小学数学六年级教案

时间:2024-08-09 09:30:52 蔼媚 小学数学教案 我要投稿

小学数学六年级教案(精选20篇)

  作为一名教师,可能需要进行教案编写工作,教案是备课向课堂教学转化的关节点。来参考自己需要的教案吧!以下是小编精心整理的小学数学六年级教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

小学数学六年级教案(精选20篇)

  小学数学六年级教案 1

  教学目标

  1.通过观察、讨论,让学生在认识圆的基础上认识球的特征,了解球的各部分名称,发展空间想像能力。

  2.通过学生多种感官的参与学习,增强学生的研究意识,提高学生的学习兴趣。

  教学过程

  一、激趣引入

  前阶段学校搞泥塑大赛,同学们都踊跃参加了。泥塑有个基本功,就是要把橡皮泥搓成小球。你能吗?拿出橡皮泥,看谁搓得标准、美观。相机揭示课题。

  评析:

  学生通过动手活动,创造了感兴趣的、有结构的观察材料,使探究活动更直接有效。同时也唤起学生更直接的生活经验,激发了学习的积极性。

  二、自主探究

  1.分小组学习。先让学生畅所欲言,谈谈自己想了解球的哪些知识。然后请同学们充分发挥想象力,通过切割、观察、讨论,自主认识关于球的一些知识。

  评析:

  这里不再是教师手拿学具按部就班的讲解,而是学生利用搓好的球和其他实物、学具带着问题自主求知。课堂是开放的,学生的需要和兴趣始终处于核心地位,学生是学习的真正主人。

  2.学生交流。主要解决以下问题:

  (1)名称:球面,球心(o),半径(r),直径(d)。

  (2)特征:球面是曲面;在同一个球里,有无数条半径,长度都相等;有无数条直径,长度也都相等;直径是半径的2倍,半径是直径的1/2 等等。

  评析:

  这种设计具有较强的灵活性。教学过程是个动态的过程,不可能完全按事先设计好的程序进行。教学中,学生能说的教师决不包办代替,当学生回答得不完整时,教师可做适当的点拨或补充。

  3.归纳整理。同学们将刚才研究的知识写在纸上,并请两位学生到讲台前交流。

  评析:

  建构主义认为,学生的学习行为不是对教师所授予的'知识的被动接受,而是依据已有的知识和经验所做的主动建构。通过归纳,学生将学到的新知识纳入到已有的知识经验中去,形成新的认知结构。

  4.质疑问难。

  下面的问题如果学生提出,则灵活解决。如无学生提出,前两个问题教师可直接提出:

  (1)怎样测量一个球的直径?如何证明一个球的直径都相等?(先让学生说方法,引导学生用两块木板夹住演示)

  (2)球与圆有什么联系与区别?(先讨论,再交流)

  (3)如有学生提出表面积、体积问题,则引导:现在解决这个问题难度还很大,回去可以查阅有关资料,看球的表面积和体积公式是什么。

  三、巩固练习

  1.看书并完成第19页做一做第2题。

  2.地球的赤道大约是一个半径6400千米的圆。如果有一根长比赤道的周长多1米的铁丝围成一个与赤道是同一圆心的圆,那么,你的拳头能否从赤道与铁丝的空隙处穿过?

  先让学生猜一猜,可让听课教师也参与。再让学生说解答方法。全班计算。如有时间可改成木星(赤道半径71400千米)等,让学生推理得出结论,

  评析:

  新课程强调创造性和开放性思维的培养。开放题的设计,大大激发了学生的学习兴趣。学生在挑战性的问题情境中创新精神得到培养。

  小学数学六年级教案 2

  设计说明

  本节课的内容是在学生学过分数与除法的关系,分数乘、除法的意义,分数乘、除法应用题的基础上进行教学的,结合教材特点,教学按以下4个层次进行:

  1.由倍数关系引出同类量的比。

  结合两面长方形小旗的数据,引导学生讨论长与宽的倍数关系,得到长度相除的两个算式,由此引出同类量的比。

  2.由倍数关系引出非同类量的比。

  结合飞船的运行路程与时间,让学生用除法表示飞船进入轨道后的速度,由此引出路程与时间这两个非同类量的比。

  3.概括比的意义。

  以引出的几个比为例,说出比的意义,读、写法及比的各部分名称,并由计算比值的实例,引出“比值通常用分数表示”。

  4.明确比与除法、分数的关系。

  根据分数与除法的关系,引导学生归纳出比、除法、分数三者之间的关系。

  课前准备

  教师准备:PPT课件、学情检测卡

  教学过程

  复习铺垫

  1.某车间有男工5人,女工8人,男工人数是女工人数的几分之几?女工人数是男工人数的几倍?

  2.分数与除法有什么关系?(分数的分子相当于被除数,分母相当于除数)

  设计意图:在结合生活实际复习两个同类量之间的倍数关系的基础上,进一步复习分数与除法的关系,为新知的学习做好铺垫。

  讲授新课

  1.教学比的意义。

  (1)教学同类量的比。

  ①用除法表示同类量之间的关系。

  a.课件出示:杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。这两面旗都是长15cm,宽10cm。

  b.讨论:怎样用算式表示这两面旗的长和宽的关系?(引导学生说出:可以求长是宽的几倍,或求宽是长的几分之几)

  ②用比表示同类量之间的关系。

  a.引入比的概念:两面旗的长和宽的倍数关系还可以用“比”来表示。长÷宽=15÷10,宽÷长=10÷15,也可以说长和宽的比是15比10,宽和长的比是10比15。

  b.简介同类量的比:不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的`量,所以两面旗的长和宽的比属于同类量的比。

  (2)教学非同类量的比。

  ①用除法表示非同类量之间的关系。

  a.课件出示:“神舟”五号进入运行轨道后,在距地350km的高空做圆周运动,平均90分钟绕地球一周,大约运行42252km。

  b.讨论:怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?(42252÷90)

  ②用比表示非同类量之间的关系。

  对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,因为这里的42252km与90分钟是两个非同类的量,所以比也可以表示非同类量之间的关系。

  小学数学六年级教案 3

  设计说明

  本节课是在学生学习了比的意义以及比与除法、分数的关系等相关知识的基础上进行教学的,本节课的设计有以下几方面特点:

  1、充分利用教材提供的素材。在导入新课的过程中,利用教材提供的素材,让学生动手操作,亲手调制蜂蜜水,激发学生的学习兴趣,使学生在动手操作中体验到调制的过程,并说出自己调制的方法,为下面的学习打下基础。

  2、合作探究的学习方式贯穿整个教学。

  在整节课的教学中,充分遵循以学生为主体的原则,适当的引导,提出有重要价值的问题,让学生通过观察、合作、探究的'方式找到问题的答案,让学生在学习的过程中体验到成功的快乐。

  课前准备

  教师准备PPT课件课堂活动卡

  学生准备蜂蜜水量筒水杯

  教学过程

  创设情境,提出问题

  1、把学生分成四个小组进行调制蜂蜜水的实验活动。(各小组拿出课前准备好的蜂蜜、水、量筒、水杯等实验物品,动手调制蜂蜜水)

  2、各小组选出代表在全班进行汇报。出示课堂活动卡。

  预设

  生1:我调制的这杯蜂蜜水用了40mL蜂蜜、360mL水。

  生2:我调制的这杯蜂蜜水用了2小杯蜂蜜、18小杯水。

  3、议一议,哪个小组调制出的蜂蜜水更甜?你用的是什么方法?(学生讨论并交流方法)

  4、除了这些方法,我们也可以用化简比的方法来判断。(板书课题)

  设计意图:通过让学生动手操作,亲自调制蜂蜜水,激发学生学习的热情,让学生在动手操作中亲自体验调制的过程,并且用语言叙述自己的调制方法,在议一议中展开对新知的探究。

  探究新知,解决问题

  1、观察情境图,获取信息。(课件出示教材72页情境图)

  学生根据图中的内容,找出所需的信息。

  蜂蜜水

  男孩:3小杯12小杯

  女孩:4小杯16小杯

  2、体会化简比的必要性。

  (1)探究判断方法。

  联系我们学过的知识,你想到了用什么方法进行比较?

  学生小组内讨论,得出可以通过求出男孩和女孩各自杯中蜂蜜和水的比来比较。

  学生写出比。

  男孩:3∶12

  女孩:4∶16

  (2)哪杯水更甜?现在你能判断出来了吗?你又遇到了什么问题?

  引导学生发现,现在无法比较,如果能知道两杯蜂蜜水中平均1小杯蜂蜜用了几小杯水就可以比较了。

  (3)怎样才能知道平均1小杯蜂蜜用了几小杯水呢?请在小组内讨论一下。

  ①学生思考,小组内讨论。

  ②小组交流看法。

  ③指名汇报,说明理由。

  在交流的过程中教师要引导学生理解先把比转化成分数,利用分数的基本性质约分,再转化成比的方法。

  (4)得出结论。

  3∶12===1∶4

  4∶16===1∶4

  提问:你发现了什么?

