【热门】小学五年级数学教案
作为一无名无私奉献的教育工作者,常常需要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。教案应该怎么写呢?下面是小编收集整理的小学五年级数学教案,欢迎阅读,希望大家能够喜欢。
小学五年级数学教案1
教学目标:
1、引导学生通过观察、思考、归纳、总结等方法,掌握简单的时间单位的换算。
2、引导学生从图片中获取有意义的数学信息,找出要解决的问题,通过独立思考、小组合作等方式解决问题,掌握解学问题的基本方法。
3、通过教学,使学生体验数学与生活的密切联系,在运用所学知识解决问题的过程中,体验数学学习的乐趣。
教学重点:
1、掌握简单的时间单位的换算。
2、建立计算经过时间的模型:终点时间—起点时间=经过的时间。
3、渗透解决问题的三个步骤:阅读与理解、分析与解答、回顾与反思。
教学难点:
建立计算经过时间的.模型:终点时间—起点时间=经过的时间。
教学过程:
一、导
开学了,熊大和熊二从熊堡出发去学校,熊大用了2小时,熊二用了120分钟,熊大说它用的时间少,熊二说它的用时少,它俩谁也不甘示弱。同学们,请你们当裁判,它们俩究竟谁用的时间少,好吗?
二、学
(一)单位换算
1、从熊堡到学校,熊大熊二谁用的时间少?为什么2时=120分?你是怎么想的?
2、学生独立思考后,汇报:1时是60分,2时就是2个60分,也就是60+60=120分。
3、同学间相互说一说。
4、180秒=()分,你是怎么想的?
5、练一练:3分=()秒
600分=()时
你是怎么想的?你又是怎么算的?
先独立思考,然后与你的同学交流交流。
(二)时间计算
9月1日,小明背着书包上学去了!(课件出示)
三、析
1、观察你从中获得了哪些有意义的数学信息?(小明7时30分离家,7时45分到校)你能提出什么数学问题?(小明从家到学校用了多长时间?)
2、小明从家到学校用了多长时间?怎么解决这个问题呢?你有什么方法?先独立思考,然后与小组同学交流你的想法。
3、小组合作交流,教师巡视指导,收集信息。
4、学生汇报,课件出示
(1)直接数一数,7:30到7:45分针走了15分钟。
(2)7:30到7:45分针走了3个大格,是15分钟。
(3)都是7时多,直接用45—30算出用了15分钟。
5、小明从家到学校用了15分钟对吗?你是怎么想的?(7:30过15分钟就是7:45,15分钟是对的。)
6、写上答语。(小明从家到学校用了15分钟。)
7、你喜欢哪种方法?为什么?
8、整理解决问题的基本方法。我们是怎么解决这个问题的?谁来说说?师做整理板书:阅读与理解→分析与解答→回顾与反思。
四、练
1、填一填。
在○里填上>、<或=
9分○90秒4时○24分1分15秒○65秒3时○200分140秒○2分1时30分○90秒
2、做一做。
小明去给外地打工的妈妈打电话,电话亭的营业时间,早上9:00开门,晚上8:00关门。小明8:40到达,他还要等多久呢?
3、总结:今天的学习,你有哪些收获?
4、作业:课本第7页第8题。
小学五年级数学教案2
教学内容:
人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。
教学目的:
1、使学生理解相遇问题的意义及特点。
2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。
3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。
教学重点:
理解相遇问题的数量关系,建立解题思路,掌握解题方法。
教学难点:
理解相遇问题中速度和、相遇时间和总路程之间的关系。
教学准备:
计算机辅助教学软件一套。
教学过程:
一、动画引入,揭示课题
1、通过电脑演示了解相遇问题中两个物体的运动情况。
电脑演示一声枪响后,两人相向而行,相遇前停下来。
提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?
(板书:同时出发、相向而行)
如果他们继续走下去,结果可能会怎样?
(相遇、不相遇就停下来、相遇以后相交而过)
结果究竟怎么样呢?请同学们继续观察。
电脑演示两人相遇。
(板书:结果相遇)
谁能完整的说说他们是怎样运动的?
[评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]
2、揭示课题:
像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。
(板书课题:相遇问题)
过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?
(板书:速度×时间=路程)
今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。
二、引导探究,教学新知
(一)教学准备题。
1、电脑配音显示准备题。
我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。
走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分
讨论:①出发3分后,两人之间的距离变成了多少?说明了什么?
②相遇时,两人所走路程的和与两家的距离有什么关系?
2、观察填表,讨论分析。
(1)学生填写表格,并讨论屏幕上的两个问题。
(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)
(3)学生回答讨论的两个问题。
小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。
[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]
(二)教学例5。
1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米?
