高中数学教案

时间:2022-12-30 15:18:06 高中数学教案 我要投稿

高中数学教案(通用20篇)

  作为一名人民教师,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。那么什么样的教案才是好的呢?下面是小编帮大家整理的高中数学教案,仅供参考,欢迎大家阅读。

高中数学教案(通用20篇)

  高中数学教案 篇1

  教学目标:

  1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.

  2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.

  教学重点:

  复数的几何意义,复数加减法的几何意义.

  教学难点:

  复数加减法的几何意义.

  教学过程:

  一 、问题情境

  我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?

  二、学生活动

  问题1 任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?

  问题2 平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?

  问题3 任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?

  问题4 复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?

  三、建构数学

  1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.

  2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.

  3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的`几何意义.

  4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的.

  四、数学应用

  例1 在复平面内,分别用点和向量表示下列复数4,2+i,-i,-1+3i,3-2i.

  练习 课本P123练习第3,4题(口答).

  思考

  1.复平面内,表示一对共轭虚数的两个点具有怎样的位置关系?

  2.如果复平面内表示两个虚数的点关于原点对称,那么它们的实部和虚部分别满足什么关系?

  3.“a=0”是“复数a+bi(a,b∈R)是纯虚数”的__________条件.

  4.“a=0”是“复数a+bi(a,b∈R)所对应的点在虚轴上”的_____条件.

  例2 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内所对应的点位于第二象限,求实数m允许的取值范围.

  例3 已知复数z1=3+4i,z2=-1+5i,试比较它们模的大小.

  思考 任意两个复数都可以比较大小吗?

  例4 设z∈C,满足下列条件的点Z的集合是什么图形?

  (1)│z│=2;(2)2<│z│<3.

  变式:课本P124习题3.3第6题.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.复数的几何意义.

  2.复数加减法的几何意义.

  3.数形结合的思想方法.

  高中数学教案 篇2

  一、课程性质与任务

  数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。

  数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。

  二、课程教学目标

  1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。

  2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。

  3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。

  三、教学内容结构

  本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。

  1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。

  2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。

  3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。

  四、教学内容与要求

  (一)本大纲教学要求用语的表述1.认知要求(分为三个层次)

  了解:初步知道知识的.含义及其简单应用。

  理解:懂得知识的概念和规律(定义、定理、法则等)以及与其它相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)

  计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。

  空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。

  分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。

  数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。

  (二)教学内容与要求1.基础模块(128学时)

  第1单元集合(10学时)

  第2单元不等式(8学时)

  第6单元数列(10学时)

  第7单元平面向量(矢量)(10学时)

  第8单元直线和圆的方程(18学时)

  第10单元概率与统计初步(16学时)

  2.职业模块

  第2单元坐标变换与参数方程(12学时)

  高中数学教案 篇3

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

  四、教学目标

  1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的.方程。

  2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3.借助多媒体辅助教学,激发学习数学的兴趣.

  五、教学重点与难点:

  教学重点

  1.对圆锥曲线定义的理解

  2.利用圆锥曲线的定义求“最值”

  3.“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1) 已知a(-2,0), b(2,0)动点m满足|ma|+|mb|=2,则点m的轨迹是( )。

  (a)椭圆 (b)双曲线 (c)线段 (d)不存在

  (2)已知动点 m(x,y)满足(x1)2(y2)2|3x4y|,则点m的轨迹是( )。

  (a)椭圆 (b)双曲线 (c)抛物线 (d)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

  高中数学教案 篇4

  一、教材分析

  1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

  2、教学目标:

  知识目标:

  (1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

  (2)进一步培养学生把空间问题转化为平面问题的化归思想。

  能力目标:

  (1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。

  (2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

  德育目标:

  (1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识

  (2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

  情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

  3、重点、难点:

  重点:“二面角”和“二面角的平面角”的概念

  难点:“二面角的平面角”概念的形成过程

  二、教法分析

  1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。

  2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。

  3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。

  三、学法指导

  1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。

  2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。

  3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。

  四、教学过程

  心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

  (一)、二面角

  1、揭示概念产生背景。

  问题情境1、在平面几何中“角”是怎样定义的?

  问题情境2、在立体几何中我们还学习了哪些角?

