高中数学教案

时间:2024-06-25 12:02:04 高中数学教案 我要投稿

[集合]高中数学教案

  作为一名教学工作者,编写教案是必不可少的,教案是备课向课堂教学转化的关节点。教案应该怎么写呢?以下是小编帮大家整理的高中数学教案,希望对大家有所帮助。

[集合]高中数学教案

高中数学教案1

  教学目标:

  1。理解并掌握瞬时速度的定义;

  2。会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度;

  3。理解瞬时速度的实际背景,培养学生解决实际问题的能力。

  教学重点:

  会运用瞬时速度的定义求物体在某一时刻的瞬时速度和瞬时加速度。

  教学难点:

  理解瞬时速度和瞬时加速度的定义。

  教学过程:

  一、问题情境

  1。问题情境。

  平均速度:物体的运动位移与所用时间的比称为平均速度。

  问题一平均速度反映物体在某一段时间段内运动的快慢程度。那么如何刻画物体在某一时刻运动的快慢程度?

  问题二跳水运动员从10m高跳台腾空到入水的过程中,不同时刻的'速度是不同的。假设t秒后运动员相对于水面的高度为h(t)=-4.9t2+6.5t+10,试确定t=2s时运动员的速度.

  2。探究活动:

  (1)计算运动员在2s到2.1s(t∈)内的平均速度。

  (2)计算运动员在2s到(2+?t)s(t∈)内的平均速度。

  (3)如何计算运动员在更短时间内的平均速度。

  探究结论:

  时间区间

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  当?t?0时,?-13.1,

  该常数可作为运动员在2s时的瞬时速度。

  即t=2s时,高度对于时间的瞬时变化率。

  二、建构数学

  1。平均速度。

  设物体作直线运动所经过的路程为,以为起始时刻,物体在?t时间内的平均速度为。

  可作为物体在时刻的速度的近似值,?t越小,近似的程度就越好。所以当?t?0时,极限就是物体在时刻的瞬时速度。

  三、数学运用

  例1物体作自由落体运动,运动方程为,其中位移单位是m,时

  间单位是s,,求:

  (1)物体在时间区间s上的平均速度;

  (2)物体在时间区间上的平均速度;

  (3)物体在t=2s时的瞬时速度。

  分析

  解

  (1)将?t=0.1代入上式,得:=2.05g=20.5m/s。

  (2)将?t=0.01代入上式,得:=2.005g=20.05m/s。

  (3)当?t?0,2+?t?2,从而平均速度的极限为:

  例2设一辆轿车在公路上作直线运动,假设时的速度为,

  求当时轿车的瞬时加速度。

  解

  ∴当?t无限趋于0时,无限趋于,即=。

  练习

  课本P12—1,2。

  四、回顾小结

  问题1本节课你学到了什么?

  1理解瞬时速度和瞬时加速度的定义;

  2实际应用问题中瞬时速度和瞬时加速度的求解;

  问题2解决瞬时速度和瞬时加速度问题需要注意什么?

  注意当?t?0时,瞬时速度和瞬时加速度的极限值。

  问题3本节课体现了哪些数学思想方法?

  2极限的思想方法。

  3特殊到一般、从具体到抽象的推理方法。

  五、课外作业

高中数学教案2

  一、活动主题的提出

  根据新课改课程标准及高中数学教学要求,为切实实施素质教育,改革教学方式与方法,变教教材为用教材,有机地开展校本课程,培养学生的综合实践能力和创新能力,培养学生的探索精神和用数学的意识,以教材中的阅读与思考为素教材,推进高中数学研究性学习的进程,对该问题进行研究,旨在为深化课堂教学内容,促进性自主研究和学习,从而探讨高中数学研究性学习的实施办法。

  二、活动的具体目标

  1、知识目标:通过集合中元素的个数问题的研究,探求有限集合中元素个数间的关系,比较几个集合中元素个数的多少的方法。

  2、能力目标:能多方面、多角度、多层面来探究问题,运用知识来解决问题,培养学生的发散思维和创新思维能力。

  3、情感目标:学该课题的研究,激发学生的学习热情和学习兴趣,享受探索成功的乐趣,培养科学态度与科学精神。

  三、活动的实施过程、方式

  1、出示活动内容与思考的问题(5分钟)

  (1)、学校小卖部进了两次货,第一次进的货是圆珠笔、钢笔、橡皮、笔记本、方便面、汽水共6种,第二次进的货是圆珠笔、铅笔、火腿肠、方便面共4种,两次一共进了几种货?回答两次一共进了10(6+4)种,对吗?应如何解答?有哪些方法?因此可以得出什么结论(集合中元素个数间的关系)?

