出发,向对方走去。张华每分走60米,李诚每分走70米。
根据已知条件填写下表(课件演示:行程问题)
走的时间
张华走的路程
李诚走的路程70米
两人所走路程的和
现在两人的距离
1分
60米
70米
i
i
2分
i
i
i
i
3分
i
i
i
i
思考:①出发3分钟后,两个人之间的距离是多少?说明什么?(相遇)
②两个人所走路程的和与两家的距离有什么关系?
(两人所走路程和=两家距离)
二、学习新课
1、出示例5
小强和小丽同时从自己家里走向学校,小强每分走65米,小丽每分走70米。经过4分,两人在校门口相遇。他们两家相距多少米?
2.教师指名读题,并在例题中“同时”、“相遇”的下边用红笔做上标记。请同学解释这两个词的含义。
3.动画演示两人行进的过程,并在图中显示出已知数据。(演示课件:相遇问题下载)
4.由学生尝试解答例5
5.结合线段图订正答案。
6.比较:(1)两种算法哪一种比较简便?
(2)两种算法之间有什么联系?
三、巩固练习
1、志明和小龙同时从两地对面走来,志明每分走54米,小龙每分走52米,经过5分两人相遇,两地相距多少米?
2、两列火车从两个车站同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时相遇。两个车站之间的铁路长多少千米?
观察例5和上面两个习题:
讨论:行程问题在出发地点、出发时间、动动方向、运动结果上有什么共同特点?
板书:出发地点:两地
出发时间:同时
运动方向:相向(相对、对面)
运动结果:相遇
3、两只轮船同时从上海和武汉相对开出。从武汉出发的船每小时行26千米,从上海开出的船每小时行17千米,经过25小时两船相遇。上海到武汉的航路长多少千米?
4、两辆汽车同时从一个地方向相反方向开出。甲车平均每小时行44.5千米,乙车平均每小时行38.5千米。经过3小时,两车相距多少千米?
(1)由学生用手势表述题意。
(2)比较:与前面题目相比,有什么不同?又有什么共同之处?
5、甲、乙两列火车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再经过2小时相遇。两地间的铁路长多少千米?
(1)由学生用手势语言向同组同学介绍题意。
(2)由学生独立解答
(3)出示四种不同解法,请同学小组讨论并做出判断。
方法一:75×1+75×2+69×2方法二:75×(1+2)+69×2
方法三:75×1+(75+69)×2方法四:(75+69)×(2+1)
三、课堂小结:
通过上面两个例题我们可以看出,行程问题也还有许多变化,请你猜一猜,行程问题还可能有哪些变化?
(相背、同向、不同时、不相遇、相遇后返回第二次相遇,三个物体运动......)
今天我们学习的是行程问题中最基本的一种,求路程,它需要告诉我们哪些条件?怎样求?如果要求“相遇时间”该告诉我们哪些条件?怎样求呢?下节课我们继续研究。
四、课后作业:
练习十四1、2、3、5、6、
五、板书设计:
小学五年级数学《相遇问题》教案 14
教学目标:
1.在理解题意的基础上寻找等量关系,初步掌握列方程解两、三步计算的简单实际问题。
2.从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学重点:
在理解题意的基础上寻找等量关系,能列方程解“相遇问题”。
教学难点:
从不同角度探究解题的思路,初步体会利用等量关系分析问题的优越性。
教学准备:
配套课件
一、导入阶段
1.复习行程问题中的速度、时间、路程的基本数量关系。(口答
甲每分钟行50米,乙每分钟行40米,1分钟两人共行几米?
2分钟两人共行几米?
5分钟两人共行几米?
2.根据题意写出含有字母的式子。
一辆卡车每小时行45千米,一辆轿车每小时行60千米,卡车和轿车同时行了x小时,问:卡车行了多少千米?
轿车行了多少千米?
两车共行了多少千米?
二、结合实例,探究新知
1.出示例题1
沪宁高速公路全长约270千米,一辆轿车和一辆客车分别从上海和南京两地同时出发,相向而行。轿车平均每小时行100千米,客车平均每小时行80千米,经过几小时两车在途中相遇?
2.学生读题,找出未知量与已知量之间的等量关系。
(1)你可以从题目中收集到哪些数学信息?
(2)学生介绍,教师画线段图。
(3)分析:设经过x小时两车在途中相遇,那么客车行的.路程可以用80x千米表示,轿车行的路程可以用100x千米表示。
(4)寻找等量关系:客车行的路程+轿车行的路程=沪宁高速公路全长。
(5)列方程解决问题:
解:设经过x小时两车在途中相遇。
80x+100x=270
180x=270
x=1.5
答:经过1.5小时两车在途中相遇。(检验)
三、巩固深化,灵活应用
1.练一练
(1)小亚和小巧同时从相距路程为960米的两地出发,相向而行,小亚平均每分钟走58米,小巧平均每分钟走62米,几分钟后两人在途中相遇?(学生尝试画线段图,反馈交流)
解:设x分钟后两人在途中相遇。
58x+62x=960
120x=960
x=8
答:8分钟后两人在途中相遇。(检验)
(2)两个城市之间的路程为405千米,一辆客车和一辆货车同时从这两个城市出发,相向而行,客车平均每小时行44千米,4.5小时后两车相遇,货车平均每小时行多少千米?