2、学生尝试解答,两生上台板书。 65×4 + 70×4(65 + 70)×4=260 + 280 =135×4 =540(米)=540(米)
3、学生自己分析解题思路:
①请用第一种方法的同学说说你是怎样想的.?
提问:题中只有一个4,为什么算式中出现了两个4?
师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。
②请用第二种方法的同学说说你的解题思路又是什么?
[评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]
4、通过电脑演示强化两种解法的解题思路。
通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。
电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。
[评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]
5、总结数量关系式:请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?
(板书:和、相遇)有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?
6、学生看书质疑。
三、巩固练习,深化提高
1、根据题意连线。
两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。
44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5
相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。
(59页做一做第1题)
2、只列式不计算。(练习十三1、2题)
学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。
[评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。]
四、闯关游戏,拓思创新:
电脑演示闯关画面,配音出示游戏规则。
1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米?
提问:用速度和乘以时间得到了路程,为什么还要加120?
2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?
3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米?
提问:为什么每一种算法都要减90?
4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。
[评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]
小学五年级数学教案3
教学目标:
使学生了解"分数"产生的原因,理解分数的意义,弄清分子,分母,分数单位的含义.
教学重点:
使学生理解"分数"的意义,弄清分母,分子及分数单位的含义.
教学难点:
使学生理解"分数"的意义,弄清分数单位的含义.
教学课型:
新授课
教具准备:
课件
教学过程:
创设情景,温故引新
1,提问:
A,大家知道分数吗 谁能说一个分数
B,你能举个实例说说这个分数的意义吗
2,述:说得好,对不能用整数准确表示结果的问题,我们可用分数来解决.即:把一个物体或一个计量单位(或者单位"1")平均分成若干份,用它的一份或几份来表示.
3,揭示课题:分数的意义
二,联系实际,探究新知
自主学习,整体感知分数的知识.
(1)相互交流:① 关于分数我已经知道了什么 请把已知道的讲给同学们听.
(2)自学理解:① 关于分数,自学后我又知道了些什么
② 我还有什么不明白的地方呢
③ 关于分数我还想知道什么
2,探究深化,进一步理解分数的意义.
(1)用分数表示下面各图中的阴影部分.[课件1]
(2)填空.[课件2]
① 把一条线段平均分成5份,1份是它的( )/( );4份是它的( )/( ).
② 把一块饼平均分成2份,每份是它的( )/( ).
③ 把一个正方形平均分成4份.1份是它的( )/( );3份是它的( )/( )
(3)用一张长方形的纸,折出它的1/4,并涂上阴影.
用一张正方形的纸,折出它的3/8,并涂上阴影.
(4)抢答. [课件3]
① 把8枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
② 把10枝铅笔平均分给2位同学,每位同学得到的铅笔数是( )
③ 把这个文具盒你所有的铅笔平均分给2位同学,每位同学得到的铅笔数是( ).为什么是1/2 若平均分给5位;10位;50位同学呢
④ 如果这个文具盒里只有6枝铅笔.现在把它平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗谁来说说这里的1/2所表示的意义
⑤ 如果把8枝笔平均分给2位同学,每位同学得到的铅笔数还能用1/2表示吗 谁来说说这里的1/2所表示的意义如果是100;1000枝呢
(5)说说下列分数所表示的.意义.[课件4]
5/7 3/8 3/( ) ( )/9 ( )/( )
3,小结.
我们可以把许多物体看作一个整体,比如:一堆苹果,一批玩具,一班学生,一个计量单位或是许多物体组成的一个整体,都可以用自然数1来表示,通常我把它叫做单位 "1".
板书: 一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数.
三,加强练习,深化概念
比赛:请两位同学站起来.
提问:A,这两位同学是这组人数的几分之几
B,这两位同学是两组人数的------- 这两位同学是全班人数的-------
四,家作
1,P88 .1,2
2,P89 .3
板书设计:
分数的意义
一个物体
单位"1" 一个计量单位
许多物体组成的一个整体
把单位"1"平均分成若干份,表示这样的一份或者几份的数,叫做分数
小学五年级数学教案4
一、教材内容:
人教版小学数学五年级下册44页
二、学情分析
五年级学生已经有了一定的空间想象力、独立思考能力和小组合作交流的能力,学生的动手能力较强,喜欢自己通过动手、动脑去大胆探索问题,可以在活动中发现问题,总结规律。所以在学生已经认识了长方体和正方体的特征后,安排“探索图形”这个综合与实践活动,让学生通过观察实物,小组合作探究大正方体中各种涂色问题,并总结出规律,进一步培养学生的空间想象力和概括推理能力。
三、教学目标
1、借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
2、在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
3、在解决问题的过程中,感受数学的有趣,激发主动探索、勇于实践的精神和实事求是的科学态度。
教学重点:借助正方体涂色问题,通过实际操作、演示、想象等活动发现小正方体涂色情况的位置特征和规律。
教学难点:在探索规律的过程中,经历从特殊到一般的归纳过程,获得一些研究数学问题的方法、及分类、 归纳、推理、模型等数学思想和经验。
四、 教学准备
魔方、正方体教具(教师)、正方体教具(学生)、学生小组探究卡
五、教学过程
一、复习引入
(一)、同学们玩过魔方吗?它是一个什么几何形体?(正方体),正方体有什么特征呢?