  (2)、学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,这个班有12名同学参赛,两次运动会都参赛的有3人。两次运动会中,这个班共有多少名同学参赛?应如何解答?由此解出以下结论(集合中元素个数间的关系)?又如:某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人是多少?应如何解答?

  (3)涉及三个及三个以上,集合的并、交问题,能用类似的结论吗?应怎样表达?如:学校开运动会,设。若参加一百米的同学有5人,参加二百米跑的同学有6人,参加四百米跑的同学有7人,参加一百、二百同学有2人,参加一百、四百的同学有3人,参加二百、四百的同学有5人,三项都参加的人有1人,求有多少人参赛?

  (4)设计比较集合与集合B=中元素的个数的.多少的方法。

  2、活动分工及时间安排(25分钟)

  全班以大组为单位(共四个大组)来研究以上4个问题。第一大组研究(1)问题,第二大组研究(2)个问题,第三大组研究(3)个问题,第四大组研究(4)个问题。要求每组由学生自行确定一位负责人,并由此同学组织具体活动,明确该同学是下步活动交流中心发言人。有余力的组可协助思考其它组的问题。教师下到各组视察,了解情况,并作必要的指导。

  3、活动交流(15分钟)

  请每一小组中心发言人回答各自分配的问题,全班其它同学补充,教师引导学生概括,得出结论:

  列举法

  问题(1)涉及的集合元素个数较少而且具体,可用列举法写出,很快可解决此问题,并由特殊到一般的思维方式概括得出:

  图解法

  当集合元素个数较少而不具体时,据题意画出集合的韦恩图,从而解决实际问题如问题(2),并归纳得出:这一结论。

  数形结合法

  利用集合间的关系,结合示意图,据未知可设适当的未知数,建立方程求解,如问题(2)中的第二个问题。设喜爱篮球运动但不喜爱乒乓球运动的人数为x,则两项都喜爱的有(15-x)人,喜爱乒乓球而不喜爱篮球的有[10-(15-x)]人,据题意有:x+(15-x)+[10-(15-x)]+8=30,解得x=12。故喜爱篮球运动但不喜爱乒乓球运动的有12人。

  归纳、猜想法

  通过对问题(3)的求解,并结合问题(1)、(2)的求解,归纳、猜想出:。

  概念派生法

  通过问题(4)的研究求解,大部分学生较易得出A,因此,由真子集的概念得出集合B的元素的个数少于集合A的元素的个数。这个结论是由概念的内涵派生出来的。

  “对应”法

  经研究讨论,同学中有“集合A的元素个数等于集合B的元素个数”的结论。少数同学运用“对应”思想:,显然有此结论。这是一个多好的想法啊!

  四、活动评价

  充分运用高中数学子教材资源“阅读与思考”,广泛开展第二课堂活动,能很好地调动学生的学习兴趣,能很好地开发学生的创造潜能,有助于学生探究能力和创新能力的提高。通过本课题的研究,至少有以下成功之处:第一、深化了课堂知识,进一步巩固和拓展了所学知识;第二、培养了学生探究能力,很好地改变了学生的学习方式、方法;第三、增强了学生运用知识解决问题的意识:该课题以解决问题为背景,通过分工与合作和恰当地引导,学生用知识的意识明显增强,运用知识解决问题的能力明显提高;第四、培养了学生的思维品质。通过问题(4)的研究,我们得出了不一样的结论,但都有道理,学生向引发争议,学生的批判性思维得到较好的发展。

  五、注意事项

  1、教师课题准备要充分。要认真钻研材料;查阅相关资料或研究成果;作好周密的活动计划。切忌无准备或准备不充分就上课。

  2、避免“活动研究课”上课学科化,要充分地让学生自主的活动,不人为地牵制学生。

  3、积极引导学生搞好“交流——合作”环节的活动,充分听取学生的意见,让学生自己总结作法和研究成果,切忌教师包办,强加于人。

  4、坚持引导学生写好活动总结和体会,归纳研究方法与成果,忌只管上课不管下课,课后不巩固。

高中数学教案3

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的.向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.

