高中数学备课教案

时间:2022-12-27 11:28:12 高中数学教案 我要投稿

高中数学备课教案通用7篇

  作为一名优秀的教育工作者,可能需要进行教案编写工作,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。我们该怎么去写教案呢?以下是小编为大家整理的高中数学备课教案,欢迎阅读,希望大家能够喜欢。

高中数学备课教案通用7篇

高中数学备课教案1

  一、教学目标:

  知识与技能:了解直线参数方程的条件及参数的意义

  过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义

  情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二重难点:教学重点:曲线参数方程的定义及方法

  教学难点:选择适当的参数写出曲线的参数方程.

  三、教学方法:启发、诱导发现教学.

  四、教学过程

  (一)、复习引入:

  1.写出圆方程的标准式和对应的参数方程。

  圆参数方程 (为参数)

  (2)圆参数方程为: (为参数)

  2.写出椭圆参数方程.

  3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?

  (二)、讲解新课:

  1、问题的提出:一条直线L的倾斜角是,并且经过点P(2,3),如何描述直线L上任意点的位置呢?

  如果已知直线L经过两个

  定点Q(1,1),P(4,3),

  那么又如何描述直线L上任意点的

  位置呢?

  2、教师引导学生推导直线的参数方程:

  (1)过定点倾斜角为的直线的

  参数方程

  (为参数)

  【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.

  (2)、经过两个定点Q,P(其中)的直线的参数方程为

  。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。

  (三)、直线的参数方程应用,强化理解。

  1、例题:

  学生练习,教师准对问题讲评。反思归纳:1、求直线参数方程的方法;2、利用直线参数方程求交点。

  2、巩固导练:

  补充:1、直线与圆相切,那么直线的'倾斜角为(A)

  A.或 B.或 C.或 D.或

  2、(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则 .

  解:直线化为普通方程是,

  该直线的斜率为,

  直线(为参数)化为普通方程是,

  该直线的斜率为,

  则由两直线垂直的充要条件,得, 。

  (四)、小结:(1)直线参数方程求法;(2)直线参数方程的特点;(3)根据已知条件和图形的几何性质,注意参数的意义。

  (五)、作业:

  补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为_______

  【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

  解析:由题直线的普通方程为,故它与与的距离为。

  五、教学反思:

高中数学备课教案2

  一、教学目标:

  知识与技能:了解直线参数方程的条件及参数的意义

  过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义

  情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二、重难点:

  教学重点:曲线参数方程的定义及方法

  教学难点:选择适当的参数写出曲线的参数方程.

  三、教学方法:

  启发、诱导发现教学.

  四、教学过程

  (一)、复习引入:

  1.写出圆方程的标准式和对应的参数方程。

  圆参数方程 (为参数)

  (2)圆参数方程为: (为参数)

  2.写出椭圆参数方程.

  3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?

  (二)、讲解新课:

  1、问题的提出:一条直线L的倾斜角是,并且经过点P(2,3),如何描述直线L上任意点的位置呢?

  如果已知直线L经过两个定点Q(1,1),P(4,3),

  那么又如何描述直线L上任意点的位置呢?

  2、教师引导学生推导直线的参数方程:

  (1)过定点倾斜角为的直线的

  参数方程

  (为参数)

  【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t的几何意义是指从点P到点M的位移,可以用有向线段数量来表示。带符号.

  (2)、经过两个定点Q,P(其中)的直线的'参数方程为。其中点M(X,Y)为直线上的任意一点。这里参数的几何意义与参数方程(1)中的t显然不同,它所反映的是动点M分有向线段的数量比。当时,M为内分点;当且时,M为外分点;当时,点M与Q重合。

  (三)、直线的参数方程应用,强化理解。

  1、例题:

  学生练习,教师准对问题讲评。反思归纳:

  1)求直线参数方程的方法;

  2)利用直线参数方程求交点。

  2、巩固导练:

  补充:

  1)直线与圆相切,那么直线的倾斜角为(A)

  A.或 B.或 C.或 D.或

  2)(坐标系与参数方程选做题)若直线与直线(为参数)垂直,则 .