  问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。

  通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。

  2、展现概念形成过程。

  问题情境4、那么,应该如何定义二面角呢?

  创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。

  问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。

  (二)、二面角的平面角

  1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。

  问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。

  2、展现概念形成过程

  (1)、类比。教师启发,寻找类比联想的对象。

  问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。

  问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。

  问题情境9、这个平面的角的顶点及两边是如何确定的?

  (2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的'肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。

  问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。

  (3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。

  (4)、继续探索,得到定义。

  问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。

  (5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。

  (三)、二面角及其平面角的画法

  主要分为直立式和平卧式两种,用电脑《几何画板》作图。

  (四)、范例分析

  为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。

  例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。

  分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。

  变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。

  题后反思:(1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。

  (2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)

  (五)、练习、小结与作业

  练习:习题9.7的第3题

  小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。

  作业:习题9.7的第4题

  思考题:见例题

  五、板书设计(见课件)

  以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!

  高中数学教案 篇5

  【教学目标】

  1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  2.能根据几何结构特征对空间物体进行分类。

  3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

  【教学重难点】

  教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  教学难点:柱、锥、台、球的结构特征的概括。

  【教学过程】

  1.情景导入

  教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

  2.展示目标、检查预习

  3、合作探究、交流展示

  (1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

  (2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

  在此基础上得出棱柱的主要结构特征。

  (1)有两个面互相平行;

  (2)其余各面都是平行四边形;

  (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  (3)提出问题:请列举身边的棱柱并对它们进行分类

  (4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  (5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

  (6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  (7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  (1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

  (2)棱柱的任何两个平面都可以作为棱柱的底面吗?

  (3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  (5)绕直角三角形某一边的几何体一定是圆锥吗?

  5、典型例题

  例1:判断下列语句是否正确。

  ⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

  ⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

  答案 A B

  6、课堂检测:

  课本P8,习题1.1 A组第1题。

  7.归纳整理

  由学生整理学习了哪些内容

  【板书设计】

  一、柱、锥、台、球的结构

  二、例题

  例1

  变式1、2

  【作业布置】

  导学案课后练习与提高

  1.1.1柱、锥、台、球的结构特征

  课前预习学案

  一、预习目标:

  通过图形探究柱、锥、台、球的结构特征

  二、预习内容:

  阅读教材第2—6页内容,然后填空

  (1)多面体的概念: 叫多面体,

  叫多面体的面, 叫多面体的棱,

  叫多面体的`顶点。

  ① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱

  ②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥

  ③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。

  (2)旋转体的概念: 叫旋转体, 叫旋转体的轴。

  ①圆柱: 所围成的几何体叫做圆柱

  ②圆锥: 所围成的几何体叫做圆锥

  ③圆台: 的部分叫圆台

  ④球的定义

  思考:

  (1)试分析多面体与旋转体有何去别

  (2)球面球体有何去别

  (3)圆与球有何去别

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中

  疑惑点 疑惑内容

  高中数学教案 篇6

  一、教学目标:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的'问题。

  二、教学重点:

  向量的性质及相关知识的综合应用。

  三、教学过程:

  (一)主要知识:

  1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  (二)例题分析:略

  四、小结:

  1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

  2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  五、作业:

  略

  高中数学教案 篇7

  【课题名称】

  《等差数列》的导入

  【授课年级】

  高中二年级

  【教学重点】

  理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

  【教学难点】

  等差数列的性质、等差数列“等差”特点的理解,

  【教具准备】多媒体课件、投影仪

  【三维目标】

  ㈠知识目标:

  了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

  ㈡能力目标:

  通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

  ㈢情感目标:

  通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

  【教学过程】

  导入新课

  师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:

  (1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

  (2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

  (3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

  (4)10072,10144,10216,( ),10360

  请同学们回答以上的四个问题

  生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

  师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

  生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

  师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

  生1:相邻的两项的差都等于同一个常数。

  师:很好!那作差是否有顺序?是否可以颠倒?

  生2:作差的.顺序是后项减去前项,不能颠倒!

  师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

  推进新课

  等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

  师:有哪个同学知道定义中的关键字是什么?