  6.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

高中数学教案4

  教学目标

  (1)了解算法的含义,体会算法思想。

  (2)会用自然语言和数学语言描述简单具体问题的算法;

  (3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

  教学重难点

  重点:算法的含义、解二元一次方程组的算法设计。

  难点:把自然语言转化为算法语言。

  情境导入

  电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

  第一步:观察、等待目标出现(用望远镜或瞄准镜);

  第二步:瞄准目标;

  第三步:计算(或估测)风速、距离、空气湿度、空气密度;

  第四步:根据第三步的结果修正弹着点;

  第五步:开枪;

  第六步:迅速转移(或隐蔽)

  以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

  课堂探究

  预习提升

  1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

  2、描述方式

  自然语言、数学语言、形式语言(算法语言)、框图。

  3、算法的要求

  (1)写出的算法,必须能解决一类问题,且能重复使用;

  (2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

  4、算法的特征

  (1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

  (2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

  (3)可行性:算法中的每一个步骤都是可以在有限的'时间内完成的基本操作,并能得到确定的结果。

  (4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

  (5)不唯一性:解决同一问题的算法可以是不唯一的

  课堂典例讲练

  命题方向1对算法意义的理解

  例1、下列叙述中,

  ①植树需要运苗、挖坑、栽苗、浇水这些步骤;

  ②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

  ③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

  ④3x>x+1;

  ⑤求所有能被3整除的正数,即3,6,9,12。

  能称为算法的个数为(  )

  A、2

  B、3

  C、4

  D、5

  【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

  【答案】B

  [规律总结]

  1、正确理解算法的概念及其特点是解决问题的关键、

  2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

  【变式训练】下列对算法的理解不正确的是________

  ①一个算法应包含有限的步骤,而不能是无限的

  ②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

  ③算法中的每一步都应当有效地执行,并得到确定的结果

  ④一个问题只能设计出一个算法

  【解析】由算法的有限性指包含的步骤是有限的故①正确;

  由算法的明确性是指每一步都是确定的故②正确;

  由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;

  由对于同一个问题可以有不同的算法故④不正确。

  【答案】④

  命题方向2解方程(组)的算法

  例2、给出求解方程组的一个算法。

  [思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

  [规范解答]方法一:算法如下:

  第一步,①×(-2)+②,得(-2+5)y=-14+11

  即方程组可化为

  第二步,解方程③,可得y=-1,④

  第三步,将④代入①,可得2x-1=7,x=4

  第四步,输出4,-1

  方法二:算法如下:

  第一步,由①式可以得到y=7-2x,⑤

  第二步,把y=7-2x代入②,得x=4

  第三步,把x=4代入⑤,得y=-1

  第四步,输出4,-1

  [规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。

  2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

  【变式训练】

  【解】算法如下:S1,①+2×②得5x=1;③

  S2,解③得x=;

  S3,②-①×2得5y=3;④

  S4,解④得y=;

  命题方向3筛选问题的算法设计

  例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

  [思路分析]比较a,b比较m与c―→最小数

  [规范解答]算法步骤如下:

  1、比较a与b的大小,若a

  2、比较m与c的大小,若m

  [规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

  【变式训练】在下列数字序列中,写出搜索89的算法:

  21,3,0,9,15,72,89,91,93

  [解析]1、先找到序列中的第一个数m,m=21;

  2、将m与89比较,是否相等,如果相等,则搜索到89;

  3、如果m与89不相等,则往下执行;

  4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

  命题方向4非数值性问题的算法

  例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

  (1)设计安全渡河的算法;

  (2)思考每一步算法所遵循的共同原则是什么?