  解:直线化为普通方程是,

  该直线的斜率为,

  直线(为参数)化为普通方程是,

  该直线的斜率为,

  则由两直线垂直的充要条件,得, 。

  (四)、小结:

  (1)直线参数方程求法;

  (2)直线参数方程的特点;

  (3)根据已知条件和图形的几何性质,注意参数的意义。

  (五)、作业:

  补充:设直线的参数方程为(t为参数),直线的方程为y=3x+4则与的距离为

  【考点定位】本小题考查参数方程化为普通方程、两条平行线间的距离,基础题。

  解析:由题直线的普通方程为,故它与与的距离为。

  五、教学反思:

高中数学备课教案3

  一、教学目标

  知识与技能:

  理解任意角的概念(包括正角、负角、零角)与区间角的概念。

  过程与方法:

  会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

  情感态度与价值观:

  1、提高学生的推理能力;

  2、培养学生应用意识。

  二、教学重点、难点:

  教学重点:

  任意角概念的理解;区间角的集合的书写。

  教学难点:

  终边相同角的集合的表示;区间角的集合的书写。

  三、教学过程

  (一)导入新课

  1、回顾角的定义

  ①角的`第一种定义是有公共端点的两条射线组成的图形叫做角。

  ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  (二)教学新课

  1、角的有关概念:

  ①角的定义:

  角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

  ②角的名称:

  注意:

  ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;

  ⑵零角的终边与始边重合,如果α是零角α =0°;

  ⑶角的概念经过推广后,已包括正角、负角和零角。

  ⑤练习:请说出角α、β、γ各是多少度?

  2、象限角的概念:

  ①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

  例1、如图⑴⑵中的角分别属于第几象限角?

高中数学备课教案4

  一、说教材

  1.从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要资料,它不仅仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,并且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

  2.从学生认知角度看

  从学生的思维特点看,很容易把本节资料与等差数列前n项和从公式的构成、特点等方面进行类比,这是进取因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不一样,这对学生的思维是一个突破,另外,对于q=1这一特殊情景,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

  3.学情分析

  教学对象是刚进入高中的学生,虽然具有必须的分析问题和解决问题的本事,逻辑思维本事也初步构成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,所以片面、不严谨.

  4.重点、难点

  教学重点:公式的推导、公式的特点和公式的运用.

  教学难点:公式的推导方法和公式的灵活运用.

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

  二、说目标

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.

  过程与方法目标:

  经过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维本事和逆向思维的本事.

  情感与态度价值观:

  经过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点.

  三、说过程

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的构成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1.创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我能够满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的进取性.故事资料紧扣本节课的`主题与重点.

  此时我问:同学们,你们明白西萨要的是多少粒小麦吗引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而立刻相减呢在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识构成过程的氛围,突破学生学习的障碍.同时,构成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

  2.师生互动,探究问题

  在肯定他们的思路后,我之后问:1,2,22,…,263是什么数列有何特征应归结为什么数学问题呢

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,所以教学中应着力在这儿做文章,从而抓住培养学生的辩证思维本事的良好契机.

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.教师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

  3.类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  那里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自我探究公式,从而体验到学习的愉快和成就感.

  对不对那里的q能不能等于1等比数列中的公比能不能为1q=1时是什么数列此时sn=(那里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

  再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来(引导学生得出公式的另一形式)

  设计意图:经过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和理解,变为对知识的主动认识,从而进一步提高分析、类比和综合的本事.这一环节十分重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

  4.讨论交流,延伸拓展

  (略)

高中数学备课教案5

  一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的作用

  二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

  三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

  四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的`作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中数学备课教案6

  第四课时:圆锥曲线参数方程的应用

  一、教学目标:

  知识与技能:利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题

  过程与方法:选择适当的参数方程求最值。

  情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

  二、重难点:教学重点:选择适当的参数方程求最值。

  教学难点:正确使用参数式来求解最值问题

  三、教学模式:讲练结合,探析归纳

  四、教学过程:

  (一)、复习引入:

  通过参数简明地表示曲线上任一点坐标将解析几何中以计算问题化为三角问题,从而运用三角性质及变换公式帮助求解诸如最值,参数取值范围等问题。

  (二)、讲解新课:

  例1、双曲线的两焦点坐标是。

  答案:(0,-4),(0,4)。学生练习。

  例2、方程(t为参数)的图形是双曲线右支。

  学生练习,教师准对问题讲评。反思归纳:判断曲线形状的方法。

  例3、设P是椭圆在第一象限部分的弧AB上的一点,求使四边形OAPB的面积最大的点P的坐标。

  分析:本题所求的最值可以有几个转化方向,即转化为求的最大值或者求点P到AB的最大距离,或者求四边形OAPB的最大值。

  学生练习,教师准对问题讲评。【=时四边形OAPB的最大值=6,此时点P为(3,2)。】

  (三)、巩固训练

  1、直线与圆相切,那么直线的倾斜角为(A)