  (两杯蜂蜜水中蜂蜜与水的比都是1∶4,所以两杯水一样甜)

  (5)揭示化简比的必要性。

  当比的前项和后项数值较大时,有时会给判断带来不便,这时就需要根据一定的规则,在不改变比值大小的情况下,将比的前项和后项同时缩小,这种现象称之为化简比。

  设计意图:让学生在解决“哪杯水更甜”的同时,加深对比的意义的理解,进一步感受比与除法、分数之间的关系。

  3、理解最简整数比。

  像1∶9,3∶7……这样的比我们称为最简整数比。

  (1)观察一下最简整数比的前项和后项,你发现它们之间是什么关系了吗?你能说说什么样的比是最简整数比吗?

  (2)学生汇报发现。

  根据学生的汇报教师小结:当比的前项和后项都是整数,并且比的前项和后项的最大公因数是1时,这样的比就是最简整数比。

  4、探究化简比的方法。

  下面的比是最简整数比吗?你有什么办法把它们化成最简整数比呢?

  24∶42 ∶ 0.7∶0.8

  (1)小组讨论。

  (2)学生尝试解答,教师巡视指导。引导学生采用不同的方法化简比。

  (3)全班交流化简比的方法。

  预设

  生1:我利用分数的基本性质进行化简。

  生2:我利用商不变的规律进行化简。

  生3:我利用除法进行化简。

  生4:我利用比的基本性质进行化简。比的前项和后项同时乘或除以同一个不为0的数,比值的大小不变。

  如果有学生用此法,教师因势利导进行教学,如果没有,教师从比和分数的关系入手,引导教学。

  小学数学六年级教案 4

  【教学目标】

  1、能在具体的情境中,探索确定位置的方法,说出某一物体的位置。

  2、会在方格纸上用“数对”确定物体的位置。

  3、发展空间观念,初步体会到数形结合的思想。

  4、体会生活中处处有数学,提高运用知识解决实际问题的能力。

  【教学重点】

  使学生经历确定位置的全过程,从而掌握用数对确定位置的方法。

  【教学难点】

  在方格纸上用“数对”确定位置。

  【教法】

  情境教学法,创设找图书管理员的情境,激发学习兴趣,感知确定位置的方法。

  【学法】

  积极参与法,在学习过程中积极思考,理解用数对确定位置的方法,并积极参与动手操作活动,提高看图能力。

  【教学准备】

  多媒体课件

  【教学过程】

  一、谈话导入

  1、师生谈话。

  学校让我们班推荐一位同学到学校图书室做图书管理员,老师已经选好了,那么你们想不想知道这位同学是谁吗?

  这位同学在班级中的位置是第三组的。你们知道这位同学是谁吗?他可能是哪几位同学?如果要找到这位同学,还要知道什么条件?

  这位同学的座位是在第3排,大家知道这位同学是谁吗?

  2、导入新课。

  今天这节课,我们就一起来学习确定位置的方法。

  板书课题:用数对确定位置

  【设计意图:通过谈话中引入数学问题,充分调动了学生的学习兴趣和积极性,为学习新知奠定了基础。】

  二、探索新知

  1、教学例1。

  (1)出示例题1教学图。

  让学生观察图,说说张亮同学坐在第几列?第几行。

  (竖排叫做列,横排叫做行)

  (2)张亮同学坐在第2列,第3行。用数对来表示(2,3)。

  (3)让学生用数对表示王艳和赵强的位置。

  王艳(3,4)赵强(4,3)

  (4)小结。

  确定一个同学在教室的位置,要考虑两个要素:第几列和第几行。

  【设计意图:通过具体的实例引导学生认识第几列第几行的判断方法,经历应用数学知识分析问题的解决问题的`过程】

  2、完成第3页的“做一做”。

  课件出示电影院和电影票的图片。出示题目:举出生活中确定位置的例子,并说一说确定位置的方法。

  (电影院用电影票来确定位置,电影票一般都写着“几排几号”,“排”表示行,“号”表示列。比如“3排7号”用数对表示是(7,3)。

  【设计意图:从学生熟悉的情景出发,选择学生感举的事物,提出相关问题,激发学生学习兴趣。】

  3、教学例2。

  (1)认识方格图。

  出示动物园示意图。

  指导学生观察图。

  这幅动物园示意图与以前见过的示意图有以下几点不同:一是动物园的各场馆都画成一个点,只反映各场馆的位置,不反映其他内容;二是表示各场馆位置的那些点都分散在方格纸竖线和横线的交点上;三是方格纸的竖线从左到右依次标注了0,1,2,…,6;横线从下往上依次标注了0,1,2,…,6,其中的“0”既是列的起始,也是行的起始。

  (2)用数对表示图中各场馆的位置。

  提问1:我用了数对(3,0)来表示大门的位置,你们知道我是怎样想的吗?

  【大门在示意图中处于“竖线3,横线0”的位置上,所以可以用数对(3,0)来表示】

  你们能用数对表示其他场馆所在的位置吗?

  【熊猫馆(3,5)大象馆(1,4)猴山(2,2)海洋馆(6,4)】

  (3)根据数对标位置

  在图上标出下面场馆的位置:飞禽馆(1,1)、猩猩馆(0,3)、狮虎山(4,3)。

  【设计意图:通过具体的事例认识和理解位置与坐标中数值的对应关系,让学生不但会用数对描述现实生活中的位置,还会描述坐标图上的物体的位置。】

  三、巩固运用

  1、小游戏:看谁反应最快。

  老师说出一组数对,相应的同学要在3秒内起立。

  2、做一做。(课件出示)

  【设计意图:通过练习,培养学生分析问题、解决问题的能力,加深对知识的理解和应用。】

  四、课堂总结

  这节课我们学习如何用数对来确定位置,用数对确定位置时,数对中的前一个数表示第几列,后一个数是表示第几行。

  五、板书设计

  用数对确定位置

  竖排叫做列从左往右

  横排叫做行从前到后

  张亮坐在第2列第3行(2,3)

  (列,行)

  小学数学六年级教案 5

  教学目标:

  1、使学生懂得商业打折扣和求农业增产数的应用题的数量关系,与“求一个数的百分之几是多少”应用题的数量关系相同,并能正确解答这些应用题。

  2、提高学生能自觉运用学到的数学知识解决生活实际的意识,培养问题解决的能力。

  教学重点:

  在理解“折扣”意义的基础上,懂得求折扣应用题的数量关系与“求一个数的几分之几是多少”的应用题数量关系是相同的,并能正确计算。

  教学难点:

  能应用这个知识解决生活中的相关问题。

  教具准备:

  课件

  教学过程:

  一、情景引入,学习新知。

  1、师:同学们,国庆这几天玩得高兴吗?大家一定都出去走了一圈吧?那萧山新开的一家书店,有没有去过?那天我也去凑了下热闹。一到门口,就看到这样一张海报。

  (电脑出示)好消息:萧山书城将给爱书之人优惠的折扣:10月1—3日,全场图书一律八折优惠

  师问:读了这则消息,你有什么想法?你是怎样理解“一律八折优惠”的?(表示现价是原价的80%。)

  看了这则好消息你有没有心动呢?我当时就挺心动的,淘宝的时机来了。我就选了自己喜欢的两本书,《网页制作》(原价49.00元),《细节决定成败》(原价24.80元)

  师:现在,我想考考你们,这本《网页制作》打了八折以后,只要付多少钱就够了。请你做一回售货员算一算。

  2、学生尝试练习。

  3、讨论解题思路:

  师:好,我们来讨论一下,你是怎样理解的?它是把什么数看作单位“1”?求现在售价是多少元就是求什么?

  分析:“八折”是现价是原价的80%,也就是求49元的80%是多少,所以用乘法计算,算式是:48x80%=49x0.8=39.2(元)

  还可以怎样思考?(可能出现)(把49元分成10份,付其中的八份,就是原价的八折,算式是:49÷10x8=39.2(元)

  4、你认为哪种解题思路容易理解?它们的基本数量关系怎样?得出基本数量关系:现价=原价x折扣

  5、你能用刚才的解题方法算一下另外的一本书应付多少钱吗?

  6、你在生活中遇到过这样的事情吗?(学生举例)

  二、联系实际,巩固新知。

  1、这样的.“好消息”实在太多,只要我们留心观察周围的生活环境,就会发现。老师摘录了这样几条:

  (1)“全场服装一律对折”;

  (2)“今年的早稻产量比去年增产二成”

  (3)“黄金饰品四折起”;

  (4)“惊爆价:一楼皮鞋七折,有会员卡,再享受折上折——九五折”

  (5)一包署片上写着:“加量不加价,比原包装增加三成”

  (6)今年本商场月饼的销售额比去年同期增长4个百分点。

  看了商家的这些信息,你明白它们的意思吗?请你选择其中的几条解释一下。(学生理解上面分率,并用电脑演示,补充条件解答)

  2、分析与解答:

  (1)“今年的早稻产量比去年增产二成”,“二成”是什么意思?(补充:联丰村去年早稻总产量50万千克,今年比去年增产多少万千克?)

  (3)“黄金饰品四折起”(“四折起”就是大于或等于40%,表示其中至少有一类商品现价是原价的40%,其余的在40%以上,40%是最低折扣)

  (4)“折上折——九五折”表示在享受70%的折扣以后,新的价钱再享受95%的折扣)(补充:如果有一位会员在这个商场买一双标价200的皮鞋,他要付多少钱?)

