小学数学广角教案精选
教材分析:
鸡兔同笼问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。教材在本单元安排鸡兔同笼问题,一方面可以培养学生的逻辑推理能力;另一方面使学生体会代数方法的一般性。
鸡兔同笼的原题数据比较大,不利于首次接触该类问题的学生进行探究,因此教材先编排了例1,通过化繁为间的思想,帮助学生先探索出解决该类问题的一般方法后,再解决《孙子算经》中数据比较大的原题。
解决鸡兔同笼问题时,教材展示了学生逐步解决问题的过程,既猜测、列表、假设或方程解。其中假设和列方程解是解决该类问题的饿一般方法。假设法有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决鸡兔同笼问题时,学生选用哪种方法均可,不强求用某一种方法。
配合鸡兔同笼问题,教材在做一做和练习中安排了类似的一些习题,比如龟鹤问题,生活中的一些实际问题等,让学生进一步体会到这类问题在日常生活中的应用,并巩固用假设法或方程的方法来解决这类问题。
三维目标:
1、知识与技能
(1)、了解鸡兔同笼问题,感受古代数学问题的趣味性。
(2)、尝试用不同的方法解决鸡兔同笼问题,并使学生体会代数方法的一般性。
2、过程与方法
解决鸡兔同笼问题可用猜测、列表、假设或方程解等方法。
3、情感、态度与价值观
(1)、培养学生的逻辑推理能力。
(2)让学生体会到数学问题在日常生活中的应用。
重难点、关键:
1、重难点
尝试用不同的方法解决鸡兔同笼问题。
2、关键
在解决问题的过程中培养学生的逻辑推理能力。
教学设计:
鸡兔同笼问题
教学内容
教科书第112-115页。
教学目标
1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。
2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。
3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。
教学过程
一、故事引入
教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。
出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)
二、探究新知
1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?
让学生以两人为一组讨论。
汇报讨论的结果。
(1)、列表:
鸡 8 7 6 5 4 3
兔 0 1 2 3 4 5
脚 16 18 20 22 24 26
(2)、假设法:
假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。
因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。
因此,鸡就有:8-5=3(只)
(3)、用方程解:
解:设鸡有x只,那么兔就有(8-x)只。
根据鸡兔共有26只脚来列方程式
2x+(8-x)4=26
2x+84-4x=26
32-26=4x-2x
2x=6
x=3
8-3=5(只)
2、小结解题方法:
教师:以上三种解法,哪一种更方便?
小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。
3、独立解决书中的趣题。
(1)、方程解:
解:设鸡有x只,那么兔就有(35-x)只。
根据鸡兔共有94只脚来列方程式
2x+(35-x)4=94
2x+354-4x=94
140-94=4x-2x
2x=46
x=23
35-23=12(只)
答:鸡有23只,兔有12只。
(2)、算术解:
假设都是鸡。
235=70(只)
94-70=24(只)
24(4-2)=12(只)
35-12=23(只)
答:鸡有23只,兔有12只。
三、巩固与运用
1、完成教科书第115页做一做的第1题。
学生独立读题分析后,列式解答。鼓励用方程解。
2、完成教科书第115页做一做的第2题。
提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)
请同学独立列式解答。(讲评时重点解释算术解的每步的算理)
68=48(人)
假设8条都是大船可坐48人。
48-38=10(人)
假设人数比实际的人数多10人。
多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。
10(6-4)=5(条)
8-5=3(条)
这是表示有3条大船。
四、作业
练习二十六第一、二题。
【小学数学广角教案】相关文章:
小学数学教案《数学广角》04-15
《数学广角》教案02-10
《数学广角》教案04-25
《数学广角》教案05-19
数学广角推理教案02-24
数学广角推理教案03-28
《数学广角─集合》教案04-01
《数学广角》教案15篇03-01
《数学广角》教案经典15篇07-28
《数学广角》教案(15篇)03-29