  A.或B.或C.或D.或

  2、椭圆()与轴正向交于点A,若这个椭圆上存在点P,使OP⊥AP,(O为原点),求离心率的`范围。

  3、抛物线的内接三角形的一个顶点在原点,其重心恰是抛物线的焦点,求内接三角形的周长。

  4、设P为等轴双曲线上的一点,,为两个焦点,证明

  5、求直线与圆的交点坐标。

  解:把直线的参数方程代入圆的方程,得(1+t)2+(1-t)2=4,得t=±1,分别代入直线方程,得交点为(0,2)和(2,0)。

  (三)、小结:本节课我们利用圆锥曲线的参数方程来确定最值,解决有关点的轨迹问题,选择适当的参数方程正确使用参数式来求解最值问题,要求理解和掌握求解方法。

  (四)、作业:

  练习:在抛物线的顶点,引两互相垂直的两条弦OA,OB,求顶点O在AB上射影H的轨迹方程。

  五、教学反思:

高中数学备课教案7

  教学目的:

  知识目标:

  了解在柱坐标系、球坐标系中刻画空间中点的位置的方法

  能力目标:

  了解柱坐标、球坐标与直角坐标之间的变换公式。

  德育目标:

  通过观察、探索、发现的创造性过程,培养创新意识。

  教学重点:

  体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系

  教学难点:

  利用它们进行简单的数学应用

  授课类型:

  新授课

  教学模式:

  启发、诱导发现教学.

  教具:

  多媒体、实物投影仪

  教学过程:

  一、复习引入:

  情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。

  问题:如何在空间里确定点的位置?有哪些方法?

  学生回顾

  在空间直角坐标系中刻画点的位置的方法_科_网]

  极坐标的意义以及极坐标与直角坐标的互化原理

  二、讲解新课:

  1、球坐标系

  设P是空间任意一点,在oxy平面的射影为Q,连接OP,记|OP|=,OP与OZ轴正向所夹的角为,P在oxy平面的射影为Q,Ox轴按逆时针方向旋转到OQ时所转过的最小正角为,点P的位置可以用有序数组表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系)

  有序数组叫做点P的球坐标,其中≥0,0≤≤,0≤<2。

  空间点P的直角坐标与球坐标之间的变换关系为:

  2、柱坐标系

  设P是空间任意一点,在oxy平面的射影为Q,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点在

  平面oxy上的极坐标,点P的位置可用有序数组(ρ,θ,Z)表示把建立上述对应关系的坐标系叫做柱坐标系

  有序数组(ρ,θ,Z)叫点P的`柱坐标,其中ρ≥0,0≤θ<2π,z∈R

  空间点P的直角坐标(x,y,z)与柱坐标(ρ,θ,Z)之间的变换关系为:

  3、数学应用

  例1建立适当的球坐标系,表示棱长为1的正方体的顶点.

  变式训练

  建立适当的柱坐标系,表示棱长为1的正方体的顶点.

  例2.将点M的球坐标化为直角坐标.

  变式训练

  1.将点M的直角坐标化为球坐标.

  2.将点M的柱坐标化为直角坐标.

  3.在直角坐标系中点>0)的球坐标是什么?

  例3.球坐标满足方程r=3的点所构成的图形是什么?并将此方程化为直角坐标方程.

  变式训练

  标满足方程=2的点所构成的图形是什么?

  例4.已知点M的柱坐标为点N的球坐标为求线段MN的长度.

  思考:

  在球坐标系中,集合表示的图形的体积为多少?

  三、巩固与练习

  四、小 结:本节课学习了以下内容:

  1.球坐标系的作用与规则;

  2.柱坐标系的作用与规则。

  五、课后作业:教材P15页12,13,14,15,16

  六、课后反思:本节内容与平面直角坐标和极坐标结合起来,学生容易理解。但以后少用,可能会遗忘很快。需要定期调回学生的记忆。

【高中数学备课教案】相关文章:

高中数学备课教案12-22

高中数学备课教案模板09-29

高中数学备课教案7篇12-23

高中数学备课教案(8篇)01-01

高中数学备课教案(7篇)12-24

高中数学备课教案8篇12-31

高中数学备课教案合集8篇01-02

高中数学备课教案集锦8篇01-03

高中数学备课组长总结06-04