  学生列式计算:200x70%x95%=200x0.7x0.95=133(元)

  小学数学六年级教案 6

  教学目标:

  1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

  2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

  教学重点,难点:

  掌握圆柱侧面积和表面积的计算方法。

  运用所学的知识解决简单的实际问题。

  教学过程:

  一、引入新课:

  前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

  1.圆柱是由平面和曲面围成的立体图形。

  2.圆柱各部分的名称(两个底面,侧面,高)。

  3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

  同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

  二、探究新知:

  以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

  同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

  教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

  板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

  1.圆柱的侧面积

  (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

  (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

  (学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

  (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长x高)

  2.侧面积练习:练习二第5题

  学生审题,回答下面的问题:

  这两道题分别已知什么,求什么?

  小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

  3.理解圆柱表面积的含义.

  (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

  (2)圆柱的表面积是指圆柱表面的'面积,也就是圆柱的侧面积加上两个底面的面积。

  公式:圆柱的表面积=圆柱的侧面积+底面积x2

  4.尝试练习。

  (1)求下面各圆柱的侧面积。

  ①底面周长2.5分米,高0.6分米。

  ②底面直径8厘米,高12厘米。

  (2)求下面各圆柱的表面积。

  ①底面积是40平方厘米,侧面积是25平方厘米。

  ②底面半径是2分米,高是5分米。

  5.小结:

  在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

  三、巩固练习。

  1.做第14页“做一做”。(求表面积包括哪些部分?)

  2.练习二第6,7题。

  四、课后思考。

  同学们想一想是不是所有的圆柱在计算表面积时都可以用

  公式:圆柱的表面积=圆柱的侧面积+底面积x2来计算呢?

  小学数学六年级教案 7

  教学目标

  知识与技能目标:通过活动进一步巩固巩固比例知识、简单的统计知识,培养学生综合应用所学过的知识的能力

  过程与方法目标:通过活动培养学生搜集和处理信息的.能力,使学生感到数学和现实生活的联系。

  情感、态度与价值观目标:增强学生“节约用水,从我做起”的责任意识,养成良好的品德。

  教学重难点

  所学知识的综合应用

  教学过程

  一、情景引入,提出问题

  1、(屏幕显示:地球上最后一滴水将是人类的眼泪!)请学生说说对这则广告的理解。引出课题。

  2、提出问题:为什么要节约用水呢?

  二、问题讨论,明白道理

  1、交流课前搜集的信息,畅谈有关水的认识。

  2、展示相关资料,了解地球上水资源状况。

  3、交流感想,强化体验。

  三、参与活动,亲身体验

  师:水龙头坏了或没有关紧,水一滴一滴往外流(多媒体出示相关图片),遇到这种情况,你会怎么做?

  师:课前我请同学们做了一个漏水试验,我们一起来看看试验结果吧!

  1、小组交流、展示成果。(一分钟大约滴水50毫升)

  2、计算统计,交流感想。

  师:根据上面的滴水速度,完成下面的统计表。

  一个漏水水龙头漏水情况统计表

  时间1分钟1小时24小时1年

  水量(升)

  一个水龙头一年浪费多少水?(1立方米约重1吨)

  3、评价家庭用水状况,提出节水建议。

  4、(出示)小明刷牙时不间断放水30秒,用水约6升。小刚用口杯接水刷牙,需要3口杯水,每杯用水约0.2升。

  A、小明一次刷牙的用水量相当于小刚多少次刷牙的用水量?

  B、采用节水刷牙的方式,如果一个三口之家按每人每日刷牙两次算,那么每月(30天计算)可节水多少升?

  C、节约的这些水,如果以一户三人,每户月均用水量为8吨计算,够你家用几天?

  (独立分析计算、汇报计算结果,交流想法)

  四、解决问题,提出方案

  分组讨论一下节约用水的措施。

  1、学生分组讨论,多媒体演示生活中的节水片段。

  2、出示节水倡议,生齐读:节约用水,从我做起,从节约每一滴水做起。

  小学数学六年级教案 8

  教学目标:

  1、知识目标:使学生明确“折扣”的具体含义,能熟练地进行“折扣”数和百分数的互化,进一步解决求一个数的百分之几的应用题的解法。

  2、能力目标:通过观察、思考、探索等教学活动,培养学生收集、分析和处理信息的能力及运用所学知识解决实际问题的能力。

  3、情感目标:增强学生对数学价值的体验,感受数学的魅力,能够用数学的眼光来看待周围的事物。

  教学内容:

  本节课的教学内容《折扣》是在学生学习了百分数意义以及百分数应用题的基础上进行学习的。“折扣”是在商品经济中应用比较广泛的一个概念,由于几折是十分之几,也就是百分之几十,因此,折扣也是百分数的实际应用。所以本节课的重点是要求学生能够正确理解折扣的含义,知道折扣应用题的数量关系,能够解决求一个数的百分之几的问题。难点是 “折扣”的有关计算。

  对象分析:

  《折扣》这个内容是现实生活商品买卖中经常遇见的“数学现象”,无论是聋人还是健听者对它并不陌生。虽然这样,但据了解、调查,我们的聋生对它只知其形而不解其意,虽然学生在此之前学过百分数应用题,但对聋生来说,其实际应用和现实意义却比不上折扣问题的应用。为此,本节课就是建立在学生已有知识(百分数的应用)的基础上,向学生传授的百分数应用的另一种既普遍又实在的生活形态——折扣。

  教学策略:

  认知心理学家奥苏贝尔有一句至理名言:“假如让我把全部教育心理学仅仅归结为一条原理的话,那么,我将一言以蔽之:影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学。”把教学建立在学生已有的知识和生活经验之上,这是教学必须遵循的“金科玉律”。《折扣》其实是百分数的实际应用,我就是利用学生的已有知识和生活经验,通过提供丰富而带有折扣的生活图片创设情境,辅以多媒体教学手段,让学生从不同的场合去认识折扣,将实际生活融入教材,把知识与生活相结合,使学生在有效的教学活动中探索问题、发现问题、解决问题。

  整个教学过程的活动都是围绕学生的生活经验而设计,使学生体验到数学与实际生活是紧密联系的,是源于生活又作用于生活,更重要的是让学生增强了数学的应用意识,提高参与社会生活的能力。

  教学媒体:

  主要是利用PPT课件向学生展示现实生活中的折扣现象,创设情景,从而让学生从不同的场合去认识折扣,将实际生活融入到教材,从而激发学生的学习兴趣,达到学与用的相对统一。

  教学过程:

  一、创设情景,引入新知。

  PPT出示生活中打折的图片。

  教师:我们经常在商场看到把商品按“几折”出售。如上图中的“5.8折”、“五折”、“3.8” 折,这些都是我们生活中常见的`打折销售,也就是我们今节课要学习的“折扣”。

  【以学生熟悉的生活素材引入教学,明确数学与生活的联系,使学生及时发现社会需要与所学知识的直接联系,能较好地激发他们的学习积极性,产生“我要学”的强烈要求。】

  二、分层探究,掌握新知。

  (一)折扣的具体含义。

  1、思考

  (1)商品为什么要打折出售?(工厂和商场,为了促销或处理积压商品等多种原因,有时将商品价格降低进行销售,这就是平常说的“打折”销售。)

  (2)“几折”表示什么意思?

  几折表示十分之几,也就是百分之几十。

  (3)商品打“八折”出售是什么意思?

  (八折=80℅,表示现价按原价的80℅出售。)

  (4)原价、折扣与现价有怎样的数量关系?

  (原价 x折扣数= 现价 )

  2、把折扣数和百分数进行互化。

  三八折=( )% 五折=( )%70%=( )折 68%=( )折

  承上启下:折扣数和百分数可以互化,那么你认为折扣应用题也就是什么应用题呢?会解答吗?

  二、“折扣”应用题的教学。

  1、准备题

  商店出售一种录音机,原价330元。现在打九折出售,现价多少元?

  (1)学生读题。

  (2)师问:打九折出售是什么意思?(学生口答。)

  (3)把哪个量看做单位“1”?怎么计算?(原价x折扣数=现价)

  (4)学生列式计算,然后师生板书订正。

  330x90℅

  = 330x0.9

  = 297(元)

  答:现价297元。

  2、教学“例7”。

  商店出售一种录音机,原价330元。现在打九折出售,比原价便宜多少元?(学生读题)

  (1)例7与准备题有何异同?(已知条件相同,所求问题不同。)

  (2)“要求便宜多少元?”怎样解答?(原价-现价=比原价便宜的钱数)

  (3)原价和现价题目中都给出了吗?没有给出的话怎样求?

  (4)学生根据数量关系解答,然后集体订正。

  330-330x90℅

  =330-297

  =33(元)

  答:比原价便宜33元。

  思考:商店出售一种录音机,打九折出售是297元,原价多少元?