学生:有8个顶点、12条长度相等的棱、6个大小相等的面。
教师随机板书正方体的特征。
【设计意图:通过学生熟悉的魔方引入正方体,不仅复习了正方体的特征,为新课的学习做好良好铺垫,也使学生感受到数学来源于生活。】
(二)、出示①②③组图,它们分别是由多少块小正方体组成的吗?
生:图①2×2×2=8(块)
图②3×3×3=27(块)
图③4×4×4=64(块)
师:在它们的表面涂上颜色,那么这些小正方体都会被涂上颜色吗?
生:不是,有的会被涂上颜色,有的不会被涂上颜色。
师:涂色的面数有几种情况?
学生观察分类:3面涂色、两面涂色、一面涂色、没有涂色。
教师随机板书:3面 两面 一面 没有涂色
师:今天我们就一起来探究正方体表面涂色的问题——探究图形
教师板书课题。
二、探究新知
(一)探究三面涂色的问题
师:三面涂色的小正方体分别有多少块呢?
生观察回答:图①有8块、图②有8块、图③有8块。
师:怎么都是8块?分别在哪里?
生:都在大正方体的8个顶点上。
师:那么棱长上有5个、6个或7个小正方体的图形呢?三面涂色的小正方体有多少块?
生:也是8块。
师:这跟什么有关系?
生:跟正方体的顶点有关系,因为有8个顶点,顶点上的小正方体是三面涂色的。
教师随机板书:顶点
(二)探究两面涂色的问题
师:两面涂色的小正方体分别又有多少块呢?是否也存在一定的规律呢?请同学们利用学具四人小组进行探究。
小组合作提示:
1、四人合作,利用学具探究两面涂色的小正方体有多少块?
2、试着将发现的结果用列式的方法表示在小组探究卡的表格中
小组探究
小组汇报
生:一面有4块,6面一共有12块。
师:你是怎么知道的?为什么除以2呢?如果是正方体块数非常多的`话,用这种方法还方便吗?还有其他的方法吗?
生:一条棱上去掉三面涂色的2块剩下的一块就是两面涂色的,而正方体有12条棱,一共就有1×12=12块.
师:③号图形两面涂色的有多少块呢?你发现两面涂色的小正方体在哪里?
生:在棱上。一条棱上去掉三面涂色的2块剩下的两块就是两面涂色的,而正方体有12条棱,一共就有2×12=24块.
师:那棱长是5块、6块的呢?怎样列式计算?
生:(5-2)×12=36块 (6-2)×12=48块
师:用字母n表示棱长上的小正方体的块数,怎样表示出两面涂色的小正方体块数?
生:(n-2)×12
师板书:在棱上 (n-2)×12
(三)探究一面涂色的问题
师:一面涂色的小正方体有多少块呢?试着借助刚才的经验进行探究并填表。
小组合作探究
小组汇报(使用希沃软件同屏互传,让孩子边展示列式边解释方法)
生:②号图形一面涂色的小正方体在每个面上,一面有1个一面涂色的,6个面一共就有6块。③号一面有4个一面涂色的,6个面一共就有24块。
师:你是怎么知道一面有1块、4块一面涂色的呢?
生:数的
师:如果正方体的块数非常多的时候呢?你觉得这种方法怎么样?
生:有局限性
师:是的,不具有一般化,并且还需要一定的计算前提。那还有什么更好的办法吗?
生:②号图形一条棱上去掉三面涂色的剩下的一块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(3-2)得到的,6个面就有(3-2)×(3-2)×6=6块。
生:③号图形一条棱上去掉三面涂色的剩下的两块是一面涂色的这个正方形的棱长数,而这个小正方形的棱长数是(4-2)得到的,6个面就有(4-2)×(4-2)×6=24块。
师:看来你们发现了一定的规律,棱长是5块、6块的图形呢怎么计算一面涂色的小正方体块数?