  生2:“从第二项起”和“同一个常数”

  高中数学教案 篇8

  一、教学目标

  【知识与技能】

  在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

  【过程与方法】

  通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

  【情感态度与价值观】

  渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

  【重点】

  掌握圆的一般方程,以及用待定系数法求圆的一般方程。

  【难点】

  二元二次方程与圆的一般方程及标准圆方程的`关系。

  三、教学过程

  (一)复习旧知,引出课题

  1、复习圆的标准方程,圆心、半径。

  2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

  高中数学教案 篇9

  [学习目标]

  (1)会用坐标法及距离公式证明Cα+β;

  (2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

  (3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

  [学习重点]

  两角和与差的正弦、余弦、正切公式

  [学习难点]

  余弦和角公式的推导

  [知识结构]

  1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

  2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

  3、当α、β中有一个是的.整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的基础,而诱导公式是两角和与差的三角函数的特例。

  4、关于公式的正用、逆用及变用

  高中数学教案 篇10

  教学目标:

  1.结合实际问题情景,理解分层抽样的必要性和重要性;

  2.学会用分层抽样的方法从总体中抽取样本;

  3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

  教学重点:

  通过实例理解分层抽样的方法.

  教学难点:

  分层抽样的步骤.

  教学过程:

  一、问题情境

  1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

  2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

  二、学生活动

  能否用简单随机抽样或系统抽样进行抽样,为什么?

  指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

  由于样本的容量与总体的个体数的比为100∶2500=1∶25,

  所以在各年级抽取的个体数依次是 , , ,即40,32,28.

  三、建构数学

  1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

  说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的`比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

  ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

  2.三种抽样方法对照表:

  类别

  共同点

  各自特点

  相互联系

  适用范围

  简单随机抽样

  抽样过程中每个个体被抽取的概率是相同的

  从总体中逐个抽取

  总体中的个体数较少

  系统抽样

  将总体均分成几个部分,按事先确定的规则在各部分抽取

  在第一部分抽样时采用简单随机抽样

  总体中的个体数较多

  分层抽样

  将总体分成几层,分层进行抽取

  各层抽样时采用简单随机抽样或系统

  总体由差异明显的几部分组成

  3.分层抽样的步骤:

  (1)分层:将总体按某种特征分成若干部分.

  (2)确定比例:计算各层的个体数与总体的个体数的比.

  (3)确定各层应抽取的样本容量.

  (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

  四、数学运用

  1.例题.

  例1(1)分层抽样中,在每一层进行抽样可用_________________.

  (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

  ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

  ③某班元旦聚会,要产生两名“幸运者”.

  对这三件事,合适的抽样方法为( )

  A.分层抽样,分层抽样,简单随机抽样

  B.系统抽样,系统抽样,简单随机抽样

  C.分层抽样,简单随机抽样,简单随机抽样

  D.系统抽样,分层抽样,简单随机抽样

  例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

  很喜爱

  喜爱

  一般

  不喜爱

  2435

  4567

  3926

  1072

  电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

  解:抽取人数与总的比是60∶12000=1∶200,

  则各层抽取的人数依次是12.175,22.835,19.63,5.36,

  取近似值得各层人数分别是12,23,20,5.

  然后在各层用简单随机抽样方法抽取.

  答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

  数分别为12,23,20,5.

  说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

  (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

  分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

  (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

  (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

  五、要点归纳与方法小结

  本节课学习了以下内容:

  1.分层抽样的概念与特征;

  2.三种抽样方法相互之间的区别与联系.

  高中数学教案 篇11

  一、教学目标

  【知识与技能】

  掌握三角函数的单调性以及三角函数值的取值范围。

  【过程与方法】

  经历三角函数的单调性的探索过程,提升逻辑推理能力。

  【情感态度价值观】

  在猜想计算的'过程中,提高学习数学的兴趣。

  二、教学重难点

  【教学重点】

  三角函数的单调性以及三角函数值的取值范围。

  【教学难点】

  探究三角函数的单调性以及三角函数值的取值范围过程。

  三、教学过程

  (一)引入新课

  提出问题:如何研究三角函数的单调性

  (四)小结作业

  提问:今天学习了什么?