  (比较这题和准备题的异同,并让学生说说它的数量关系。)

  小结:分析折扣应用题和分析百分数应用题的方法一样,要先确定单位“1”是已知还是未知,然后确定算法。

  【设计意图:在学生的现有水平和潜在水平之间提供一个向上攀登的“支架”,把复杂的学习任务加以分解,可以帮助学生较好地达到教学目标。在这里,前一教学步骤都是后一教学步骤的基础,让学生理解了“折扣”的意义才能掌握计算商品折后价钱的方法;掌握了计算商品折后价钱的方法才学习计算商品折后与折前差价的方法就容易掌握了。】

  小学数学六年级教案 9

  一、教学内容:

  九年义务教育六年制第九册第二单元《倒数的认识》

  二、教材分析:

  “倒数的认识”是在学生掌握了整数乘法、分数加法和减法计算、分数乘法的意义和计算法则、分数乘法应用题等知识的基础上进行教学的。“倒数的认识”是分数的基本知识,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。

  三、教学目标:

  1、理解倒数的意义,掌握求倒数的方法。

  2、能熟练地写出一个数的倒数。

  3、结合教学实际培养学生的抽象概括能力。

  四、教学重点:

  理解倒数的意义,掌握求倒数的方法。

  五、教学难点:

  熟练写出一个数的倒数。

  六、教学过程:

  (一)、谈话

  1、交流

  师:我们的黑板是什么颜色?

  生:黑色。

  师:教室的墙面又是什么颜色?

  生:黑色。

  师:黑与白在语文上是什么联系?

  生:黑是白的反义词。

  生:白是黑的反义词。

  师:能说黑是反义词或白是反义词吗?

  生:不能,因为黑与白是相互依存的联系。必须说清楚谁是谁的反义词。

  师:那么,数学上有没有相互依存联系的现象呢?

  生:约数和倍数。

  师:你能举例说明约数和倍数的相互依存联系吗?

  生:例如8是4的倍数,4是8的约数。不能说成8是倍数或4是约数。因为8和4是相互依存的'。

  2、导入今天,我们继续来研究数学中具有相互依存联系的现象的有关知识。

  (二)、学习新知

  对数游戏

  1、学习倒数的意义

  我们六年级办公室里有7人,男教师4人,女教师3人,下面我和同学们做个对数游戏,就是我先根据3和4说一个数,同学们跟着根据3和4说一个数。

  师:4是3的4/3,

  生:3是4的3/4

  师:7是15的7/15;生:15是7的15/7。

  ……

  提问;看我们做游戏的结果,你们有没有发现什么?

  生1:第一个分数的分子就是第二个分数的分母,第一个分数的分母就是第二个分数的分子。

  生2:两个分数的分子、分母相互调换了位置。

  生2:两个分数的乘积是1。

  提问:像符合这种规律的两个数叫做什么数呢?谁能给这种数取个名字。(倒数)出示课题:倒数的认识

  提问:那么怎样的两个数才是互为倒数呢?指导看书。

  思考:(1)什么是倒数?满足什么条件的两个数互为倒数?

  (2)你能找出互为倒数的两个数吗。请举例

  评析:回答问题

  理解“互为”的意义。怎样的两个数互为倒数。

  找朋友游戏(课前每位同学发一张数字卡片)

  练习出示卡片(六位同学举着卡片依次站在黑板前)

  7/9 11/4 1/50 8 6/5 99

  (2)规则:如果下面的同学拿到的数是以上这些数字的倒数就到相应的同学前面排队

  提问:下面的同学你们找到自己的朋友了吗?那么你们能找到自己的朋友吗?

  3教学求一个数倒数的方法

  出示例题:找出下列各数的倒数

  2/3 7/4 1/5 9 1/7/8 0、4

  小组讨论指名板演

  提问:1、你是怎么找出2/3的倒数的?

  生1:因为2/3与3/2乘积是1,所以2/3的倒数是2/3

  生2:因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2 。

  2、你是怎么找出7/4的倒数的?

  ……

  提问:我们怎样才能很快地找到一个数的倒数?为什么?

  4、练习请剩下的没有找到朋友的同学继续找倒数

  5、讨论:1的倒数是谁?0的倒数呢?

  生:1的倒数是1

  师:能说明一下理由吗?

  生1:因为1与1的乘积还是1。

  生2:因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。

  师:0的倒数呢?

  生1:0的倒数是0。因为1的倒数是1,所以0的倒数是0。

  生2:因为0与任何数相乘都得0,所以0的倒数是任何数。

  生3:0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。

  生4:0可以写成0/1,0/1的倒数是1/0。

  生5:不对,1/0分母是0,没有意义,所以0是没有倒数的。

  6、完善求一个数的倒数的方法

  (三)巩固练习

  填空

  1、因为5/3_3/5=1,所以()和()互为();

  2、因为15_1/15=1,所以()和()互为();

  3、4/7与()互为倒数;

  4、()的倒数是6/11

  5、()的倒数是2

  6、1/8的倒数是()

  7、1/2/7的倒数是()

  8、0、3的倒数是()

  判断

  1、得数是1的两个数互为倒数。()

  2、互为倒数的两个数乘积必定是1。()

  3、 1的倒数是1,所以0的倒数是0 。()

  4、分数的倒数都大于1。()

  思考

  4/5_()=()_8

  (四)总结:今天我们学习了什么知识?你有什么收获?还有什么问题吗?

  (五)布置作业

  小学数学六年级教案 10

  课前准备

  教师准备 PPT课件

  教学过程

  谈话导入

  同学们,你听说过“杠杆原理”吗?知道它在生活中的应用吗?可能大家都没有想到,杠杆原理的背后隐藏着数学原理,那就是反比例关系。下面就让我们通过实验来体验它的奥秘吧。

  实践与操作

  1.明确提出活动要求。

  “有趣的平衡”活动由三部分组成。

  (1)制作实验用具。

  (2)探索规律,体验“杠杆原理”。

  (3)应用规律,体会反比例关系。

  2.小组合作,自主活动。(教师巡视,适当点拨)

  3.展示制作实验用具情况。

  4.汇报探索到的规律。

  观察实验二、实验三的操作过程,你有什么发现?

  预设

  生1:如果左右两个塑料袋放入同样多的棋子,只有把它们移动到与中点距离相同的位置才能保证平衡。

  生2:若满足“左边所放棋子数x左边的刻度数=右边所放棋子数x右边的刻度数”,则竹竿一定平衡。

  生3:在“左边所放棋子数x左边的.刻度数”的积保持不变的条件下,右边的刻度数增大,所放棋子数反而减少;右边的刻度数减小,所放棋子数反而增多。

  生4:在“左边所放棋子数x左边的刻度数”的积保持不变的条件下,右边所放棋子数和所在的刻度数成反比例关系。

  5.活动小结。

  “左边所放棋子数x左边的刻度数=右边所放棋子数x右边的刻度数”,在物理学上,这个规律叫做“杠杆原理”,拴绳的那个点就是杠杆的支点。

  典型例题解析

  你能利用杠杆原理算出左边物体的质量吗?

  分析 根据杠杆原理“左边物体的质量x左边物体与支点的距离=右边物体的质量x右边物体与支点的距离”进行解答。

  解答 500x5÷2=1250(g)

  探究活动

  1.课件出示探究内容。

  星期日,爸爸带小明和妹妹到公园去玩跷跷板,小明体重44 kg,妹妹体重35 kg。如果要让跷跷板两边平衡,至少可以想出几种办法?

  2.小组讨论、分析、解答。

  3.交流、汇报。

  (答案不唯一)

  全课总结

  通过本节课的学习,你有什么收获?

  布置作业

  找一找生活中还有哪些地方应用了杠杆原理。

  板书设计

  有趣的平衡

  有趣的平衡:左边所放棋子数x左边的刻度数=右边所放棋子数x右边的刻度数。

  小学数学六年级教案 11

  教学目标:

  1、知识与技能

  理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。

  2、过程与方法

  通过操作、实验、观察等方式,引导学生进行比较、分析、综合、猜测,在感知的基础上加以判断、推理来获取新知识。

  3、情感态度与价值观

  渗透知识是“互相转化”的辨证思想,养成善于猜测的习惯,在探索合作中感受教学与我的生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥的体积计算方法及运用圆锥的体积计算方法解决实际问题。

  教学难点:

  理解圆锥体积公式的推导过程。

  教具学具:

  不同型号的圆柱、圆锥实物、容器;沙子、水、杯子;多媒体课件一套。

  教学流程:

  一、创设情境,提出问题

  师:五一节放假期间,老师带着自己的小外甥去商场购物,正巧商场在搞冰淇淋促销活动。促销的冰淇淋有三种(课件出示三个大小不同的冰淇淋),每种都是2元钱,小外甥吵着闹着要买一只,请同学们帮老师参考一下买哪一种合算?

  生:我选择底面的;

  生:我选择高是的;

  生:我选择介于二者之间的。

  师:每个人都认为自己选择的哪种最合算,那么谁的意见正确呢?

  生:只要求出冰淇淋的体积就可以了。

  师:冰淇淋是个什么形状?(圆锥体)

  生:你会求吗?

  师:通过这节课的学习,相信这个问题就很容易解答了。下面我们一起来研究圆锥的体积。并板书课题:圆锥的体积。

  二、设疑激趣,探求新知

  师:那么你能想办法求出圆锥的体积吗?

