小学六年级数学教案

时间:2023-01-09 19:26:05 小学数学教案 我要投稿

北师大版小学六年级数学教案集锦8篇

  作为一名人民教师,时常需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。教案要怎么写呢?以下是小编为大家收集的北师大版小学六年级数学教案,仅供参考,欢迎大家阅读。

北师大版小学六年级数学教案集锦8篇

北师大版小学六年级数学教案1

  教学内容:

  教科书第1页的例1、试一试和练一练,练习一的第1~3题。

  教学目标:

  1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

  2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

  教学过程:

  一、教学例1

  1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

  学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

  提出要求:根据这两个已知条件,你能求出哪些问题?

  引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

  在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

  2、引导思考: 这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

  小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

  启发:根据上面的讨论,你打算怎样列式解答这个问题?

  学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

  3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

  学生列式计算后追问:这里得到的125%与刚才得到的'25%这两个百分数有什么关系?

  联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。

  提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

  学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

  二、教学“试一试”

  1、出示问题:原计划造林比实际少百分之几?

  启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

  学生作出猜想后,暂不作评价。

  提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

  2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

  小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

  三、指导完成“练一练”

  1、要求学生自由读题。

  2、提问:你是怎样理解“20xx年在读研究生的人数比20xx年增加了百分之几”这个问题的?

  学生讨论后,要求他们各自列式解答。

  3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

  学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

  四、指导完成练习一第1~3题

  1、做练习一第1题。

  可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

  2、做练习一第2题。

  先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

  3、做练习一第3题。

  先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。

  五、全课小结

  通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?

北师大版小学六年级数学教案2

  教学目标知识目标:

  理解比例的意义,认识比例各部分的名称。

  能力目标:

  能运用比例的意义判断两个比能否组成比例,并会组比例。

  情感目标:

  感受数学的奥秘,培养数学兴趣。

  教学重、难点教学

  重点:理解比例的意义。

  教学难点:能根据比例的意义写比例.

  突破重点、难点设想根据上学期“比的认识”,怎样的两张图片像的问题、让学生明确两种相关联的量成相除关系,且它们的比值相等时,这两个比组成比例关系。

  教学媒体多媒体课件、小黑板

  教学活动及主要语言预设学生活动预设

  一、创境激疑

  上学期学习“比的认识”时,我们讨论“图片像不像”的问题。请同学们联系比的知识,再想一想,怎样的两张图片像?(比值相等)这节课我们就一起来深入探究。

  回顾

  产生疑问

  二、互动解疑

  1、比例的意义

  在情境中感受两种相关联的量之间的变化规律。要求小组合作的形式完成,提出要求。

  (1)写出每个图片的长与宽的比

  (2)求出各比的比值

  (3)观察特点,写出规律

  板书:

  图片A:6:4=3:2=1.5

  图片B:3:2=1.5

  图片C:8:3=2.66……

  图片D:12:8=3:2=1.5

  图片E:12:2=6

  比值相等的两个比用“=”连接起来,这种等式叫做比例,今天我们一起来探讨比例的.相关知识,板书课题。

  结论:像12:6=8:4, 6:4=3:2这样表示两个比值相等的式子叫做比例。

  巩固练习:

  (1)要求每个学生写出一个比例,教师巡视指导且批阅。

  (2)要求每个学生写出一个比例,同桌交流。

  (3)做一做教材表格的题,完成后由教师批改。

  2、认识比例各部分名称

  组成比例的四个数叫做比例的项。在12:6=8:4中,12,6,8和4都是该比例的项。

  在比例中,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

  例如:12:6=8:4中12和4是比例6和8是比例

  观察

  先独立思考

  指名汇报

  共同发现、小结

  理解

  自主思考

  小组内交流探究

  汇报交流

  独立填写

  同桌交流

  指名汇报

  三、启思导疑

  1、同学们发现了一种新的判断两个比是否成比例的方法?(比值相等)

  2、这节课我们一直类比着比学习比例,比与比例仅一字只差,它们会有什么区别呢? (比是两个数相除,是一个算式;比例是两个比相等,是一个等式)

  指名谈发现

  理解

  识记

  四、实践运用

  (一)填一填。

  1、在4:7=48:84中,4,7,48,84,叫比例的( ),其中4和84是比例的。7和48是比例的。

  2、用6,3,9,8组成一个比例是( )。

  (二)下列那几组的两个比可以组成比例?为什么?