  引导学生回顾:基本不等式以及推导证明过程。

  课后作业:

  思考如何用三角函数单调性比较三角函数值的大小。

  高中数学教案 篇12

  一、教学目标:

  掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  二、教学重点:

  向量的性质及相关知识的综合应用。

  三、教学过程:

  (一)主要知识:

  1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

  (二)例题分析:略

  四、小结:

  1、进一步熟练有关向量的.运算和证明;能运用解三角形的知识解决有关应用问题,

  2、渗透数学建模的思想,切实培养分析和解决问题的能力。

  五、作业:

  略

  高中数学教案 篇13

  教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

  (5)进一步理解数形结合的思想方法。

  教学建议

  教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

  (2)重点、难点分析

  ①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

  ②本节的难点是曲线方程的概念和求曲线方程的方法。

  教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的`基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

  (4)从集合与对应的观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合。

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

  文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

  高中数学教案 篇14

  教学准备

  1.教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

  赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示函数的定义域;

  3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

  教学重点/难点

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

  教学用具

  多媒体

  4.标签

  函数及其表示

  教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值.

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的.定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R.

  2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

  (5)满足实际问题有意义.

  巩固练习:课本P19第1

  2、如何判断两个函数是否为同一函数

  例3、下列函数中哪个与函数y=x相等?

  分析:

  1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  解:

  课本P18例2

  (四)归纳小结

  ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

  (五)设置问题,留下悬念

  1、课本P24习题1.2(A组)第1—7题(B组)第1题

  2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

  课堂小结

  高中数学教案 篇15

  教学目的:

  (1)使学生初步理解集合的概念,知道常用数集的概念及记法

  (2)使学生初步了解“属于”关系的意义

  (3)使学生初步了解有限集、无限集、空集的意义

  教学重点:集合的基本概念及表示方法

  教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合

  授课类型:新授课

  课时安排:1课时

  教 具:多媒体、实物投影仪

  内容分析:

  集合是中学数学的一个重要的基本概念 在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题 例如,在代数中用到的有数集、解集等;在几何中用到的有点集 至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具 这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础 例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

  本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明 然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

  这节课主要学习全章的'引言和集合的基本概念 学习引言是引发学生的学习兴趣,使学生认识学习本章的意义 本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念 在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识 教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集 ”这句话,只是对集合概念的描述性说明。

  教学过程:

  一、复习引入:

  1、简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

  2、教材中的章头引言;

  3、集合论的创始人——康托尔(德国数学家)(见附录);

  4.“物以类聚”,“人以群分”;

  5.教材中例子(P4)

  二、讲解新课:

  阅读教材第一部分,问题如下:

  (1)有那些概念?是如何定义的?

  (2)有那些符号?是如何表示的?

  (3)集合中元素的特性是什么?

  (一)集合的有关概念:

  由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

  定义:一般地,某些指定的对象集在一起就成为一个集合.

  1、集合的概念

  (1)集合:某些指定的对象集在一起就形成一个集合(简称集)

  (2)元素:集合中每个对象叫做这个集合的元素

  2、常用数集及记法

  (1)非负整数集(自然数集):全体非负整数的集合 记作N,

  (2)正整数集:非负整数集内排除0的集 记作N*或N+

  (3)整数集:全体整数的集合 记作Z ,

  (4)有理数集:全体有理数的集合 记作Q ,

  (5)实数集:全体实数的集合 记作R

  注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

  (2)非负整数集内排除0的集 记作N*或N+ Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z*

  3、元素对于集合的隶属关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作

  4、集合中元素的特性

  (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

  (2)互异性:集合中的元素没有重复

  (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

  5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……

  ⑵“∈”的开口方向,不能把a∈A颠倒过来写

  三、练习题:

  1、教材P5练习1、2

  2、下列各组对象能确定一个集合吗?

  (1)所有很大的实数 (不确定)

  (2)好心的人 (不确定)

  (3)1,2,2,3,4,5.(有重复)

  3、设a,b是非零实数,那么 可能取的值组成集合的元素是_—2,0,2__

  4、由实数x,-x,|x|, 所组成的集合,最多含( A )

  (A)2个元素 (B)3个元素 (C)4个元素 (D)5个元素

  5、设集合G中的元素是所有形如a+b (a∈Z, b∈Z)的数,求证:

  (1) 当x∈N时, x∈G;