  (学生猜想求圆锥体积的方法。)

  生:我们可以利用求不规则物体体积的方法,把它放进一个有水的容器里,求出上升那部分水的体积。

  师:如果这样,你觉得行吗?

  教师根据学生的回答做出最后的评价;

  生:老师,我们前面学过把圆转化成长方形来研究,我想圆锥是不是也可以这样做呢?

  师:大家猜一猜圆锥体可能会转化成哪一种图形,你的根据是什么?

  小组中大家商量。

  生:我们组认为可以将圆锥转化成长方体或正方体,比如:先用橡皮泥捏一个圆锥体,再把这块橡皮泥捏成长方体或正方体。

  师:此种方法是否可行?

  学生进行评价。

  师:哪个小组还有更好的办法?

  生:我们组认为:圆锥体转化成长方体后,长方体的长、宽、高与圆锥的底面和高之间没有直接的联系。如果将圆锥转化成圆柱,就更容易进行研究。)

  师:既然大家都认为圆锥与圆柱的联系最为密切,请各组先拿出学具袋的圆锥与圆柱,观察比较他们的底与高的大小关系。

  1、各小组进行观察讨论。

  2、各小组进行交流,教师做适当的板书。

  通过学生的交流出现以下几种情况:一是圆柱与圆锥等底不等高;二是圆柱与圆锥等高不等底;三是圆柱与圆锥不等底不等高;四是圆柱与圆锥等底等高。

  3、师启发谈话:现在我们面前摆了这么多的圆柱和圆锥,我们是否有必要把每一种情况都进行研究?能否找到一种既简便又容易操作且能代表所有圆柱和圆锥关系的一组呢?(小组讨论)

  4、小组交流,在此环节着重让学生说出选择等底等高的圆锥体与圆柱体进行探究的理由。

  师:我们大家一致认为应该选择等底等高的一组,那么我们就跟求圆柱体的体积一样,就用“底面积x高”来表示圆锥体的体积行不行?为什么?

  师:圆锥体的体积小,那你猜测一下这两个形体的体积的`大小有什么样的关系?

  生:大约是圆柱的一半。

  生:……

  师:到底谁的意见正确呢?

  师:下面请同学们三人一组利用你桌子的学具,找出两组等底等高的圆锥与圆柱,共同探讨它们之间的体积关系验证我们的猜想,不过在实验前先阅读实验要求,(课件演示)只有目标明确,才能更好的合作。开始吧!

  要求:

  实验材料,任选沙、米、水中的一种。

  实验方法可选择用圆锥向圆柱里倒,到满为止;或用圆柱向圆锥里倒,到空为止。

  (生进行实验操作、小组交流)

  师:

  谁来汇报一下,你们组是怎样做实验的?

  通过做实验,你们发现它们有什么关系?

  生:我们利用空圆柱装满水到入空圆锥,三次倒完。圆柱的体积是等底等高圆锥体积的三倍。

  生:我们利用空圆锥装满米到入空圆柱,三次倒满。圆锥的体积是等底等高圆柱的体积的1/3。)

  师:同学们得出这个结论非常重要,其他组也是这样的吗?生略

  师:请看大屏幕,看数学小博士是怎样做的?(课件演示)

  齐读结论:

  师:你能根据刚才我们的实验和课件演示的情况,也给圆锥的体积写一个公式?

  (小组讨论,得出圆锥的体积公式,得到以下公式:圆柱体积÷3=圆锥体积,则V圆锥=sh÷3即V圆锥=1/3sh

  师:同学们刚才我们得到了圆锥的体积公式,(请看课件)你能求出三种冰淇淋的体积?

  (噢!三种冰淇淋的体积原来一样大)

  联系生活,拓展运用:

  本练习共有三个层次:

  1、基本练习

  (1)判断对错,并说明理由。

  圆柱的体积相当于圆锥体积的3倍。( )

  一个圆柱木料,把它加工成的圆锥,削去的部分的体积和圆锥的体积比是( )

  一个圆柱和一个圆锥等底等高体积相差21立方厘米,圆锥的体积是7立方厘米。( )

  (2)计算下面圆锥的体积。(单位:厘米)

  s=25.12 h=2.5

  r=4, h=6

  2、变形练习

  出示学校沙堆:我班数学小组的同学利用课余时间测量了那堆沙子,

  得到了以下信息:底面半径:2米,底面直径4米,底面周长12.56米,底面积:12.56平方米,高1.2米,

  (1)、你能根据这些信息,用不同的方法计算出这堆沙子的体积吗?

  (2)、找一找这些计算方法有什么共同的特点? V锥=1/3Sh

  (3)、准备把这堆沙填在一个长3米,宽1、5米的沙坑里,请同学们算一算能填多深?

  3、拓展练习

  一个近似圆锥形的煤堆,测得它的底面周长是31.4米,高是2.4米。如果每立方米煤重1.4吨,这堆煤大约重多少吨?

  整理归纳,回顾体验

  (通过小结展示学生个性,学生在学习中的自我体验,使孩子情感态度,价值观得到升华。)

  小学数学六年级教案 12

  [三维目标]

  1、知识与技能

  (1)使学生能够综合应用所学的知识解决生活中的实际问题,感受数学与现实生活的密切关系。

  (2)巩固复习有关百分数、折扣、纳税等知识,拓展学生解决问题的思路与策略。

  2、过程与方法

  经历分析、计算、比较、符号化、概括等过程,体会数学在解决实际问题中的作用,增强学生学好数学的信心。

  3、情感态度与价值观

  使学生受到一定的思想教育,学会优化存储计划。

  [重点难点]

  重点:认真地分析数量关系,正确地解决实际问题。

  难点:综合应用所学的知识解决日常生活中相关的问题。

  [教具准备]

  实物投影

  [教学过程]

  一、导入

  从日常的生活实际出发,了解学生到银行日常办理的一些业务,和存储的相关资料

  师:请问大家有去过银行吗?(有)

  师:我们一般去银行会做什么?(存钱、取钱)

  介绍两个实例,张先生和李先生都分别存了20万进银行,存期都是三年,三年后张先生获得本息共23万,李先生获得本息共21.5万。并进行提问:知道为什么吗?

  学生能快速的说出是因为利息不同,

  此时老师追问:为什么利息会不一样呢?(存款的种类不一样)

  由此引出存款的种类不同,利率不同,到期所获取的收益也不同。

  【设计意图:1、把生活中的实例融入到本课教学内容,让数学与生活紧密结合在一起,让生知道生活处处有数学。2、通过成年人的存款经历,学生进行讨论,增加学习趣味性。】

  二、复习

  如何计算利息,并说说影响利息的因素主要有哪些?

  学生轻易的能回答出:利息=本金x利率x时间(板书),三个因素都能影响利息的多少。

  【设计意图:回忆利息的计算公式,为下面计算利息作铺垫;利率影响了利息的多少,突出选择存款类型的重要性。】

  三、新授

  1、直接出示本课的主题图,并让学生按照老师的要求阅读相关材料。

  生1:我准备给儿子存一万元,供他六年后上大学。

  生2:怎样存款收益呢?

  生3:现在有一种教育储蓄存款,存期分为一年、三年、六年,并且教育储蓄免征储蓄存款利息所得税。

  生4:购买国债也免征利息税。

  2、知识梳理,找到条件与问题。

  师:那么现在我们来整理一下,我们这节课所需要解决的问题是什么?有哪些条件?

  本金:10000元 存期:6年 用途:子女教育 问题:怎样存款收益?

  【设计意图:梳理题目的条件及问题,为学生判断选取存款方式提供有力的证据,让生更加了解目标,并进行解决本课问题。】

  3、解决问题

  (1)定期存款

  教师要提醒学生,这些钱的用途是子女教育,一般是比较稳定的,短时间都用不上。所以让学生在活期存款和定期存款选取合适的存款类型。(学生便主动放弃选用活期存款)

  此时教师出示银行利率表:并跟学生介绍活期存款的利率比较低,而且还要征收利息所得税,不划算。

  师:那么我们现在来研究一下定期存款吧!刚刚都已经通过主题图得知存期是六年,那这六年可以怎么分配呢?请同学们根据银行利率表来分配一下存期,可以怎样存。

  一个学生回答以后,其它都已经知道怎么思考分配存期,便可以分小组进行讨论存款方案,并算出根据方案所能得到的利息。并提醒学生,定期存款也是需要征收利息税的。

  学生算完以后,进行汇报,并选取方案。

  【设计意图:学生才是课堂的主人,把课堂交给学生,小组合作,自主讨论定方案,自主计算利息并互相对答案检验,更能体现团队合作在学习上的重要性】

  (2)国债和教育储蓄

  教育储蓄:

  师:刚刚我们还了解到,除了活期存款和定期存款外,还有国债和教育储蓄。

  出示教育储蓄的相关资料,并让学生仔细阅读,了解一年和三年按照定期的利率进行计算,六年的按照定期存款五年期的利率进行计算,教育储蓄免征利息税

  国债:

  教师出示国债资料,并让学生了解国债,知道国债是一种国家发行的债券,它也分为三年期和五年期。利率分别是多少,并知道国债的利率比定期存款的利率还要高,而且国债也是免征利息税的。

  定方案,算利息,比较后选取存储方案:

  小组进行讨论存款方案,并算出根据方案所能得到的利息。

  老师巡视课堂,看学生定下了那些存储方案,并进行计算指导。

  小组汇报方案,并说出本方案所获得的利息分别是多少。

  最后老师把所有方案所获得的利息列举出来,并让学生选取的存储方案。

  【设计意图:学生才是课堂的主人,把课堂交给学生,小组合作,自主讨论定方案,自主计算利息并互相对答案检验,更能体现团队合作在学习上的重要性】

  四、总结并出示课题

  师:本节课我们学习了什么?