生:(5-2)×(5-2)×6=54块
(6-2)×(6-2)×6=96块
师:用字母怎么表示?
生:(n-2)×(n-2)×6=(n-2)2×6
(四)探究没有涂色的问题
师:没有涂色的小正方体有多少块呢?怎么计算?
生:可以用小正方体的总块数减去三面涂色、两面涂色以及一面涂色的。
师:这也确实是个办法。如果我只想知道没有涂色的块数是不是还需要算出其他的情况呢?是不是有些麻烦?没有涂色的小正方体在哪里呢?
生:在里面
师:有什么办法知道呢?
生:拆开看一看
师用教具给学生演示拆开的过程,观察里面没有涂色的小正方体块数
师:现在你知道有多少块没有涂色了吗?
生:②号图形有一块没有涂色
③号图形有8块没有涂色的
师:可以用算式计算出来吗?结合刚才拆的过程我们再看一看动画演示过程看看你能不能用列式的方法计算出没有涂色的块数。
组织学生观看动画过程。
生:②号图形每条棱上有3块,去掉两块三面涂色的剩下的一块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(3-2)×(3-2)×(3-2)=1块。
生:③号图形每条棱上有4块,去掉两块三面涂色的剩下的两块就是中间正方体的棱长数,因此中间没有涂色的小正方体块数(4-2)×(4-2)×(4-2)=8块。
师:真棒!你能试试棱长是5、6块的吗?
生:(5-2)×(5-2)×(5-2)=27块
(6-2)×(6-2)×(6-2)=64块
师:用字母怎么表示?
生:(n-2)×(n-2)×(n-2)=(n-2)3
三、知识应用
出示棱长由1000块小正方体拼成的大正方体,请问三面、两面、一面、没有涂色的小正方体分别有多少块?
学生计算汇报
四、课堂小结
通过这节课的探究,你能说说你用什么方法学会了本节课的知识?
五、版书设计
探索图形
顶点上 棱上 面上 中心
正方体的特征:8个顶点 12条棱 6个面
三面 两面 一面 没有涂色
8 (n-2)×12 (n-2)2×6 (n-2)3
小学五年级数学教案5
一、教学目标
(一)知识与技能
在长方体、正方体的体积和容积的知识基础上,探索生活中一些不规则物体体积的测量方法,加深对已学知识的理解和深化。
(二)过程与方法
经历探究测量不规则物体体积方法的过程,体验“等积变形”的转化过程。获得综合运用所学知识测量不规则物体体积的活动经验和具体方法,培养小组合作的精神、创新精神和问题解决能力。
(三)情感态度和价值观
感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。
二、教学重难点
教学重点:在测量不规则物体体积的过程中感悟“转化”的'数学思想。
教学难点:综合运用所学知识测量不规则物体体积的活动经验和具体方法。
三、教学准备
量杯、水、梨、土豆、石块、橡皮泥、A4纸。
四、教学过程:
(一)谈话交流,导入新课
教师:同学们,经过今天的学习,我们已经掌握了关于体积和容积的知识,你会求长方体和正方体的体积吗?如果要求一个长方体的体积,我们需要知道哪些信息?
教师:(出示一张A4纸)严格来说,一张A4纸也是一个薄薄的长方体,那么你能求出它的体积吗?
引导学生思考,悟出一张纸太薄了,可以用多些的纸来测量,再进一步感悟到用整十、整百张来测量更便于计算。
板书:V1张=V100张÷100。
【设计意图】通过测量A4纸的体积,即复习了长方体体积的计算方法,同时又有所超越,激发了学生探究的欲望,为后面测量不规则物体的体积埋下伏笔。
(二)探究合作,测量体积
1.明确任务,思考方案。
教师:刚才我们是直接测量一张A4纸的体积吗?我们是把1张A4纸的体积转化为100张,然后再求出一张。这里同学们很聪明地利用了转化思想,从而想出了测量方法。规则物体的体积测量过了,那大屏幕上这些不规则物体的体积,你想测量吗?今天我们就来测量不规则物体的体积。(板书课题并出示课件)
教师:不规则物体的体积你会测量吗?先互相说说打算怎么测量?(给时间让学生小组讨论测量方案。)
【设计意图】在动手实验之前,给予学生思考的时间,能使学生明确实验的任务和养成先制定实验方案,再根据方案实验的科学态度。
2.合作交流,汇报方案。
学生1:橡皮泥容易变形,我们可以把橡皮泥压制成规则的长方体或者正方体,再测量长、宽、高从而计算出橡皮泥的体积。
学生2:可以把梨放到装水的量杯里,水面上升部分水的体积就是梨的体积。
教师指出,这种方法可以称为“排水法”。
【设计意图】在独立思考和小组交流的基础上,学生一定能够想到许多不同的方案,再通过这些方案的比较,使学生感受到哪些方案是可行的,从而培养学生自主探究的能力和学习数学的热情。
3.小组合作,操作实践。
(1)学生分组操作,并把测量数据填写在记录单里。
(2)请小组代表上台重点介绍排水法测量梨的体积,一个同学汇报,组内同伴演示实验过程。
(3)教师适时板书:V物体=V上升部分。
教师:想一想,遇到下面这两种情况,你还能计算出这些不规则物体的体积吗?