  (2) 若x∈G,y∈G,则x+y∈G,而 不一定属于集合G

  证明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,则x= x+0* = a+b ∈G,即x∈G

  证明(2):∵x∈G,y∈G,

  ∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)

  ∴x+y=( a+b )+( c+d )=(a+c)+(b+d)

  ∵a∈Z, b∈Z,c∈Z, d∈Z

  ∴(a+c) ∈Z, (b+d) ∈Z

  ∴x+y =(a+c)+(b+d) ∈G,

  又∵ =且 不一定都是整数,

  ∴ = 不一定属于集合G

  四、小结:本节课学习了以下内容:

  1、集合的有关概念:(集合、元素、属于、不属于)

  2、集合元素的性质:确定性,互异性,无序性

  3、常用数集的定义及记法

  高中数学教案 篇16

  教学目标1.进一步理解线性规划的概念;会解简单的线性规划问题;

  2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;

  3.进一步提高学生的合作意识和探究意识。

  教学重点:线性规划的概念及其解法

  教学难点

  代数问题几何化的过程

  教学方法:启发探究式

  教学手段运用多媒体技术

  教学过程:1.实际问题引入。

  问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?

  2.探究和讨论下列问题。

  (1)实际问题转化为一个怎样的数学问题?

  (2)满足不等式组①的条件的点构成的区域如何表示?

  (3)关于x、y的一个表达式z=70x+50y的几何意义是什么?

  (4)z的几何意义是什么?

  (5)z的最大值如何确定?

  让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的'限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.

  则zmax=6×70+6×50=720

  结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.

  解题反思:

  问题解决过程中体现了那些重要的数学思想?

  3.线性规划的有关概念。

  什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.

  4.进一步探究线性规划问题的解。

  问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?

  要求:请你写出约束条件、目标函数,作出可行域,求出最优解。

  问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?

  5.小结。

  (1)数学知识;(2)数学思想。

  6.作业。

  (1)阅读教材:P.60-63;

  (2)课后练习:教材P.65-2,3;

  (3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。

  《一个数列的研究》教学设计

  教学目标:

  1.进一步理解和掌握数列的有关概念和性质;

  2.在对一个数列的探究过程中,提高提出问题、分析问题和解决问题的能力;

  3.进一步提高问题探究意识、知识应用意识和同伴合作意识。

  教学重点:

  问题的提出与解决

  教学难点:

  如何进行问题的探究

  教学方法:

  启发探究式

  教学过程:

  问题:已知{an}是首项为1,公比为 的无穷等比数列。对于数列{an},提出你的问题,并进行研究,你能得到一些什么样的结论?

  研究方向提示:

  1.数列{an}是一个等比数列,可以从等比数列角度来进行研究;

  2.研究所给数列的项之间的关系;

  3.研究所给数列的子数列;

  4.研究所给数列能构造的新数列;

  5.数列是一种特殊的函数,可以从函数性质角度来进行研究;

  6.研究所给数列与其它知识的联系(组合数、复数、图形、实际意义等)。

  针对学生的研究情况,对所提问题进行归类,选择部分类型问题共同进行研究、分析与解决。

  课堂小结:

  1.研究一个数列可以从哪些方面提出问题并进行研究?

  2.你最喜欢哪位同学的研究?为什么?

  课后思考题: 1.将{an}推广为一般的无穷等比数列:1,q,q2,…,qn-1,… ,上述一些研究结论会有什么变化?

  2.若将{an}改为等差数列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以进行类比研究?

  开展研究性学习,培养问题解决能力

  一、对“研究性学习”和“问题解决”的认识 研究性学习是一种与接受性学习相对应的学习方式,泛指学生主动探究问题的学习。研究性学习也可以说是一种学习活动:学生在教师指导下,在自己的学习生活和社会生活中选择课题,以类似科学研究的方式去主动地获取知识、应用知识、解决问题。

  “问题解决”(problem solving)是美国数学教育界在二十世纪八十年代的主要口号,即认为应当以“问题解决”作为学校数学教育的中心。

  问题解决能力是一种重要的数学能力,其核心是“创新精神”与“实践能力”。在数学教学活动中开展研究性学习是培养问题解决能力的主要途径。

  二、“问题解决”课堂教学模式的建构与实践 以研究性学习活动为载体,以培养问题解决能力为核心的课堂教学模式(以下简称为“问题解决”课堂教学模式)试图通过问题情境创设,激发学生的求知欲,以独立思考和交流讨论的形式,发现、分析并解决问题,培养处理信息、获取新知、应用知识的能力,提高合作意识、探究意识和创新意识。