高中数学教案5

  教学目标

  (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程。

  (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程。

  (3)掌握直线方程各种形式之间的互化。

  (4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力。

  (5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点。

  (6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法。

  教学建议

  1、教材分析

  (1)知识结构

  由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式。

  (2)重点、难点分析

  ①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程。

  解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线。本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用。

  直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头。学生对点斜式学习的效果将直接影响后继知识的学习。

  ②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明。

  2、教法建议

  (1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显。教学中各部分知识之间过渡要自然流畅,不生硬。

  (2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础。

  直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证。教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

  (3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解。

  (4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件。两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率。因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要。教学中应突出点斜式、两点式和一般式三个教学高潮。

  求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程。根据两个条件运用待定系数法和方程思想求直线方程。

  (5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数)。

  (6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力。

  (7)直线方程的理论在其他学科和生产生活实际中有大量的应用。教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力。

  (8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上。

  教学设计示例

  直线方程的一般形式

  教学目标:

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化。

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点。

  教学重点、难点:直线方程的.一般式。直线与二元一次方程(不同时为0)的对应关系及其证明。

  教学用具:计算机

  教学方法:启发引导法,讨论法

  教学过程:

  下面给出教学实施过程设计的简要思路:

  教学设计思路:

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是,属于二元一次方程,因为未知数有两个,它们的次数为一次。

  肯定学生回答,并纠正学生中不规范的表述。再看一个问题:

  问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的次数为一次。

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的次数为一次”。

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论。

  学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路。

  学生或独立研究,或合作研究,教师巡视指导。

  经过一定时间的研究,教师组织开展集体讨论。首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  ……

  教师组织评价,确定方案(其它待课下研究)如下:

  按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在。

  当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程。

  当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

  学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的。

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于直线的二元一次方程。

  至此,我们的问题1就解决了。简单点说就是:直线方程都是二元一次方程。而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”。

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式。

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程。

  启发:任何一条直线都有这种形式的方程。你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面。这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论。那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

  (1)当时,方程可化为

  这是表示斜率为、在轴上的截距为的直线。

  (2)当时,由于、不同时为0,必有,方程可化为

  这表示一条与轴垂直的直线。

  因此,得到结论:

  在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线。

  为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的。

  【动画演示】

  演示“直线各参数。gsp”文件,体会任何二元一次方程都表示一条直线。

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系。

  (三)练习巩固、总结提高、板书和作业等环节的设计在此从略

高中数学教案6

  教学要求:

  理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。

  教学重点:

  熟练地求交点。

  教学过程:

 一、复习准备:

  1、直线A x+B+C=0与直线A x+B+C=0,平行的充要条件是xx,相交的充要条件是xx;

  重合的充要条件是xx,垂直的.充要条件是xx。

  2、知识回顾:充分条件、必要条件、充要条件。

二、讲授新课:

  1、教学例题:

  ①出示例:求直线=x+1截曲线=x所得线段的中点坐标。

  ②由学生分析求解的思路→学生练→老师评讲

  (联立方程组→消用韦达定理求x坐标→用直线方程求坐标)

  ③试求→订正→小结思路。→变题:求弦长

  ④出示例:当b为何值时,直线=x+b与曲线x+=4分别相交?相切?相离?

  ⑤分析:三种位置关系与两曲线的交点情况有何关系?

  ⑥学生试求→订正→小结思路。

  ⑦讨论其它解法?

  解一:用圆心到直线的距离求解;

  解二:用数形结合法进行分析。

  ⑧讨论:两条曲线F(x,)=0与F(x,)=0相交的充要条件是什么?

  如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?

  (联立方程组后,一解时:相切或相交;二解时:相交;无解时:相离)

  2、练习:

  求过点(—2,—)且与抛物线=x相切的直线方程。

三、巩固练习:

  1、若两直线x+=3a,x-=a的交点在圆x+=5上,求a的值。

  (答案:a=±1)

  2、求直线=2x+3被曲线=x截得的线段长。

  3、课堂作业:书P72 3、4、10题。

高中数学教案7

  教材分析:

  前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。

  在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的.概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。

  教学目标:

  (一)知识与技能

  1.掌握数量积的定义、重要性质及运算律;

  2.能应用数量积的重要性质及运算律解决问题;

  3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。

  (二)过程与方法

  以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。

  (三)情感、态度与价值观

  创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。

  教学重点:

  1.平面向量的数量积的定义;

  2.用平面向量的数量积表示向量的模及向量的夹角。

  教学难点:

  平面向量数量积的定义及运算律的理解和平面向量数量积的应用。

  教学方法:

  启发引导式

  教学过程:

  (一)提出问题,引入新课

  前面我们学习了平面向量的线性运算,包括向量的加法、减法、以及数乘运算,它们的运算结果都是向量,既然两个向量可以进行加法、减法运算,我们自然会提出:两个向量是否能进行“乘法”运算呢?如果能,运算结果又是什么呢?