客车行的路程+货车行的路程=两个城市之间的路程
解:设货车平均每小时行x千米。
44×4.5+4.5x=405
198+4.5x=405
4.5x=207
x=46
答:货车平均每小时行46千米。(检验)
2.看图解题
分析比较,与例题比较,哪些题用方程解容易想?为什么?
3.补充练习。(学生尝试着独立完成)
(1)一辆客车和一辆货车同时从路程为260千米的两地同时出发,相向而行,客车平均每小时行60千米,货车平均每小时行44千米,几小时后两车在途中相遇?
(2)小巧和小胖合作打一篇1850字的文章,小巧平均每分钟打36个字,小胖平均每分钟打38个字,完成这篇文章需要多少分钟?
(3)甲乙两人同时从路程为546米的两地出发,相向而行,6分钟后在途中相遇,已知甲平均每分钟走50米,乙平均每分钟走多少米?
四、全课总结
小学五年级数学《相遇问题》教案 15
教学目标:
1、使学生掌握“求相遇时间”应用题的结构特点,并能正确解答求相遇时间的应用题。
2、提高学生分析问题,解决问题的能力。
3、培养学生大胆尝试,勇于探索的精神。
教学重点:
1、找到与求路程应用题的.内在联系。
2、正确分析解答求相遇时间的应用题。
教学难点:
掌握求相遇时间应用题的解题思路。
教学过程:
一、复习引入
1、出示复习题
小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米。经过3分钟两人相遇。两地相距多远?
2、指名请一同学板演线段图,其它同学独立列综合等式解答。
3、订正答案
教师板书可能出现的两种方法,重点提问学生(50+40)×3的解题思路,并板书:
速度和×相遇时间=路程
4、小组讨论:试着改编一道求相遇时间应用题。
二、探究新知
出示例6:两地相距270米。小东和小英同时从两地出发,相对走来。小东每分走50米,小英每分走40米,经过几分两人相遇?
(1)讨论:复习题的线段图该怎样改一改。并试着画一画。
(2)启发提问:联系复习题的解法,想想这题怎样解?(尝试解答)
(3)订正思路
想法一:两人相遇时,所走的路程是270米。几分走270米,就是几分相遇。列式
270÷(50+40)。
想法二:根据复习题“速度和×相遇时间=路程”,依据乘法的因积关系可得:
相遇时间=路程÷速度和。
三、反馈调节
两人同时从相距6400米的两地相向而行。一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?
(1)由学生独立分析解答,教师行间巡视,及时发现,并解决学生存在的问题。
(2)订正答案,简单说明道理。
(3)质疑:对于“求相遇时间”应用题还有什么问题?(组织学生解疑)
(4)教师提问:①要求“相遇时间”题目中需告诉我们哪些条件?
②例6与复习题之间有什么联系?又有什么区别?
四、巩固练习
1、从北京到沈阳的铁路长738千米。两列火车从两地同时相对开出,北京开出的火车,增均每小时行59千米;沈阳开出的火车,平均每小时行64千米。两车开出后几小时相遇?
2、两艘军舰同时从相距948千米的两个港口对开。一艘军舰每小时行38千米。另一艘军舰每小时行41千米。经过几小时两艘军舰可以相遇?
提问:怎样验证结果是否正确?
3、两个工程队合开一条670米的隧道,同时各从一端开凿。第一队每天开12.6米,第二队每天开14.2米。这个隧道要用多少天才能打通?打通时两队各开凿多少米?
(1)由学生独立解答
(2)提问:
①这个题和今天学习的“求相遇时间”问题有什么内在联系?
②要求打通时两队各开凿多少米,就要先算出什么?
(3)订正答案
4、长沙到广州的铁路长726千米。一列货车从长沙开往广州,每小时行69千米。这列货车开出后开往广州,每小时行69千米。这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米。再过几小时两车相遇?
(1)审题,理解题意。
(2)用手势表述题意,试画线段图分析。
(3)由学生尝试解答。
提问:和前面的题目相比,难在哪儿?
五、课后小结
我们现在所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?