  (一)关于“问题解决”课堂教学模式

  通过实施“问题解决”课堂教学模式,希望能够达到以下的功能目标:学习发现问题的方法,开掘创造性思维潜力,培养主动参与、团结协作精神,增进师生、同伴之间的情感交流,形成自觉运用数学基础知识、基本技能和数学思想方法分析问题、解决问题的能力和意识。

  (二)数学学科中的问题解决能力的培养目标

  数学问题解决能力培养的目标可以有不同层次的要求:会审题,会建模,会转化,会归类,会反思,会编题。

  (三)“问题解决”课堂教学模式的教学流程

  (四)“问题解决”课堂教学评价标准

  1. 教学目标的确定;

  2. 教学方法的选择;

  3. 问题的选择;

  4. 师生主体意识的体现;

  5.教学策略的运用。

  (五)了解学生的数学问题解决能力的途径

  (六)开展研究性学习活动对教师的能力要求

  高中数学教案 篇17

  第一章:空间几何体

  1.1.1柱、锥、台、球的结构特征

  一、教学目标

  1.知识与技能

  (1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

  二、教学重点、难点

  重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  难点:柱、锥、台、球的结构特征的概括。

  三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪

  四、教学思路

  (一)创设情景,揭示课题

  1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

  2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

  (二)、研探新知

  1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

  2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

  3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

  5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

  8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的'物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)

  2.棱柱的何两个平面都可以作为棱柱的底面吗?

  3.课本P8,习题1.1A组第1题。

  4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  四、巩固深化

  练习:课本P7练习1、2(1)(2)

  课本P8习题1.1第2、3、4题

  五、归纳整理

  由学生整理学习了哪些内容

  六、布置作业

  课本P8练习题1.1B组第1题

  课外练习课本P8习题1.1B组第2题

  1.2.1空间几何体的三视图(1课时)

  一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的作用

  二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

  三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

  四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

  1.2.2空间几何体的直观图(1课时)

  一、教学目标

  1.知识与技能

  (1)掌握斜二测画法画水平设置的平面图形的直观图。

  (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

  2.过程与方法

  学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

  3.情感态度与价值观

  (1)提高空间想象力与直观感受。

  (2)体会对比在学习中的作用。

  (3)感受几何作图在生产活动中的应用。

  二、教学重点、难点

  重点、难点:用斜二测画法画空间几何值的直观图。

  三、学法与教学用具

  1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

  2.教学用具:三角板、圆规

  四、教学思路

  (一)创设情景,揭示课题

  1.我们都学过画画,这节课我们画一物体:圆柱

  把实物圆柱放在讲台上让学生画。

  2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

  (二)研探新知

  1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

  画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

  练习反馈

  根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

  2.例2,用斜二测画法画水平放置的圆的直观图

  教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

  教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

  3.探求空间几何体的直观图的画法

  (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

  教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

  (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

  4.平行投影与中心投影

  投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

  5.巩固练习,课本P16练习1(1),2,3,4

  三、归纳整理

  学生回顾斜二测画法的关键与步骤

  四、作业

  1.书画作业,课本P17练习第5题

  2.课外思考课本P16,探究(1)(2)

  高中数学教案 篇18

  教学目标:

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

  (2)进一步理解曲线的方程和方程的曲线。

  (3)初步掌握求曲线方程的方法。

  (4)通过本节内容的教学,培养学生分析问题和转化的能力。

  教学重点、难点:

  求曲线的方程。

  教学用具:

  计算机。

  教学方法:

  启发引导法,讨论法。

  教学过程:

  【引入】

  1、提问:什么是曲线的方程和方程的曲线。

  学生思考并回答。教师强调。

  2、坐标法和解析几何的意义、基本问题。

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程。

  (2)通过方程,研究平面曲线的性质。

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

  【问题】

  如何根据已知条件,求出曲线的方程。

  【实例分析】

  例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

  证明:(1)曲线上的点的坐标都是这个方程的解。

  设是线段的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标是方程的解。

  (2)以这个方程的解为坐标的点都是曲线上的点。

  设点的坐标是方程①的任意一解,则

  到、的距离分别为

  所以,即点在直线上。

  综合(1)、(2),①是所求直线的方程。

  至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。

  分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

  求解过程略。

  【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

  (2)写出适合条件的点的集合

  ;