  这让我们联想到物理中“功”的概念,即如果一个物体在力F的作用下产生位移s,F与s的夹角是θ,那么力F所做的功如何计算呢?

  我们知道:W=|F||s|cosθ,功是一个标量(数量),而力它等于力F和位移s都是矢量(向量),功等于力和位移这两个向量的大小与它们夹角余弦的乘积。这给我们一种启示:能否把功W看成是两向量F和s的一种运算的结果呢,为此我们引入平面向量的数量积。

  (二)讲授新课

  今天我们就来学习:(板书课题) 

高中数学教案8

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

  (5)进一步理解数形结合的思想方法。

  教学建议

  教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

  (2)重点、难点分析

  ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

  ②本节的难点是曲线方程的概念和求曲线方程的方法。

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的.方程做好逻辑上的和心理上的准备。

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

  (4)从集合与对应的观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合。

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

  文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

高中数学教案9

  课题:

  等比数列的概念

  教学目标

  1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

  2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

  3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

  教学重点,难点

  重点、难点是等比数列的定义的归纳及通项公式的推导、

  教学用具

  投影仪,多媒体软件,电脑、

  教学方法

  讨论、谈话法、

  教学过程

  一、提出问题

  给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

  ①—2,1,4,7,10,13,16,19,…

  ②8,16,32,64,128,256,…

  ③1,1,1,1,1,1,1,…

  ④243,81,27,9,3,1,,,…

  ⑤31,29,27,25,23,21,19,…

  ⑥1,—1,1,—1,1,—1,1,—1,…

  ⑦1,—10,100,—1000,10000,—100000,…

  ⑧0,0,0,0,0,0,0,…

  由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

  二、讲解新课

  请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

  这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

  等比数列(板书)

  1、等比数列的定义(板书)

  根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

  请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

  2、对定义的认识(板书)

  (1)等比数列的首项不为0;

  (2)等比数列的每一项都不为0,即

  问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

  (3)公比不为0、

  用数学式子表示等比数列的定义、

  是等比数列

  ①、在这个式子的写法上可能会有一些争议,如写成

  ,可让学生研究行不行,好不好;接下来再问,能否改写为

  是等比数列?为什么不能?式子给出了数列第项与第

  项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、

  3、等比数列的通项公式(板书)

  问题:用和表示第项

  ①不完全归纳法

  ②叠乘法,…,,这个式子相乘得,所以(板书)

  (1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

  (2)对公式的认识

  由学生来说,最后归结:

  ①函数观点;

  ②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、

  这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的.训练)

  如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

  三、小结

  1、本节课研究了等比数列的概念,得到了通项公式;

  2、注意在研究内容与方法上要与等差数列相类比;

  3、用方程的思想认识通项公式,并加以应用。

  探究活动

  将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

  参考答案:

  30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案10

  教学目标

  (1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

  (2)理解直线与二元一次方程的关系及其证明

  (3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

  教学重点、难点:直线方程的一般式.直线与二元一次方程 ( 、 不同时为0)的对应关系及其证明.

  教学用具:计算机

  教学方法:启发引导法,讨论法

  教学过程

  下面给出教学实施过程设计的简要思路:

  教学设计思路

  (一)引入的设计

  前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

  问:说出过点 (2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 ,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

  问:求出过点 , 的直线的方程,并观察方程属于哪一类,为什么?

  答:直线方程是 (或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

  肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

  启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

  学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

  【问题1】“任意直线的方程都是二元一次方程吗?”

  (二)本节主体内容教学的设计

  这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

  学生或独立研究,或合作研究,教师巡视指导.

  经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

  思路一:…

  思路二:…

  ……

  教师组织评价,确定最优方案(其它待课下研究)如下:

  按斜率是否存在,任意直线 的位置有两种可能,即斜率 存在或不存在.