  (1)4:5和8:20

  (2)15:30和18:36

  (3)0.7:4.9和140:20

  (4)1/3:1/9和1/6:1/8

  (三)按要求写一写。

  1、先写出比值是3的两个比,再组成比例。

  2、根据1.2×25=0.6×25写出两个比例式。

  独立思考

  指名汇报

  评价订正

  五、总结评价

  这节课我们学习了什么,你有什么收获?什么样的两个量成正比例关系?

  自由小结

  板书设计:比例的认识

  12:6 = 8:4

  6:4 = 3:2

北师大版小学六年级数学教案3

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

  2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

  教学重点,难点:

  掌握圆柱侧面积和表面积的计算方法。

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、引入新课:

  前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

  1.圆柱是由平面和曲面围成的立体图形。

  2.圆柱各部分的名称(两个底面,侧面,高)。

  3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

  二、探究新知:

  以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

  同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

  教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

  板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

  1.圆柱的侧面积

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的'展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

  2.侧面积练习:练习二第5题

  学生审题,回答下面的问题:

  这两道题分别已知什么,求什么?

  小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3. 理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积×2

  4.尝试练习。

  (1)求下面各圆柱的侧面积。

  ①底面周长2.5分米,高0.6分米。

  ②底面直径8厘米,高12厘米。

  (2)求下面各圆柱的表面积。

  ①底面积是40平方厘米,侧面积是25平方厘米。

  ②底面半径是2分米,高是5分米。

  5.小结:

  在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

  三、巩固练习。

  1.做第14页“做一做”。(求表面积包括哪些部分?)

  2. 练习二第6,7题。

  四、课后思考。

  同学们想一想是不是所有的圆柱在计算表面积时都可以用

  公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

北师大版小学六年级数学教案4

  学习目标:

  1、进一步认识图形的旋转,明确含义,感悟特征及性质。能够运用数学语言清楚描述旋转运动的过程。会在方格纸上画出线段旋转90度后的图形。

  2、经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。

  学习重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。

  学习难点:在方格纸上画出线段旋转90度后的图形

  课前准备:钟表,课件,教具

  学习过程

  环节学案

  回顾旧知

  1、物体的运动有( )和( )。

  2、平移和旋转都只改变图形的`( ),不改变图形的( )和( )。

  自主探索

  1、钟面上指针旋转的方向就是( )方向;相反的方向就是( )方向。

  2、钟表上旋转一周是( )度,12个时刻将它12等份,所以每份是( )度。

  3、从8时到10时,时针绕旋转点( )方向旋转( )度,从11时到15时,时针绕旋转点( )方向旋转( )度。

  4、旋转三要素指( )( )( )。

  合作探究

  当横杆升起时,横杆绕旋转点( )时针旋转( )度;当横杆落下时,横杆绕旋转点( )时针旋转( )度。

  达标检测

  基础性作业:

  课本29页练一练1、2题(看课件)。

  一棵小树被扶起种好,这棵小树绕点O( )方向旋转了( )度。

  提高性作业:

  1、画出线段AB绕点B顺时针旋转90度后的图形;画出线段AB绕点A逆时针旋转90度后的图形。

  拓展性作业:

  如图,点P是线段MN上一点,将线段MN绕点P顺时针旋转90度。M P N

北师大版小学六年级数学教案5

  教学内容:

  教材2-4页例题及“做一做”的内容。

  教学目标:

  1、知识与技能:使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

  2、过程与方法:使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

  3、情感态度与价值观:使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

  教学重点:

  初步认识正数和负数以及读法和写法。

  教学难点:

  理解0既不是正数,也不是负数。

  教具学具:

  温度计、练习纸。

  教学过程:

  一、游戏导入(感受生活中的相反现象)

  1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

  ①向上看(向下看)

  ②向前走200米(向后走200米)

  ③电梯上升15层(下降15层)。

  2、下面我们来难度大些的,看谁反应最快。

  ①我在银行存入了500元(取出了500元)。

  ②知识竞赛中,五(1)班得了20分(扣了20分)。

  ③10月份,学校小卖部赚了500元。(亏了500元)。

  ④零上10摄氏度(零下10摄氏度)。

  3、谈话:老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

  例1

  1、认识温度计,理解用正负数来表示零上和零下的温度。

  看教材:首先来看一下南京的气温。

  这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?

  现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。

  上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)

  指出:上海的气温比0℃要高,是零上4摄氏度。

  了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?