4.再次实验,深化认识。
实验一:请同学将量杯里的土豆取出,观察量杯中的水位发生了什么变化?
实验二:把一块石头放入装满水的量杯,杯中的水又有什么变化?
教师根据学生的回答适时板书,完善结论。
V物体=V下降部分;
V物体=V溢出部分。
教师:我们现在懂得了利用转化思想测量不规则物体的体积,谁来说一说,用排水法测量不规则物体的体积需要记录哪些数据?可以利用刚才的方法测出乒乓球和冰块的体积吗?为什么?
【设计意图】教师利用学生实验过程中的亲身体验,引导学生感悟测量不规则物体体积时转化思想的应用,并且激发学生积极思考不同的转化方法,使学生对利用排水法测量不规则物体体积有一个丰富的体验和感受,让学生体会到“做中学”的乐趣。
小学五年级数学教案6
教学目标
1.通过教学,学生懂得应用加法运算定律可以使一些分数计算简便,会进行分数加法的简便计算.
2.培养学生仔细、认真的学习习惯.
3.培养学生观察、演绎推理的能力.
教学重点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.
教学难点
整数加法运算定律在分数加法中的应用,并使一些分数加法计算简便.
教学过程
一、复习准备【演示课件“整数加法运算定律推广到分数加法”】
1.教师:整数加法的运算定律有哪几个?用字母怎样表示?
板书:a+b=b+a
(a+b)+c=a+(b+c)
2.下面各等式应用了什么运算定律?
①25+36=36+25
②(17+28)+72=17+(28+72)
③6.2+2.3=2.3+6.2
④(0.5+1.6)+8.4=0.5+(1.6+8.4)
教师:加法交换律和结合律适用于整数和小数,是否也适用于分数加法呢?这节课我们就一起来研究.
二、学习新课【继续演示课件“整数加法运算定律推广到分数加法”】
1.出示:下面每组算式的左右两边有什么关系?
○○
教师说明:整数加法运算定律,对分数加法同样适用.
教师提问:整数加法的运算定律可以在什么范围内使用?
(加法的交换律、结合律中的.数,既包括了整数,又包括了小数和分数)
2.出示例3计算:
观察:这些加数分母和分子有什么特点?
思考:怎样可以使计算简便?
学生口述,教师板书:
教师提问:这道题哪里应用了加法交换律?哪里应用了加法结合律?
最后结果要注意什么问题?
学生总结:应用整数加法的运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.
三、巩固反馈.
1.在下面的○里填上合适的运算符号.
①○
②○
2.用简便方法计算下面各题.【继续演示课件“整数加法运算定律推广到分数加法”】
①②
3.思考题:
已知你能很快算出的和吗?
四、课堂总结.
整数加法的交换律、结合律对分数加法同样适用,应用加法运算定律可以把分母相同的分数先加起来,或凑成整数再计算比较简便.
五、布置作业.
用简便方法计算下面各题.
六、板书设计
小学五年级数学教案7
教学目标
1.学生能够结合具体实物说出体积的含义。知道常用的体积单位,并且能用体积单位合理估计物体的体积的大小。
2.学生通过具体的观察比较、思考交流、感悟体验等学习活动,经历物体体积概念的形成过程,逐步建立空间观念。
3.在学习活动中,培养学生细心观察,认真分析,交流倾听,善于比较的学习习惯。
学情分析
在原来知识结构里:学生学习了线段的长度、面积的大小及相关的计量单位,学生初步建立了一维二维的空间观念。这些为学习新知奠定了基础。
体积对于小学生来说是一个全新的概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。为了更深入地了解教材的编写意图,我对北师大版、苏教版、人教版的本课内容做了比较。发现它们有一个共同特点:都是通过实验演示或操作活动,让学生在体验中理解体积的含义,构建体积单位的表象。因此,我由学生熟悉的事物入手,引导学生观察、思考、回顾、感知、操作、想象,让学生在体验中感知,在对比中学习,逐步达到对概念的认识与理解。
教学重点:
学生能够在观察思考、感知体验、操作想象等活动中建立体积概念及体积单位的表象。
教学难点:
在具体的体验活动中理解体积的含义,经历体积是1立方厘米、1立方分米、1立方米的大小的表象形成过程。
教学过程
活动1【导入】体积和体积单位
一、对比引入新知。
学生汇报:分别是线段,长方形和正方形,长方体或正方体。
教师引导:
线段有长短之分,长(正)方形和长(正)方体有大小之别。
为了表示物体的长短,我们认识了长度。
为了表示物体平面部分的大小,我们学习了面积。
如果要表示整个物体的大小,那又将产生什么呢?