  (3)用坐标表示条件,列出方程;

  (4)化方程为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的.点。

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

  下面再看一个问题:

  例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

  解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

  由距离公式,点适合的条件可表示为

  ①

  将①式移项后再两边平方,得

  化简得

  由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

  【练习巩固】

  题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。

  根据条件,代入坐标可得

  化简得

  ①

  由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

  【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

  【作业】课本第72页练习1,2,3;

  高中数学教案 篇19

  教学目标:

  1、理解流程图的选择结构这种基本逻辑结构

  2、能识别和理解简单的框图的功能

  3。、能运用三种基本逻辑结构设计流程图以解决简单的问题

  教学方法:

  1。、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知

  2。、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构

  教学过程:

  一、问题情境

  1、情境:

  某铁路客运部门规定甲、乙两地之间旅客托运行李的'费用为x

  其中(单位:)为行李的重量.

  试给出计算费用(单位:元)的一个算法,并画出流程图

  二、学生活动

  学生讨论,教师引导学生进行表达

  解 算法为:

  输入行李的重量;

  如果,那么,

  否则;

  输出行李的重量和运费.

  上述算法可以用流程图表示为:

  教师边讲解边画出第10页图1—2—6.

  在上述计费过程中,第二步进行了判断.

  三、建构数学

  1、选择结构的概念:

  先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构

  如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

  2、说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

  (2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

  (3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

  (4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点

  3、思考:教材第7页图所示的算法中,哪一步进行了判断?

  高中数学教案 篇20

  【教学目标】

  1.知识与技能

  (1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

  (2)账务等差数列的通项公式及其推导过程:

  (3)会应用等差数列通项公式解决简单问题。

  2.过程与方法

  在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

  3.情感、态度与价值观

  通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

  【教学重点】

  ①等差数列的概念;

  ②等差数列的通项公式

  【教学难点】

  ①理解等差数列“等差”的特点及通项公式的含义;

  ②等差数列的通项公式的推导过程.

  【学情分析】

  我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  【设计思路】

  1、教法

  ①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.

  ②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.

  ③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.

  2、学法

  引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.

  【教学过程】

  一、创设情境,引入新课

  1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

  2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的.办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

  3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

  教师:以上三个问题中的数蕴涵着三列数.

  学生:

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  (设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.

  二、观察归纳,形成定义

  ①0,5,10,15,20,25,….

  ②18,15.5,13,10.5,8,5.5.

  ③10072,10144,10216,10288,10360.

  思考1上述数列有什么共同特点?

  思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

  思考3你能将上述的文字语言转换成数学符号语言吗?

  教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.

  学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.

  教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.

  (设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)

  三、举一反三,巩固定义

  1、判定下列数列是否为等差数列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.

  注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.

  (设计意图:强化学生对等差数列“等差”特征的理解和应用).

  2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

  (设计意图:强化等差数列的证明定义法)

  四、利用定义,导出通项

  1、已知等差数列:8,5,2,…,求第200项?

  2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

  教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.

  (设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)

  五、应用通项,解决问题

  1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?

  2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差数列3,7,11,…的第4项和第10项

  教师:给出问题,让学生自己操练,教师巡视学生答题情况.

  学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

  (设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)

  六、反馈练习:教材13页练习1

  七、归纳总结:

  1、一个定义:

  等差数列的定义及定义表达式

  2、一个公式:

  等差数列的通项公式

  3、二个应用:

  定义和通项公式的应用

  教师:让学生思考整理,找几个代表发言,最后教师给出补充

  (设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)

  【设计反思】

  本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.

【高中数学教案】相关文章:

高中必修数学教案01-07

高中数学教案09-28

高中必修4数学教案03-13

高中数学教案10-26

【荐】高中数学教案11-14

【热】高中数学教案11-11

高中数学教案【热门】11-12

高中数学教案【热】11-15

【精】高中数学教案11-13

【推荐】高中数学教案11-10