  比较:现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

  ①上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的.时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个 4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

  ②北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

  小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

  2、试一试:学生看温度计,写出各地的温度,并读一读。

  3、听一段中央台的天气预报,将你听到城市的最低和温度记录下来。

  4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

  三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)

  1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

  2、我们观察课本上珠穆朗玛峰的海拔图,从图上,你看懂了些什么?

  3、我们再来看新疆的吐鲁番盆地的海拔图。你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。

  4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?

  (1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

  (2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。

  四、小组讨论,归纳正数和负数。

  1、通过刚才的学习,我们收集到了一些数据,我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?

  2、学生交流、讨论。

  3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)

  ①如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?

  ②如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。

  4、小结:我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就象一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把象+4、 4、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)正数都大于0,负数都小于0。这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)

  五、联系生活,巩固练习

  1、练习一第2、3题

  2、你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是

  3、讨论生活中的正数和负数

  (1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)

  (2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?

  六、课堂小结

  这节课我们一起认识了正数和负数。在我们的生活中,零摄式度以上和零摄式度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示。

  七、布置作业

  《家庭作业》第1页的练习。

北师大版小学六年级数学教案6

  〖教学目标〗

  1.通过学生的折叠实践活动,了解和掌握立体图形和它的平面展开图之间的对应关系,发展学生的空间观念。

  2.能正确判断平面展开图所对应的简单立体图形。

  3.会利用已有的知识、技能解决平面展开图所对应的立体图形的容积等问题,培养学生解决问题的能力。

  〖问题4 折叠〗

  这部分是有关将平面图形折叠成立体图形的问题,在解决问题的过程中,一直存在着平面图形与立体图形之间的`对应识别与判断,因此,本问题对培养学生的空间观念是极有益处的。教师要在教学中注意引导和启发学生,充分利用好教材的内容。

  本问题安排了“想一想”“画一画”“做一做”三个步骤。首先,想像一下这个平面展开图折叠以后像什么。其次,动手操作,将放大的图纸按虚线折叠后,形状是一座小房子。最后,可以先通过叠出的小房子来确定天窗和门的位置,然后在平面图上画出来(天窗可以在平面图中上数第二个和第三个矩形内,门可以在第一个和第四个矩形内,也可以在两边的五边形内)。

  〖练一练〗

  第1题 ①长方体;②正方体。

  第2题 图形(1)对应(a)。

  图形(2)对应(c)。

  第3题 图形①和②都对应(b)。

  建议学生先看图想像和思考,然后再用附页4中的图折一折。这样,既验证了自己的判断,又练了折叠技能

  第4题窗户、烟囱和小鸟的位置如下图所示:

  由于门的位置已经给定,所以,窗户、烟囱和小鸟的位置就大概确定下来。

  第5题让学生自己做立体图形,教师不必作太多的限制,比如可做立方体、长方体或根据教科书上的一些平面图去做相应的立体图形。但不管怎样,做立体图形的步骤都应该是先画出平面图形再折叠。

北师大版小学六年级数学教案7

  教学内容:

  比较正数和负数的大小。

  教学目的:

  1、知识与技能:借助数轴初步学会比较正数、0和负数之间的大小。

  2、过程与方法:初步体会数轴上数的顺序,完成对数的结构的初步构建。

  3、情感态度与价值观:培养学生应用数学的能力,使学生体验数学和生活的密切联系,激发学生学习数学的兴趣。

  重点难点:

  负数与负数的比较。

  教学过程:

  一、复习

  1、读数,指出哪些是正数,哪些是负数?

  -8 5.6 +0.9 -20xx六年级数学下册教案01-02 +20xx六年级数学下册教案01-02 0 -82

  2、如果+20%表示增加20%,那么-6%表示 。

  3、某日傍晚,黄山的气温由上午的`零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是 ____ 摄氏度

  二、新授

  (一)教学例3

  1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

  2、出示例3

  (1)提问你能在一条直线上表示他们运动后的情况吗?

  (2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

  (3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

  (4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

  (5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

  (6)引导学生观察

  A、从0起往右依次是?从0起往左依次是?你发现什么规律?

  B、在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到。5和-1.5处,应如何运动?