这节课老师和同学们一块来学习。
【设计意图】对比引入,既能激发学生学习新知的兴趣,同时又引发学生的思考:这三者相互之间有联系吗?
活动2【活动】体积和体积单位
二、活动揭示概念。
活动一:体验书包里的空间。
提出问题:观察一下自己的书包,是不是还可以再放些东西?
学生汇报:有的已经装满,有的还可以再放些东西。
教师引导:书包没塞满说明它还有一定的空间。书包已经塞满,说明它没有了空间。它的空间被占据了。(板书:空间)
追问:书包的空间被谁占据了?
学生汇报:书占据了书包的空间,学习用具也占据了一定的空间,还有一些喜欢吃的食品,同样也可以把书包的空间占据了。
追问:这说明什么?
学生汇报:任何物体都会占据一定的空间的。(板书:物体占空间)
教师进一步引导:大家可以举例说一说生活中物体占有空间的现象。
学生交流:我们占据教室的空间教室占据学校的空间学校占据小区的空间……
【设计意图】学生身边引入,通过引导观察和思考,让学生体验书包里有“空间”。并随之拓展,将空间这一概念形象化,具体化,丰富学生的空间表象。
活动二:观察演示实验。
1.盛水的杯子装入石头,水面升高。
2.装满沙的杯子倒出沙子,放入石块,结果沙子不能全部被装入。
3.与第一个实验相比,盛水的杯子装入一块较大石头,水面升高的幅度较大。
提出问题:你能解释实验现象吗?
学生交流:水面升高,是因为石头把水的空间占据了。
沙子不能被装入,是因为石头占据了沙子的空间。
石头较大,占据的空间就较大,水就升的高。
教师归纳:物体要占据空间,并且所占的空间大小是不一样的。(补充板书:物体所占空间的大小)
教师引导:粉笔盒与电脑桌比,粉笔盒占据的空间小,电脑桌占据的空间大……为了更加简洁地表示物体所占空间的大小,我们引入了“体积”(板书)
引导学生叙述:书包的体积是书包所占空间的`大小,电脑的体积是指……教室的体积是指……
引导概念:物体的体积是表示物体所占空间的大小。
【设计意图】为了进步加深学生对“空间”的理解,以及对概念的完善,继续通过演示实验,帮助学生直观感受物体所占空间的大小,步步相扣,层层推理,逐步引出物体的体积概念,较好地处理好了体积概念的抽象。
三、多角度认识单位
1.认识单位产生的必要性。
物体所占空间有大有小,所占空间大就是体积大,所占空间小,就是体积小。
下面的电冰箱、小水杯和篮球,哪个体积大?哪个体积小?
学生交流:电冰箱体积最大小水杯的体积最小。
问题引导:上面的物体,体积大小非常直观,若是像这样的两个物体,你能一子比较出它们体积的大小吗?
学生建议将它们分成若干个大小相同的小立方体。教师课件演示。
结论:要想比较它们的大小,必须要有统一的体积单位。
2.对比加深记忆。
同学们打开课本第39面,自学书上内容,看看常见的体积单位有哪些?书上是怎样描述的。
学生汇报:棱长是1厘米的正方体,体积是1立方厘米
棱长是1分米的正方体,体积是1立方分米
棱长是1米的正方体,体积是1立方米
填写表格:通过比较,使学生能够感受单位的共同结构与特征。从而加深记忆。
意义
常用单位
简写符号
长度
面积
体积
3.建立单位表象。
教师出示准备好的1立方厘米和1立方分米的正方体模型和其它实物。
辨认:让学生找出1立方厘米的正方体,并说说身边哪些物体的体积大约是1立方厘米。
举例:一个手指尖的大小、一个筛子的大小、一个键盘字母按键的大小等。动手摸一摸,亲自学生感受1立方厘米实际大小。
操作:用12个1立方厘米的正方体摆成一个长方体,有几种摆法?
想象:棱长是1厘米的正方体,体积是1立方厘米。2个这样正方体,体积是2立方厘米,10个呢?100个呢?1000个呢?那么1000立方厘米又有多大呢?