  当 存在时,直线 的截距 也一定存在,直线 的方程可表示为 ,它是二元一次方程.

  当 不存在时,直线 的方程可表示为 形式的方程,它是二元一次方程吗?

  学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

  平面直角坐标系中直线 上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.

  综合两种情况,我们得出如下结论:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于 、 的二元一次方程.

  至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成 或 的.形式,准确地说应该是“要么形如 这样,要么形如 这样的方程”.

  同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

  学生们不难得出:二者可以概括为统一的形式.

  这样上边的结论可以表述如下:

  在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如 (其中 、 不同时为0)的二元一次方程.

  启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

  【问题2】任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线吗?

  不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

  师生共同讨论,评价不同思路,达成共识:

  回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程 (其中 、 不同时为0)系数 是否为0恰好对应斜率 是否存在,即

  (1)当 时,方程可化为

  这是表示斜率为 、在 轴上的截距为 的直线.

  (2)当 时,由于 、 不同时为0,必有 ,方程可化为

  这表示一条与 轴垂直的直线.

  因此,得到结论:

  在平面直角坐标系中,任何形如 (其中 、 不同时为0)的二元一次方程都表示一条直线.

  为方便,我们把 (其中 、 不同时为0)称作直线方程的一般式是合理的.

  【动画演示】

  演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

  至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

  (三)练习巩固、总结提高、板书和作业等环节的设计

  略

高中数学教案11

  教学目标

  理解数列的概念,掌握数列的运用

  教学重难点

  理解数列的概念,掌握数列的`运用

  教学过程

  【知识点精讲】

  1、数列:按照一定次序排列的一列数(与顺序有关)

  2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。

  (通项公式不)

  3、数列的表示:

  (1)列举法:如1,3,5,7,9……;

  (2)图解法:由(n,an)点构成;

  (3)解析法:用通项公式表示,如an=2n+1

  (4)递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1

  4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,xx数列

  5、任意数列{an}的前n项和的性质

高中数学教案12

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的.过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

高中数学教案13

  1. 你能遵守学校的规章制度,按时上学,按时完成作业,书写比较端正,课堂上你也坐得比较端正。如果在学习上能够更加主动一些,寻找适合自己的学习

  2. 你尊敬老师、团结同学、热爱劳动、关心集体,所以大家都喜欢你。能严格遵守学校的各项规章制度。学习不够刻苦,有畏难情绪。学习方法有待改进,掌握知识不够牢固,思维能力要进一步培养和提高。学习成绩比上学期有一定的进步。平时能积极参加体育锻炼和有益的文娱活动。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  3. 你性格活泼开朗,总是带着甜甜的笑容,你能与同学友爱相处,待人有礼,能虚心接受老师的教导。大多数的时候你都能遵守纪律,偶尔会犯一些小错误。有时上课不够留心,还有些小动作,你能想办法控制自己吗?一开学老师就发现你的作业干净又整齐,你的字清秀又漂亮。但学习成绩不容乐观,需努力提高学习成绩。希望能从根本上认识到自己的不足,在课堂上能认真听讲,开动脑筋,遇到问题敢于请教。

  4. 你热情大方,为人豪爽,身上透露出女生少有的霸气,作为班干部,你会提醒同学们及时安静,对学习态度端正,及时完成作业,但是少了点耐心,试着把心沉下来,上课集中注意力,跟着老师的思路走,一步一个脚印,一定能走出你自己绚丽的人生!

  5. 学习态度端正,效率高,合理分配时间,学习生活两不误,善良热情,热爱生活,乐于助人,与周围同学相处关系融洽。能严格遵守学校的各项规章制度。上课能专心听讲,认真做好笔记,课后能按时完成作业。记忆力好,自学能力较强。希望你能更主动地学习,多思,多问,多练,大胆向老师和同学请教,注意采用科学的学习方法,提高学习效率,一定能取得满意的成绩!

  6. 作为本班的班长,你对待班级工作能够认真负责,积极配合老师和班委工作,集体荣誉感很强,人际关系很好,待人真诚,热心帮助人,老师十分欣赏你的善良和聪明,希望在以后能够积极发挥自己的所长,带领全班不仅在班级管理上有进步,而且能在学习上也能成为全班的领头雁,在下学期能取得更大的进步!