  (7)练习:做一做的第1、2题。

  (二)教学例4

  1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

  2、学生交流比较的方法。

  3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

  4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

  5、再通过让另一学生比较“8 〉6,但是-8〈 -6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

  6、总结:负数比0小,正数比0大,负数比正数小。

  7、练习:做一做第3题。

  三、巩固练习

  1、练习一第4、5题。

  2、练习一第6题。

  四、全课总结

  1、在数轴上,从左到右的顺序就是数从小到大的顺序。

  2、负数比0小,正数比0大,负数比正数小。

  五、布置作业

  《家庭作业》第2页的练习。

北师大版小学六年级数学教案8

  一、教学内容:

  第2~3页例1、例2。及相应的“做一做”,练习一第1题

  二、教学目标:

  1.使学生在现实情境中了解负数产生的背景,初步认识负数,知道正数和负数的读写方法。知道0既不是正数,也不是负数,负数都小于0。

  2.使学生初步体验数学与日常生活的密切联系,进一步激发学习数学的兴趣。

  三、教学重点:

  知道正数、负数和0之间的关系。

  四、教学难点:

  在现实情境中了解负数的产生与应用。

  五、教学准备:

  多媒体课件,温度计。

  六、教学过程:

  ㈠、创设情境,初步认识负数。

  1.情境引入:中央电视台天气预报节目片头。

  出示例1:宜昌、哈尔滨的温度。

  2、提问:你能知道些什么信息?

  学生回答:宜昌是零上16度,哈尔滨是零下16度

  3、引导:宜昌和哈尔滨的气温一样吗?有什么不同?(正好相反)在数学上怎样表示这两个不同的温度?

  4、请会的学生介绍写法、读法。同时在图片下方出示:16℃(+16℃)-16℃

  师问:你们怎么知道的?

  5、小结并板书:“+16”这个数读作正十六,书写这个数时,只要在以前学过的'数16的前面加一个正号,“+16”也可以写成“16”;“-16”这个数读作负十六,书写时,可以写成“-16”。

  6、通过“零上16摄氏度”和“零下16摄氏度”这两个生活中常见的相反温度用怎样的数可以表达并区分?这一问题的提出,让学生感受到过去所学的数在表达相反意义的量时的局限性,产生学习新数的需求。同时,学生已有的生活经验,使他们能很快联想到在“16”这个数前添加不同的符号表达相反意义的量的方法,借此培养学生的符号感。

  ㈡、进一步体验负数,了解正、负数与0的关系

  1、课件出示例2直观图,银行取款与存款。

  2、师:你从图中能知道些什么?你能用今天所学的知识表示取款预存款吗?

  3、学生尝试表达,并说含义。

  4、小结:存入20xx元用+20xx表示取出500元用—500表示,两个量正好相反,正数表示存入,负数表示取出。

  ㈢、归纳正数和负数。

  1、通过银行取款与存款,存入20xx元用+20xx表示,取出500元用—500表示则为负数。这对于学生更好地理解正数、负数与0三者间的关系很有益处。

  师引导:观察这些数,你能把它们分类吗?

  2、请学生移动贴纸独立分类,汇报。

  师问:你为什么这样分?

  小结:像+16、19、+20xx、6.3这样的数都是正数,像-16、-、-7、-500这样的数都是负数。正数都大于0,负数都小于0。0既不是正数也不是负数。(完成板书)

  ㈣、练习题

  (1)完成第4页第1题。

  (2)完成第4页第2题

  提问:读一读下面的海拔高度,你知道些什么?(都是负数,低于海平面或比0小)

  (3)完成第8页“练习一”第1题。

  先读一读,指出下列各数中的正数、负数,并把它们填入相应的圈内。

  提问:

  ①0为什么不写?(0既不是正数,也不是负数)

  ②观察这些正数,你发现了什么?(正数可以是整数、小数或分数。我们以前学过的除0以外的数都是正数)

  ③你是怎样理解负数的?(负数要小于0,可以是整数、小数或分数)

  完成第8页“练习一”第2、3题。

  七、教学结束:

  总结:本节课是学生初次认识负数,为了让学生对负数的内涵与外延有完整的认识,认识到了负数在生活中的实际应用是客观存在和非常广泛的。

  在习题中增加了小数和分数,通过练习让学生体会过去已学过的数(除0外)都是正数,沟通新旧知识的内在联系。

【小学六年级数学教案】相关文章:

六年级小学数学教案01-04

小学六年级数学教案12-17

小学六年级数学教案12-31

小学六年级上数学教案01-01

小学六年级趣味数学教案01-05

小学六年级教案数学教案01-05

苏教版小学六年级数学教案02-16

小学六年级上数学教案范文10-17

小学六年级数学教案模板10-17

【精】小学六年级数学教案01-01