②找出1立方分米的正方体,说说身边哪些物体的体积大约是1立方分米。
感受1立方分米实际大小或几立方分米。
认识1立方米
先让学生比划。看看教室里面那些物体的体积接近1立方米。
学生体验:三把米尺借助教室的一个墙角共同来做一个1立方米的空间。1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”
教师可进一步举例:一个橱柜的大小,一个电脑柜的大小约是1立方米。
1立方米的水可以装满500个暖瓶。
【设计意图】学生对一个新的概念的接受和形成需要不断地体验和强化,本环节学生通过观察、比较、感知、操作、想象等活动逐步建立单位的表象,较好地渗透了单位化的思想。
活动3【练习】体积和体积单位
四、巩固运用提升。
1.结合具体实物说一说体积的含义。
电脑的体积是指电脑所占空间的大小。
2.在下面括号里填上适当的单位。
小学五年级数学教案8
教学目标
1、体验事件发生的等可能性以及游戏规则的公平性及它们的关系,会求简单事件发生的可能性。
2、能根据指定的要求,设计公平的游戏方案。能对简单事件的可能性做出预测。
3、培养概率素养,增强对随机思想的理解。培养公正、公平的意识,促进正直人格的形成。
4、在游戏中体验学习数学的乐趣,提高学生学习数学的'积极性。
学情分析
这是一节有趣的活动课,学生非常感兴趣,在游戏中探索可能性。
重点难点
教学重点:
体验事件发生的等可能性以及游戏规则的公平性,会求简单事件发生的可能性。
教学难点:
用分数表示可能性的大小。对随机思想的理解。
教学过程
一.导入引出课题:
1.师:这些小朋友在干什么?(踢足球)如果要开始一场足球赛大家觉得用抛硬币的方法决定谁先开球,这样公平吗?为什么?(课件)
2.揭题:硬币抛出后可能是那些面?(正反面),所以这是一个不确定的事件,今天我们就进一步研究不确定事件发生的可能性。(板书:可能性)
二.用分数表示简单事件发生的可能性
1.猜测:
(1)既然认为是公平的,那么大家想一想正面朝上的可能性是多少?你是怎样想的?
(2)那掷出反面的可能性是多少?为什么?你能用一个数来表示吗?
小学五年级数学教案9
1、学习目标
1.经历探索3的倍数的过程,理解3的倍数的特征。
2.能判断一个数是不是3的倍数。
3.在探究过程中发展概括和归纳能力。
2、学情分析
学生已经学习了2、5的倍数的特征,但3的倍数的特征与2、5的倍数的特征有很大的区别,学生不能仅从一个数的个位加以观察、归纳来得出结论,因此对于孩子们来讲如何探索得出这个特征就较有难度,而对于一些学习能力较弱的孩子,能够正确掌握3的倍数的特征并加以正确运用都会有一定的难度。因此针对学生的这一认知难点,我在设计教学时更加突出学生的自主探索,是学生在找数——观察——讨论——验证——归纳的过程中,概括出3的倍数的特征。
3、重点难点
学习重点:经历探索并掌握3的倍数特征的过程。
学习难点:发现概括出3的倍数特征。
4、教学过程
4.1.2教学活动
活动1【导入】(一)游戏复习、激发兴趣
游戏复习、设疑导入
(一)游戏复习、激发兴趣
同学们,请举起你们的学号给老师看一看,每个人的学号里都隐藏着数学奥秘!(课件)孔子有句话“温故而知新”,根据老师的指令请中奖学号起立,高高举起你的学号,看谁反应快。小组同学判断,准备好了吗?
(课件2的倍数)第一次中奖学号:是2的倍数起立。采访一下:2的倍数的特征是什么?(课件2的倍数特征:个位是0、2、4、6、8的数)(课件5的.倍数)第二次学号中奖:是5的倍数起立。再采访一下:5的倍数的特征是什么?(课件5的倍数特征:个位是0或5的数)
小结:看来,快速判断一个数是不是2或5的倍数的秘诀是,只要看这个数的个位就行了。(课件圈出个位)
【设计意图:学生在中奖学号游戏中复习旧知,为新知做好准备。】
第三次学号中奖:是3的倍数起立。你是怎么知道的?大家来看看这个数是不是3的倍数? 如何快速地判断出是不是3的倍数?3的倍数有什么特征呢?今天我们就来探究3的倍数的特征。 (板书课题:3的倍数的特征)
活动2【活动】二、自主探究,感悟规律
1、请同学们拿出准备好的学具百数表,请在表中找出3的倍数,并圈起来。
2、学生活动后,教师组织学生进行交流,投影学生圈的百数表,并不断完善。
3、观察3的倍数,猜想一(横着看):判断一个数是不是3的倍数,只看个位行吗?
