初中数学优秀教案

时间:2024-06-22 11:51:19 初中数学教案 我要投稿

(经典)初中数学优秀教案15篇

  作为一位杰出的教职工,通常会被要求编写教案,借助教案可以有效提升自己的教学能力。如何把教案做到重点突出呢?下面是小编精心整理的初中数学优秀教案,欢迎阅读与收藏。

(经典)初中数学优秀教案15篇

初中数学优秀教案1

  教学目的:

  1、在解决实际问题的过程中,进一步巩固形如ax+b=c、ax-b=c的方程的解法,同时理解并掌握形如ax÷b=c的方程的解法,会列上述方程解决两步计算的实际问题。

  2、提高分析数量关系的能力,培养学生思维的灵活性。

  3、在积极参与数学活动的过程中,树立学好数学的信心。

  教学重点、难点:

  引导学生独立分析问题,找出题目中的等量关系。

  教学对策:

  在积极参与数学活动的过程中,树立学好数学的信心。

  教学准备:

  教学光盘

  教学过程:

  一、复习准备

  1、解方程(练习一第6题的第1、3小题)

  4x+12=50 2.3x-1.02=0.36

  学生独立完成,再指名学生板演并讲评,集体订正。

  二、尝试练习

  师:刚才的两道题同学们完成得很好,这道题你们还能自己解决吗?试试看。

  出示:30x÷2=360

  学生独立尝试完成,全班交流。

  指名学生说一说,解这个方程是第一步需要做什么?这样做依据了等式的什么性质?

  三、巩固练习

  1、出示练习一第7题。

  (1)分析数量关系

  提问:谁来说说三角形的面积公式是怎样的?根据学生回答板书:S=ah÷2。联系这个公式你能找出数量之间的相等关系吗?(生独立思考后在小组内交流)指名口答。你觉得在这些数量关系中,哪一个等量关系适合列方程?根据这个数量关系我们可以列出怎样的方程?板书:1.3x÷2=0.39。

  第⑵题生独立思考并列出方程,在小组内说说自己的思考过程后全班交流。板书:3x+18=19.8。

  (2)学生独立计算,并检验答案是否正确,全班核对。

  小结:在一个实际问题中,可能会有几个不同的等量关系,我们应该选择合适的等量关系来列方程。

  2、练习一第8题。

  学生读题后可用自己喜欢的方法将与杨树和松树有关的信息分别列表整理(如列表,作标记等)

  学生独立解决后再说说数量之间有怎样的数量关系,是根据什么样的数量关系列出的方程,最后核对解方程的过程。(提示学生可从得数的合理性来初步检验)

  3、练习一第9题。

  学生独立思考,指名分析数量关系,教师结合学生回答画出线段图帮助学生理解题意。

  学生独立解方程再集体订正。

  4、练习一第10题。

  教师简单介绍相关天文知识后,学生独立解答,然后及时交流,教师及时讲评。

  5、练习一第11题。

  学生读题后教师提问:在本题中出现了两个问题,那么我们在写设句时要注意什么?(提示学生用不同的字母分别表示小亮出生时的身高和体重)

  学生独立解决,集体核对。结合学生板演情况进行讲评,进一步规范学生的书写格式。

  6、练习一第12题。

  提问:你能看懂这张发票上所提供的信息吗?数量间有怎样的等量关系呢

  学生独立列方程解答,同桌同学互相检查,再集体订正。

  7、练习一第13题。

  学生阅读第13题,理解后独立解决问题,再交流。

  教师再补充几题,如:98.6、212华氏度相当于多少摄氏度等。

  四、全课小结

  说一说你这一节课的学习收获及还有什么问题。

  五、布置作业

  完成配套习题。

  教后反思:

  本课时是一节练习课,练习目标有两个,一是通过练习让学生掌握形如ax+b=c和ax-b=c的方程的解法,会列方程解决两步计算的实际问题;二是借助一些对比练习,让学生感受方程的思想方法和价值。课前,我学习了高教导的“课前思考”,在今天的练习课中补充了两组题目,让学生进行对比练习。题目是这样的:(1)果园里有桃树60棵,比梨树的3倍少6棵,梨树有多少棵?(2)果园里有梨树60棵,比桃树的3倍少6棵,桃树有多少棵?课堂上,我先请学生分析每一题的数量关系,然后选择合适的方法来解答。学生们经过分析、比较,发现类似第1小题这样的题目适合用方程解,类似第2小题这样的.题目适合用算术方法解。另一组补充的题目是:(1)王老师买了3个足球,付了200元,找回8元。每个足球多少元?(2)水果店运进5箱苹果,卖出56千克,还剩34千克。每箱苹果多少千克?对于这两题,我请学生认真分析数量关系后用自己喜欢的方法来解答,而且如果是列方程的话,试着列出不同的方程;如果是用算术方法解的可以列出不同的算式。课堂上学生思维活跃,在正确分析数量关系后列出了不同的方程或算式。

  通过本节练习课,我想教师在教学中要更多地指导学生关注怎样从一个个具体的问题情境中分析数量之间的相等关系,关注怎样根据数量关系列出方程,从而在经历实际问题数学化的过程中,获得对用方程解决实际问题策略的体验,进一步丰富学生解决问题的策略,加深学生对方程作为一种重要的数学思想方法的理解。

初中数学优秀教案2

  一、 教学目标

  1、 知识与技能目标

  掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

  2、 能力与过程目标

  经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

  3、 情感与态度目标

  通过学生自己探索出法则,让学生获得成功的喜悦。

  二、 教学重点、难点

  重点:运用有理数乘法法则正确进行计算。

  难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

  三、 教学过程

  1、 创设问题情景,激发学生的`求知欲望,导入新课。

  教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?