  7. 身为班委的你,对工作认真负责,以身作则,性格和善,与同学关系融洽,积极参加各项活动,不太张扬的你显得稳重和踏实,在学习上,你认真听课,及时完成各科作业,但是我总觉得你的学习还不够主动,没有形成自己的一套方法,若从被动的学习中解脱出来,应该稳定在班级前五名啊!加油!

  8. 你是个懂礼貌明事理的孩子,你能严格遵守班级纪律,热爱集体,对待学习态度端正,上课能够专心听讲,课下能够认真完成作业。你的'学习方法有待改进,若能做到学习时心无旁骛就好了,掌握知识也不够牢固,思维能力要进一步培养和提高。只要有恒心,有毅力,老师相信你会在各方面取得长足进步!

  9. 你为人热情大方,能和同学友好相处。你为人正直诚恳,尊敬老师,关心班集体,待人有礼,能认真听从老师的教导,自觉遵守学校的各项规章制度,抵制各种不良思想。有集体荣誉感,乐于为集体做事。学习刻苦,成绩有所提高。上课能专心听讲,思维活跃,积极回答问题,积极思考,认真做好笔记。今后如果能注意分配好学习时间,各科全面发展,均衡提高,相信一定会成为一名更加出色的学生。

  10. 记得和你说过,你是个太聪明的孩子,你反应敏捷,活泼灵动。但是做学问是需要静下心来老老实实去钻研的,容不得卖弄小聪明和半点顽皮话。要知道,学如逆水行舟,不进则退;心似平原野马,易放难收!望你下学期重新抖擞精神早日进入状态,不辜负关爱你的人对你的殷殷期盼。

高中数学教案14

  教学目的:

  掌握圆的标准方程,并能解决与之有关的问题

  教学重点:

  圆的标准方程及有关运用

  教学难点:

  标准方程的.灵活运用

  教学过程:

  一、导入新课,探究标准方程

  二、掌握知识,巩固练习

  练习:

  1、说出下列圆的方程

  ⑴圆心(3,—2)半径为5

  ⑵圆心(0,3)半径为3

  2、指出下列圆的圆心和半径

  ⑴(x—2)2+(y+3)2=3

  ⑵x2+y2=2

  ⑶x2+y2—6x+4y+12=0

  3、判断3x—4y—10=0和x2+y2=4的位置关系

  4、圆心为(1,3),并与3x—4y—7=0相切,求这个圆的方程

  三、引伸提高,讲解例题

  例1、圆心在y=—2x上,过p(2,—1)且与x—y=1相切求圆的方程(突出待定系数的数学方法)

  练习:1、某圆过(—2,1)、(2,3),圆心在x轴上,求其方程。

  2、某圆过A(—10,0)、B(10,0)、C(0,4),求圆的方程。

  例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

  例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)

  四、小结练习P771,2,3,4

  五、作业P811,2,3,4

高中数学教案15

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的全排列数为 .根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的'宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  【例题示范 探求方法】

  (教师活动)打出字幕,给出示范,指导训练.

  [字幕]例1 列举从4个元素 中任取2个元素的所有组合.

  例2 计算:(1) ;(2) .

  (学生活动)板演、示范.

  (教师活动)讲评并指出用两种方法计算例2的第2小题.

  [字幕]例3 已知 ,求 的所有值.

  (学生活动)思考分析.

  解 首先,根据组合的定义,有

  ①

  其次,由原不等式转化为

  即

  解得 ②

  综合①、②,得 ,即

  [点评]这是组合数公式的应用,关键是公式的选择.

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

  【反馈练习 学会应用】

  (教师活动)给出练习,学生解答,教师点评.

  [课堂练习]课本P99练习第2,5,6题.

  [补充练习]

  [字幕]1.计算:

  2.已知 ,求 .

  (学生活动)板演、解答.

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

【高中数学教案】相关文章:

数学教案高中教学06-11

高中必修数学教案01-07

高中数学教案10-26

高中必修4数学教案03-13

高中数学教案09-28

高中数学教案[通用]06-22

高中数学教案【推荐】05-26

【集合】高中数学教案05-22

高中数学教案[优]05-20

高中高二数学教案11-14