  生:如何存款

  师:那怎样的`存款方式才是最合理的呢?是不是利益越大就越好呢?

  生有的说是,有的说不是。(此时出示本科课题“合理存款”)

  此时师再举简单例子1:如果只有10000元,而且生活还有用钱的,能不能直接把钱全部存定期6年?学生根据具体情况进行说明。简单例子2:如果有100000元,平时不怎么用钱的,能不能拿10000元存进银行进行定期存六年?

  最后总结:合理存款,并不是利息越多越好,要结合实际选择最为符合自己的存款类型才是最为合理的。

  【设计意图:本课的研究的内容是“合理存款”,不单单是要存款,关键在于存款的合理性,除了选择存款的种类和合适的存期,存款的前提和存款目的也是合理存款需要考虑的因素,让生了解合理存款并能真正的做到合理存款】

  小学数学六年级教案 13

  教学目标:

  1.知识与技能目标

  能够正确运用圆锥体积计算公式解决实际有关圆锥体积的实际应用问题。

  2.过程与方法

  在探作中完成圆锥体积公式的推导。在合作探究中探明等底等高圆柱体积与圆锥体积内在联系。

  3.情感态度与价值感

  在探索合作中感受教学与我生活的密切联系,让学生感受探究成功的快乐。

  教学重点:

  掌握圆锥体积的计算公式,并能灵活利用公式求圆锥的体积。

  教学难点:

  理解圆锥体积公式的推导过程及解决生活中的实际问题

  学习者特征分析:

  接受教育者是小学六年级的学生。

  教学策略选择与设计:

  (1)引导学生主动建构知识是新课标的重要理念,六年级的学生尽管具备了一定的逻辑思维能力,但感性知识对于他们来说还是非常重要的。因此,教学中通过引导学生通过自主探索、解决问题,真正掌握所学知识,发展数学能力,真正做到“动手操作、体验成功”

  (2)以实验要求为主线,既动手操作,又动脑思考,努力探索圆锥体的计算方法。

  (3)问题解决为主的教学策略:通过演示、小组交流、动手操作、感念辨析等方式,本课从具体的学生感兴趣的活动中,让学生自己发现问题,提出问题,体验探索成功的快乐;提高学生解决问题的能力,巩固所学知识。

  教学资源与工具设计:

  (1)每位同学准备等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、6水槽红颜色水。直尺6把。

  (2)教师自制的多媒体课件;

  教学过程:

  一、复习旧知,课前铺垫

  1.怎样计算圆柱的体积?

  指名回答,教师板书:圆柱体的体积=底面积x高。

  2.一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

  指两名板演,全班齐练,集体订正。

  二、提出质疑,引入新课

  圆锥有什么特征?它的体积如何计算呢?

  今天我们就利用这些知识探讨新的——怎样计算圆锥的体积(板书课题)

  三、动手操作,获得新知

  1.探讨圆锥的体积公式

  教师:怎样探讨圆锥的`体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

  学生回答,教师板书:

  圆柱——(转化)——长方体

  圆柱体积公式——(推导)——长方体体积公式

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

  (1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

  (学生得出:底面积相等,高也相等。)

  底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (板书:等底、等高)

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积x高”来求圆锥体体积行不行?为什么?

  教师:圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的关系?(指名发言)

  用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3)学生分组做实验。

  谁来汇报一下,你们组是怎样做实验的?

  你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?(学生发言:圆柱体的体积是圆锥体体积的3倍)

  同学们得出这个结论非常重要,其他组也是这样的吗?

  我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)

  (4)学生操作:出示另外一组大小不同的圆柱体和圆锥体进行体积大小的比较,通过比较你发现什么?

  学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。 (老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了砂子,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

  为什么你们做实验的圆锥体里装满了水往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

  在等底等高的情况下。

  (老师在体积公式与“等底等高”四个字上连线。)

  现在我们得到的这个结论就更完整了。(指名反复叙述公式。)

  教师:同学们圆锥体里装满了水往圆柱体里倒,只倒一次,看看能不能想办法推出计算公式?让学生动脑动手?

  得出用尺子量圆锥里的水倒进圆柱里,水高是原来水高的1/3.

  小结:今后我们求圆锥体体积就用这种方法来计算。

  (5)应用巩固

  1.出示例题学生读题,理解题意,自己解决问题。

  例一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?

  学生完成后,进行小组交流。

  你是怎样想的和怎样解决问题。(提问学生多人)

  教师板书:

  1/3 x19x12=76(立方厘米)

  答:它的体积是76立方米

  2.练习题。

  一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)

  3.出示例2:要求学生自己读题,理解题意思。

  有一个近似于圆锥的小麦堆,测得底面半径是2米,高是1.5米。你能计算出这堆小麦的体积吗?

  (1)提问:从题目中你知道什么?

  (2)学生独立完成后教师提问。并回答同学的质疑:3.14x()x1.5表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思? 4.比较:例1和例2有什么地方不同?

  (1)直接告诉了我们底面积,而(2)没有直接告诉,要求我们先求出底面积,再求出圆锥体积。

  四、综合练习,发展思维

  1.一个圆锥形沙堆,高是1.5米,底面半径是2米,每立方米沙重1.8吨。这堆沙约重多少吨?

  2.选择题。

  每道题下面有3个答案,你认为哪个答案正确就用手指数表示。

  (1)一个圆锥体的体积是a立方米,和它等底等高的圆柱体体积是(    )

  立方米、3a立方米、 9立方米

  (2)把一段圆钢切削成一个的圆锥体,圆柱体体积是6立方米,圆锥体体积是(    )立方米

  6立方米、3立方米、 2立方米

  3.学生操作

  看看我们的教室是什么体?(长方体)

  要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积?(小组讨论)

  指名发言。当争论不出结果时,让学生以小组为单位动手测量数据:教室长12m,宽6m,高4m.并板书出来,再比较怎样放体积的圆锥体。

  五、课后小结,归纳知识

  这节课你有什么收获?哪个同学、哪个小组学习?

  六、作业布置,巩固新知

  1、本节课后第3、4、5题。

  2、回去观察你生活身边有哪圆锥物体?测量计算它们的体积。下节课交流汇报。

  小学数学六年级教案 14

  教学内容:教材第68页例2,练习十一第2题。

  教学目标

  综合运用统计知识学会从折线统计图中准确提取统计信息,并作出正确的判断和简单的预测。

  理解折线统计图中各个数据的具体含义,培养学生仔细观察的习惯。

  教学重点、难点:从折线统计图中获信息,并能作出决策。

  教学过程

  一、引入:回忆折线统计图的特点。

  二、探究交流、总结规律

  1.小组探讨、交流。

  出示教科书第68页两幅折线统计图,提问:根据这两幅统计图,你们了解到哪些信息?根据提出的问题,让学生在小组内交流、讨论,谈感受。

  学生可能会谈到:

  A和B两人绘制的是同一个公司员工的`月薪统计图,为什么看起来不一样呢?第一幅图看起来工资增长很快,第二幅图看起来工资增长较慢。

  引导释疑。

  在学生讨论交流的基础上,教师提问:请大家仔细观察,两幅图看起来虽然不同,但它们所描述的统计数据却是完全一致的,之所以两图不同,原因在于绘图时采用的单位不同:左图1格代表50元,右图2代表100元。

  小结。

  引导学生认识到:在利用统计图进行比较和判断时,一定要注意统一标准,才不致发生误会。

  三、巩固练习

  1.完成教科书第69页练习十一2.

  2.补充练习。

  四、总结概括

  学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?

  2.谈你的收获。

  (本课注意事项:从折线统计图中准确提取统计信息时,特别要注意标准是否统一,以免影响到正确的判断和预测。)

  小学数学六年级教案 15

  教学目标

  1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。

  2.能正确地计算圆柱的表面积。

  3会解决简单的实际问题。

  4.初步培养学生抽象的逻辑思维能力。

  教学重点

  理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。

  教学难点

  能充分运用圆柱表面积的相关知识灵活的解决实际问题。

  教学过程

  一复习旧知。

  1计算下面圆柱的侧面积。

  (1)底面周长2.5米,高0.6米。

  (2)底面直径4厘米,高10厘米。

  (3)底面半径1.5分米,高8分米。

  2求出下面长方体、正方体的表面积。

  (1)长方体的长为4厘米,宽为7厘米,高为9厘米。

  (2)正方体的棱长为6分米。

  3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。

  学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。

  学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。

  二新课导入。

  1教师:以前我们学习了长方体、正方体的.表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)

  2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?

  (1)学生分组讨论。

  (2)学生汇报讨论结果。

  3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)

  4教师进行圆柱模型表面展开演示。

  (1)学生说说展开的侧面是什么图形。

  学生:圆柱展开的侧面是一个长方形。

  (2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?