六、板书设计
小学五年级数学《相遇问题》教案 16
本课内容是在前几册教材中已教学过有关速度、时间、路程之间数量关系的基础上进行学习的。但是,以前学习的这种应用题都是研究一个物体的运动情况。从这部教材开始,将要研究两个物体(两人、两车、两船等)的运动情况。两个物体的运动情况是多种多样的:有时间问题、方向问题、出发点问题等。学生要全部掌握这些问题是比较困难的。本册教材的重点是教学两个物体相向运动的应用题。其中,又以“相遇求路程”和“相遇求时间”两种为主。
本节课主要学习“相遇求路程”的问题。这节课我准备采用“情境教学法”让学生亲自参与到学习活动中,去体验和学习相遇问题的主要条件(同时、相向、两地、同时出发、相遇等)和相遇问题中主要的数量关系(一物体所行路程+另一物体所行路程=总路程速度和╳时间=总路程)。
教学设计
一、教学内容:
九年义务教育第九册相遇求路程的问题
二、教学目标:
1.知识目标:在主动参与活动中,学生能理解“同时出发”、“向相而行”等条件的含义会解决相遇求路程的题目。
2.能力目标:培养学生能把生活实际问题转化成相遇问题模型,并试着加以解决的能力。
3.情感目标:①充分调动学生的积极性,激发学生学习数学的兴趣;②通过学生的合作交流,培养学生的合作意识和自主学习的意识;③感受数学在实际生活中的价值,增强学生学好数学的自信心。
三、教学重点、难点:
①学生能理解相遇求路程的基本的数量关系,并能顺利地解答一般问题;②学生能利用建构的'相遇问题模型去解决实际问题。
四、教具准备:
每生一块橡皮。
五、教学过程:
(一)、情景导入
大家平时到阜阳或外地都是怎样去的?车辆行驶要有一定的交通规则,那么你们这节课你没就来当小司机,我来当警察叔叔,现在大家应该喊我什么呢?(声齐喊警察叔叔)不过只有回答好下面两个问题才有资格“上路”。
出示问题:(1)一辆客车每小时行驶50千米,3小时行驶多少千米?
(2)一辆火车每小时行驶40千米,3小时行驶多少千米?
上面两辆车如果从两地同时出发,相向而行,两车会怎样(同时用手势表示)?(生答,师板书课题。)
(二)、演示操作、学习新知
1、用课桌做公路,同桌左边的同学做客车司机,右边的同学做货车司机演示上述两车每小时相遇的情况。
注意引导:(1)、“同时”“相向”“相距”“相遇”各是什么意思?
(2)、两车是不是在桌子中间相遇?
(3)、相遇点应该靠近那辆车?
(4)、两车各小时各走多少千米?
2、编题、并解答
(1)、找几位同学说一说刚才演示的过程可以编成什么样的应用题?两辆汽车同时从甲、乙两地相向而行,客车每小时行50千米,货车每小时行40千米,3小时相遇。两地相距多少千米?
(2)、你们认为这一题中哪些条件比较重要?
强调两地、两车、同时、相向、相遇、相距等条件的重要性。
(3)、读题,理解题意,并用自己喜欢的方式演示题意
可以两人合作用小橡皮演示,也可以两人一组走一走。
(4)、列式并计算
50×3+40×3(50+40)×3
(5)、请几位同学分别说一说两种列法的每一步各是什么意思?
(6)、检验是否合情合理。
3、尝试应用
生活中还有哪些地方存在相遇问题,你能不能选择其中的一些编成应用题并解答?
(生汇报交流、师适时点拨)
4、小结
今天我们一起学习了一种有关两种物体运动的问题——相遇问题。大家能总结一下应怎么解吗?两种方法有什么区别和联系?
(三)、作业布置
练习十四第1----3题
教学反思
这节课我用同学们比较熟悉的交通事例引入新课:我做“警察叔叔”,同学们做“小司机”。使同学们自然而然地进入学习的情境中。然后,我出了两道题,让学生只有回答好这两道题才有资格上课。学生们解决这两道题并不困难。从而增强了他们学习新知识的自信心。接着,我用手势引出课题。
学生们初步认识了相遇问题后,让学生用橡皮做小车同桌合作,在警察叔叔的指挥下,反复操作、试验来理解相遇问题中的重要条件。随后,让学生把刚才演示的过程编成应用题解答出来。并讨论两种方法的区别和联系。因为学生有了刚才的操作经验,所以非常轻松地理解了题中的数量关系并解答出来。
最后,让学生编出符合相遇问题模型的应用题,既锻炼了学生的思维又培养了学生的应用意识。
纵观这节课,学生在创设的情境中能积极主动学习,顺利地完成了教学目标。通过学习锻炼了学生的思维,培养了学生的创造精神和合作意识。教学活动体现了以学生为主的思想。教师作为教学活动的组织者、合作者,鼓励每一位学生都参与到活动中去。对学有困难的学生进行及时的帮助,使每一位学生对体验到了学习的乐趣。但是,这节课的不足之处还很多:如在小组合作学习方面组织还不太周密,有待进一步提高;语速太快也有待提高。
【小学五年级数学《相遇问题》教案】相关文章:
精选小学数学《相遇问题》教案设计05-02
小学五年级数学《相遇问题》教案12-02
小学五年级数学《相遇问题》教案06-24
数学教案-相遇问题05-02
数学教案-相遇问题(二)05-02
五年级数学相遇问题教案04-27
小学五年级数学《相遇问题》教案精选5篇02-07
小学五年级数学《相遇问题》教案5篇02-07
相遇问题教案04-25
数学教案-相遇问题求时间05-02