4、仔细观察这个百数表。猜想二(斜着看):判断一个数是不是3的倍数,看这个数各位上数的和行吗?
把你的发现与同桌交流一下。
活动3【讲授】学生摸索,教师讲解归纳
(三)举例验证规律
师:咱们发现的这个规律只适合100以内的数吗?能推广到更大的数吗?
小组合作学习二:验证、归纳3的倍数的特征
举例
各位上的数的和
是不是3的倍数
验证摆出的数
是不是3的倍数
两位数:
48
4+8=12
√
48÷3=16
√
37
3+7=10
×
37÷3 有余数
×
三位数:
四位数:
2、小组再次讨论总结。
3的倍数特征:
(四)、总结规律
下面小组的验证是否正确?
看来,通过我们的发现,进一步验证,归纳出3的倍数的特征是(板书:一个数各位上的数的和是3的倍数,这个数就是3的倍数。)
【注意】:与2、5的倍数的特征不同,3的倍数的个位上可以是任何数字。
【设计意图:汇报验证结果形成共识,得出结论。让孩子们验证此规律在100以外的数是否适用,体会“特殊—一般”的研究方法,培养孩子们研究数学的科学性和思维的严谨性。体会发现—验证—归纳的数学思想和方法。】
活动4【练习】三、闯关比赛:
闯关比赛:
3的倍数的特征相信你们已经掌握,闯关开始了,准备好了吗?
第一关:下面的数哪些是3的倍数,手势判断。
92 654 7203
71 164 20xx
老师质疑:7203为什么是3的倍数?如果打乱一下顺序,这个四位数还是3的倍数?你们有什么发现?(3的倍数与数字的顺序无关。)
【设计意图:换位探索——引导发现3的倍数与数字的顺序无关。】
第二关:在横线上填上合适的一个数,组成三位数并且是3的倍数。想想共有几种填法?
老师质疑:一共几种填法?有什么规律?(只要相差3就可以了)
【设计意图:通过小组合作学习了解到多角度思考问题,答案不唯一,纠正自己的认识,学生学以致用,有助于培养孩子们的发散思维的能力。】
活动5【测试】师生闯关
第三关:师生闯关:
同学们,老师也想和你们合作一下。请学号1-9的同学上讲台,赵老师没有学号,用0代替。和你们一起组成10位数,看看这么大的数是3的倍数吗?为什么?
请看,老师取走一个数,(9)这个9位数还是3的倍数吗?
再看,老师再取走一个数,(6)这个8位数还是3的倍数吗?
猜猜看,这次取走哪数,(3)这个七位数还是3的倍数?
你们有什么发现?(划去单个数字是3的倍数,剩下的数还是3的倍数)
你能快速发现下面这个数是不是3的倍数?想好就起立。98763963
【设计意图:发散练习:学生体会划去的数字是3的倍数,剩下的数还是3的倍数。】
第四关:猜猜中奖学号
到目前为止,我们已经学习了2、3、5的数的倍数特征,看见今天最后一次中奖学号是谁呢?同时是2、3、5的倍数的学号。(30)老师期待下一个中奖学号就是你。
【设计意图:综合运用所学2、3、5的倍数的特征的知识,让学生深刻体会自己的学号里藏着的数学奥秘】
活动6【作业】延伸和总结
四、全课小结:
1、今天你学会了什么?通过小组合作学习你有什么收获?
2、我们是通过什么方法得出3的倍数的特征?
【设计意图:在课结束前适时总结,重在使同学们进一步体会到一些研究的方法,使孩子们掌握一些“学法”。】
五、作业(课后延伸)
课后可以运用今天所学的方法去探索研究9的倍数的特征。
【设计意图:让同学们把这种探究活动延伸到课外,进一步培养了同学们学习数学的兴趣。】
小学五年级数学教案10
教学目标:
1. 通过实例观察,了解一个简单的图形经过旋转制作复杂图形的过程。
2. 能在方格纸上将简单图形旋转90°。
教学重难点:
能在方格纸上将简单图形旋转90°。
教学准备:
多媒体教学系统,卡纸,小三角形,90度扇形。
【小学五年级数学教案】相关文章:
五年级小学数学教案02-06
小学五年级下数学教案02-15
小学五年级数学教案12-16
小学五年级《旋转》数学教案01-24
五年级上册小学数学教案12-31
小学五年级数学教案08-25
小学五年级下册数学教案01-03
【热】小学五年级数学教案01-10
小学五年级数学教案【精】01-04
【精】小学五年级数学教案01-04