  学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。

  (3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长x圆柱的高)

  (3)圆柱的底面积怎么计算?(复习底面积的计算方法)。

  5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?

  学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。

  教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。

  三新课教学。

  1例2一个圆柱的高是4.5分米,底面半径2分米,它的表面积是多少?(课件演示)

  2学生尝试练习,教师巡回检查、指导。

  3反馈评价:

  (1)侧面积:2x2x3.14=56.52(平方分米)

  (2)底面积:3.14x2x2=12.56(平方分米)

  (3)表面积:56.52+12.56=81.64(平方分米)

  答:它的表面积是81.64平方分米。

  4学生质疑。

  5教师强调答题过程的清楚完整和计算的正确。

  6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?

  四反馈练习:试一试。

  1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)

  2学生交流练习结果(注意计算结果的要求)。

  3教师评议。

  教师:在实际运用中四舍五入法和进一法有什么不同?

  学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。

  五拓展练习

  1教师发给学生教具,学生分组进行数据测量。

  2学生自行计算所需的材料。

  3计算结果汇报。

  教师:同学们的答案为什么会有不同?哪里出现偏差了?

  学生甲:可能是数据的测量不准确。

  学生乙:可能是计算出现错误。

  教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。

  六巩固练习。

  1计算下面图形的表面积(单位:厘米)(略)

  2计算下面各圆柱的表面积。

  (1)底面周长是21.52厘米,高2.5分米。

  (2)底面半径0.6米,高2米。

  (3)底面直径10分米,高80厘米。

  3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?

  4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)

  小学数学六年级教案 16

  教学目标:

  1、使学生理解圆周长和圆周率的意义,理解和掌握圆周长的计算公式,并能运用公式正确计算圆的周长和解决简单的实际问题。

  2、通过引导学生参与知识的探求过程,培养学生的动手操作能力、创新意识和合作能力,激发学生学习的积极性和自信心。

  3、通过教学,对学生进行爱国主义教育和辩证唯物主义观点的启蒙教育。

  教学重难点:

  圆周率意义的理解和圆周长公式的推导。

  教学设想:

  新课程从促进学生学习方式的转变着眼,提出了参与、探究、搜集、处理、获取、分析、解决、交流与合作等一系列关键词。这些在本节课都有不同程度的体现。其中,参与是一切的前提和基础,而只有当参与成了学生主动的行为时,参与才是有价值的、有意义的。因此要怎样调动学生参与的积极性,吸引他们参与进来就成了基础的基础。这里,老师能善于打破学生思维的平衡状态,使他们产生新的不平衡,从而不断吸引学生参与到新知的探究中来。圆的周长是一条曲线,该如何测量?的问题使学生思维产生最初的不平衡,当学生通过化曲为直的两种方法的局限性,从而打破学生刚刚建立的平衡,进一步吸引学生探究更加简便的求圆周长的方法。

  接着,就是要让学生参与什么,怎样参与的问题了。在引导学生探究圆周长与直径的关系时,学生从猜测、分组测量计算到根据新获取的数据寻找共性的东西,体验到知识的形成过程,发现了知识新成的道。在小组活动前,老师鼓励小组成员间分工合作,活动中教师参与其间,关注学生合作的情况。实验后的广泛交流达到了资源共享的目的,使接下来得到的结合更具可信度,也使学生感受到合作交流的必要性。这种以学生为主体,以教师为主导,在学生兴趣点上激疑、质疑,无疑能鼓舞学生的探知、求知精神,使学生真正理解、消化、吸收本课重点内容,不仅学到知识,而且学会学习。]

  教学具准备:

  多媒体课件、1元硬币、直尺、卷尺、系线的小球、计算器、实验报告单。

  教学过程:

  一、创设情境,提出问题

  1、创设情境。

  这节课,老师要和同学一起探讨一个有趣的数学问题。

  媒体显示:唐老鸭与米老鼠在草地上跑步,唐老鸭沿着正方形路线跑,米老鼠沿着圆形路线跑。

  2、迁移类推。

  引导学生认真观察唐老鸭、米老鼠所跑的跑线,讨论、回答问题。

  (1)要求唐老鸭所跑的`路程实际就是求什么?

  (2)什么叫正方形的周长?怎样计算正方形的周长?(突出正方形的周长与它的边长有关系)

  (3)要求米老鼠所跑的路程实际就是求什么?(板书:圆的周长)

  3、提出问题。

  看到这个课题,你想提些什么问题。学生纷纷发言提出自己想探究的问题。

  梳理筛选形成学习目标:①什么叫做圆的周长?②怎样测量圆的周长?③圆的周长与什么有关系,有什么关系?④圆的周长怎样计算?⑤圆的周长计算有什么用处?

  [设想:通过创设情境,引发学生参与形成学习目标,既培养了学生的问题意识,又为学生创造了自主学习的氛围,指明了探究方向,避免盲目性。]

  二、自主参与,探究新知。

  1、实际感知圆的周长。

  让学生拿出各自圆片学具,边摸边说圆的周长;同桌之间相互边指边说。

  2、明确圆周长的意义。

  引导学生解决第一个问题,概括什么叫做圆的周长。(媒体显示一个圆,并闪动圆的周长)

  (1)圆的周长是一条什么线?

  (2)这条曲线的长就是什么的长?

  (3)什么叫做圆的周长?

  学生讨论互补,概括出围成圆的曲线的长叫做圆的周长(显示字幕)

  [设想:让学生动手摸一摸圆的周长,初步感知周长是一周的长度,再动口说一说培养学生把思维过程转化为外部语言更增强对圆周长的感性认识。在学生对圆周长有了较强的感性认识后,体验及形象理解圆周长的意义。]

  小学数学六年级教案 17

  一、教学目标:

  1、首先带动课堂气氛

  2、教会学生什么是面积。

  3、学习圆柱体侧面积和表面积的含义。

  4、能够求圆柱的侧面积和表面积的方法。

  二、教学重点:

  动手操作展开圆柱的侧面积

  三、教学难点:

  圆柱侧面展开图的多样性,并能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的计算公式。

  四、教具准备:

  圆柱表面展开图、纸质圆柱形茶叶罐、长方形纸、剪刀、圆柱体纸盒。

  五、教学过程:

  (一)、创设情境,引起兴趣。

  出示:牛奶盒,纸箱,可比克。

  提问(1)这些东西我们很熟悉吧!谁来说说它们是什么形状的呢?(指名说)

  (2)制作这些包装盒,至少需要多大面积的材料?(指名说)

  师:谁能说说上一节课你学过圆柱体的哪些知识?

  生:........

  师:请同学们拿出你自制的圆柱体模型,动手摸一摸

  生:动手摸圆柱体

  师:谁能说一说你摸到的是哪些部分?

  生:.......

  师:你所摸到的圆柱体的表面,它的大小叫做表面积,我们这节课就要学习如何求圆柱体的表面积的大小。板书课题:圆柱的表面积

  (二)、探索交流,解决问题。

  圆柱的侧面积是一个曲面,那么怎样才能把它变成我们熟悉的平面呢?(找学生回答问题)提问:请大家猜一猜,如果我们将圆柱体的侧面(也就是这个包装纸)展开,会是什么形状的呢?

  研究圆柱侧面积用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?先猜想,然后说说,再操作验证。这个图形各部分与圆柱体茶叶罐有什么关系?小组交流。(学生要说清楚展开的方法不同能得到什么不同的图形)(展开的形状可能是长方形、平行四边形、正方形等)

  1、独立操作利用手中的材料(纸质小圆柱,长方形纸,剪刀),用自己喜欢的。方式验证刚才的猜想。

  2、操作活动:

  (1)用自己喜欢的方式,将茶叶罐的包装纸展开,看看得到一个什么图形?

  (2)观察这个图形各部分与圆柱体茶叶罐有什么关系?独立操作后,与小组里的同学交流

  3、小组交流能用已有的知识计算它的面积吗?

  4、小组汇报。(选出一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。(这里要强调沿着高剪)

  这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  板书:

  长方形的面积=长x宽

  ↓↓↓

  圆柱的侧面积=底面周长x高

  所以,圆柱的侧面积=底面周长x高

  S侧=Cxh

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏rxh

  师:如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。

  (因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  (四)、练习

  求圆柱的侧面积(只列式不计算)

  1、底面周长是1.6米,高是0.7米

  2、底面直径是2分米,高是45分米

  3、底面半径是3.2厘米,高是5分米

  (五)研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。需要计算哪几个面的.面积?需要什么条件?(指名说)

  2、动画:圆柱体表面展开过程

  3、圆柱体的表面积怎样求呢?得出结论:圆柱的表面积=圆柱的侧面积+底面积x24.一个圆柱形茶叶筒的高是10厘米,底面半径是3厘米,它的表面积是多少平方厘米(学生独立完成后交流反馈)

  (六)巩固应用,内化提高

  1、比较有盖,无盖,一个盖的圆柱物体的表面积计算的异同?多媒体出示:水管,水桶,糖盒提问:这些圆柱形物体在计算表面积时有什么不同?(指名说)

  2、做一个没有盖的圆柱形水桶,底面半径是10厘米,高是40厘米,至少需要多少平方厘米?(得数保留整百平方厘米)重点感受:没有盖,至少这两个词语。在实际中,使用的材料都要比计算得到的结果多一些。因此,要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1.这种取近似值的方法叫做进一法。

  3、一个圆柱形水池,直径是20米,深2米,在池内的侧面和池底抹一层水泥,水泥面的面积是多少平方米?

  六、教学结束:

  布置学生用本节课所学知识制作出一个笔筒,下节课带来送给自己的朋友。

  小学数学六年级教案 18

  教学内容

  圆锥的体积计算公式。

  教学目的

  知道圆锥体积公式的推导过程,理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题,对学生进行辩证物主启蒙教育。

  教学重点

  圆锥体积的计算公式

  教学难点

  圆锥体积公式的推导。

  教具准备

  沙、圆锥教具,圆柱教具若干个,其中要有等底等高圆柱,圆锥各两对。

  教学过程

  一、复习

  1、口答圆柱体积计算公式。

  2、计算下面各圆柱的体积。

  (1)底面积是6.28平方分米,高是5分米。

  (2)底面半径是2分米,高与半径相等。

  (3)底面直径6厘米,高5厘米。

  (4)底面周长6.28分米,高2分米。

  小结学生练习情况。

  二、新授

  1、点明课题:锥体积的计算

  2、全积公式推导

  (1)要研究圆锥的体积,你想提出什么问题?

  ①圆锥的体积与什么有关?有怎样的关系?

  ②为什么有这样的关系呢?

  (2)出示教具让学生观察圆锥体积与底面积,高有关系。

  ①要研究圆锥的体积需转化成已学过的'物体积来计算。

  ②实验

  (1)出示底等高的圆锥容器教具观察特征:等底、等高。

  (2)老师示范用空圆锥装满沙往空圆柱里倒,让学生观察看看倒几倒满圆柱。

  (3)得出结论:圆锥体积等于这个圆柱体积的1/3。

  (4)老师再一次实验。

  (5)学生动手实验:先做等底等高的实验,再做不等底不等高的实验,然后提问:圆锥体积都是圆柱体积的1/3吗?为什么?

  3、学生讨论实验情况,汇报实验结果。

  4、推导出公式

  5、练习(口答)

  (1)一个圆柱体积是27立方分米,与它等底等高的圆锥体积是多少立方分米?

  (2)一个圆锥体积是150立方厘米,与它等底等市的圆柱体积是多少立方厘米?

  突出强调:“等底等高”这一前提下圆柱与圆锥的体积关系。

  6、运用公式

  (1)出示例1。一个圆锥形的零件,底面积是19平方厘米,高是12厘米。这个零件的体积是多少?

  学生尝试练习,老师讲评。

  (2)出示例2。在打谷场上,有一个近公似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米。每立方米小麦约重735千克,这堆小麦大约有多少千克?

  学生读题思考片刻后问:要求小麦重量需先求出什么?要求体积需知道什么?然后学生尝试练习,个别板演,练习后评讲。

  三、巩固练习

  课本第43页的“做一做”第1、2题。练习后评讲。

  四、小结:今天这节课,你学到了什么知识?要求圆锥的体积需要知识哪些条件?

  五、作业

  完成练习九的第3――5题。

  小学数学六年级教案 19

  【教学内容】

  苏教版国标本六年级上册P68~70认识比例1、例2以及相应练习。

  【教学目标】

  1.使学生在具体的情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

  2.使学生经历探索比与除法、分数关系的过程,初步理解比与分数、除法的关系,明白比的后项不能为0的道理,会把比改写成分数的形式。

  3.使学生在数学活动中,培养学生分析、综合、抽象、概括等能力,体会数学知识之间的联系,感受数学学习的乐趣。

  【教学重难点】

  理解比的意义,比与分数、除法的关系。

  【教学过程】

  一、创设情境,引入比。

  1.图片激趣,引发讨论,设置悬念。

  2.电脑呈现例l主题图。

  提问:2杯果汁和3杯牛奶这两个数量之间有什么样的关系?你会用哪些方法表示它们的关系?

  3.揭题:比较两个数量之间的关系还可以用一种新的方法比。

  二、自主探索,认识比。

  (一)初步理解比

  1.启发谈话:用比怎样表示2杯果汁和3杯牛奶这两个数量之间的关系呢?刚才有同学会说,谁来试着说一说。

  果汁的.杯数相当于牛奶的2/3,我们还可以说成果汁与牛奶杯数的比是2比3

  牛奶的杯数相当于果汁的3/2还可以怎样说成牛奶与果汁杯数的比是3比2

  2.看书自学, 汇报交流:

  (1)写法

  (2)各部分名称

  (3)比是有序的。

  3.完成p68试一试

  (二)深入认识比

  1.认识不同量之间的比。

  (1)生读例2,师:读了这条信息,你能提出什么数学问题?

  (请学生分别算出它们的速度,填入表格。)

  (2)指出:像路程和时间这两个有着相除关系的量,我们也可以用比来表示。

  交流得出:小军走的路程与时间的比是900:15、小伟走的路程与时间的比是900:20。

  (3)追问:900:15表示什么?900:20呢?(速度)

  2.丰富对不同类量的两个数量比的认识。

  张祥买3本笔记本用了10.5元。

  提问:这句话中告诉了我们哪两个量?它们之间有着怎样的关系呢?会用比来表示吗?

  3.总结概括比的意义。

  (1)观察一下这几组式子,总结相同的特点。

  (2)提问:你认为两个数的比表示的是两个数量之间怎样的一种关系?

  (3)小结:两个数的比归根结底表示的都是两个数相除。

  三、自学课本,内化比。

  1.自学课本p69

  2.反馈:通过看书,你还知道了什么?

  求比值。

  分数形式的比。

  理解比、除法、分数之间的关系

  小学数学六年级教案 20

  教学目标:

  1.能根据具体情境,灵活运用圆柱表面积的计算方法解决生活中一些简单的问题,使学生感受到数学与生活的密切联系。

  2.通过想象、操作等活动,知道圆柱侧面展开后可以是一个长方形,加深对圆柱特征的认识,发展空间观念。

  3.结合具体情境和动手操作,探索圆柱侧面积的计算方法,掌握圆柱侧面积和表面积的计算方法,能正确计算圆柱的侧面积和表面积。

  教学重点:使学生认识圆柱侧面展开图的多样性。

  教学难点:学生能够将展开图与圆柱体的各部分建立联系,并推导出圆柱侧面积、表面积的`计算公式。

  教学用具:课件、圆柱体的纸盒、剪子

  教学过程:

  一、创设情境,引起兴趣。

  拿出圆柱体茶叶罐,谁能说说圆柱由哪几部分组成的?想一想工人师傅做这个茶叶罐是怎样下料的?(学生会说出做两个圆形的底面再加一个侧面)那么大家猜猜侧面是怎样做成的呢?(说说自己的猜想)

  二、自主探究,发现问题。

  研究圆柱侧面积

  1、独立操作:利用手中的材料(小圆柱,长方形纸,剪刀),用自己喜欢的方式验证刚才的猜想。

  2、观察对比:观察展开的图形各部分与圆柱体有什么关系?

  3、小组交流:能用已有的知识计算它的面积吗?

  4、小组汇报。 (将一个学生已经展开的图形贴到黑板上)

  重点感受:圆柱体侧面如果沿着高展开是一个长方形。这个长方形与圆柱体上的那个面有什么关系?(长方形的长是圆柱体底面周长、长方形的宽是圆柱体的高)

  长方形的面积=圆柱的侧面积即 长×宽 =底面周长×高,所以,圆柱的侧面积=底面周长×高 S 侧 == C × h

  如果已知底面半径为r,圆柱的侧面积公式也可以写成:S侧=2∏r×h

  如果圆柱展开是平行四边形,是否也适用呢?

  学生动手操作,动笔验证,得出了同样适用的结论。(因为刚才学生是用自己喜欢的方式剪开的,所以可能已经出现了这种情况。此时可以让已经得出平行四边形的学生介绍一下他的剪法,然后大家拿出准备好的圆柱纸盒用此法展开)

  研究圆柱表面积

  1、现在请大家试着求出这个圆柱体茶叶罐用料多少。

  学生测量,计算表面积。

  2、圆柱体的表面积怎样求呢?

  得出结论:圆柱的表面积 = 圆柱的侧面积+底面积×2

  3、课件演示:圆柱体表面展开过程

  三、实际应用

  1、解决书上的例题

  2、填空:

  圆柱的侧面沿着高展开可能是( )形,也可能是( )形。第二种情况是因为( )

  3、要求一个圆柱的表面积,一般需要知道哪些条件( )

  4、教材第六页试一试。

【小学数学六年级教案】相关文章:

小学数学六年级教案11-11

小学数学六年级教案11-13

小学数学六年级的教案07-02

小学六年级教案数学教案01-05

小学数学六年级数学教案04-04

小学六年级数学比教案06-07

小学数学六年级教案【热门】05-31

小学六年级数学经典教案05-11

反思小学教案数学六年级07-23

小学数学六年级上册教案05-29