  学生:26米。

  教师:能写出算式吗?学生:……

  教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题

  2、 小组探索、归纳法则

  (1)教师出示以下问题,学生以组为单位探索。

  以原点为起点,规定向东的方向为正方向,向西的方向为负方向。

  ① 2 ×3

  2看作向东运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  2 ×3=

  ② -2 ×3

  -2看作向西运动2米,×3看作向原方向运动3次。

  结果:向 运动 米

  -2 ×3=

  ③ 2 ×(-3)

  2看作向东运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西运动2米,×(-3)看作向反方向运动3次。

  结果:向 运动 米

  (-2) ×(-3)=

  (2)学生归纳法则

  ①符号:在上述4个式子中,我们只看符号,有什么规律?

  (+)×(+)=( ) 同号得

  (-)×(+)=( ) 异号得

  (+)×(-)=( ) 异号得

  (-)×(-)=( ) 同号得

  ②积的绝对值等于 。

  ③任何数与零相乘,积仍为 。

  (3)师生共同用文字叙述有理数乘法法则。

  3、 运用法则计算,巩固法则。

  (1)教师按课本P75 例1板书,要求学生述说每一步理由。

  (2)引导学生观察、分析例子中两因数的关系,得出两个有理数互为倒数,它们的积为 。

  (3)学生做练习,教师评析。

  (4)教师引导学生做例题,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。

初中数学优秀教案3

  教学目标

  知识

  技能 1.通过观察实验,使学生了解圆心角的概念.

  2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.

  过程

  方法 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.

  情感

  态度 激发学生观察、探究、发现数学问题的兴趣和欲望.

  教学重点

  在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.

  教学难点

  探索定理和推导及其应用.

  教学过程设计

  教学程序及教学内容 师生行为 设计意图

  一、导语这节课我们继续研究圆的性质,请同学们完成下题.

  1.已知△OAB,如图所示,作出绕O点旋转30、45、60的图形.

  2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?

  二、探究新知

  (一)、圆心角定义

  在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.

  (二)、圆心角、弧、弦之间的关系定理

  1.按下列要求作图并回答问题:

  如图所示的⊙O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到A‵OB‵的位置,你能发现哪些等量关系?为什么?

  得到: 在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.

  2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?

  综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:

  在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.

  3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?

  4.定理拓展:

  ○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?

  ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上得到

  在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.

  在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.

  综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.

  (三)、定理应用

  1.课本例1

  2.如图,在⊙O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF.

  (1)如果AOB=COD,那么OE与OF的'大小有什么关系?为什么?

  (2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢?

  三、课堂训练

  完成课本83页练习

  补充:如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,APM=CPM.

  (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.

  (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

  四、小结归纳

  1.圆心角概念.

  2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量都分别相等,及它们的应用.

  五、作业设计

  作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做. 教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫

  学生通过画图复习旋转知识,明白绕O点旋转,O点就是旋转中心,旋转30,就是旋转角是30

  学生画一个圆,按教师要求操作,观察,思考,交流,教师给出圆心角定义,

  学生按照要求作图,并观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行严格的几何证明.

  学生思考,类比同圆中得到的结论进行探究,猜想,并验证

  学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.

  教师引导学生类比定理独立用类似的方法进行探究,得到推论

  学生审题,理清题中的数量关系,由本节课知识思考解决方法.

  教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.

  让学生尝试归纳,总结,发言,体会,反思,教师点评汇总

  通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础

  通过该问题引起学生思考,进行探究,发现关系定理,初步感知培养学生的分析能力,解题能力.

  为继续探究其推论奠定基础.

  感受类比思想,类比中全面透彻地理解和掌握关系定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.

  给出一般叙述,以其更好的应用.

  培养学生解决问题的意识和能力,体会转化思想,化未知为已知,从而解决本题.

  运用所学知识进行应用,巩固知识,形成做题技巧

  让学生通过练习进一步理解,培养学生的应用意识和能力

  归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

  巩固深化提高

  板 书 设 计

  课题

  圆心角、弧、弦之间的关系定理 关系定理应用

  1. 2. 归纳

  教 学 反 思

初中数学优秀教案4

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的'性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

初中数学优秀教案5

  知识点:

  因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

  教学目标:

  理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

  考查重难点与常见题型:

  考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

  教学过程:

  因式分解知识点

  多项式的`因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

  (1)提公因式法

  如多项式

  其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

  (2)运用公式法,即用

  写出结果。

  (3)十字相乘法

  对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

  (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

  分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

  (5)求根公式法:如果有两个根X1,X2,那么

  2、教学实例:学案示例

  3、课堂练习:学案作业

  4、课堂:

  5、板书:

  6、课堂作业:学案作业

  7、教学反思:

初中数学优秀教案6

  学习方式:

  从具体问题情景中探索体会合并同类项的含义。

  逆用乘法分配律探求合并同类项法则。

  通过多角度的练习辨别同类项,加 深对概念的理解,培养思维的严密性。

  教学目标:

  1、在具体情境中理解、掌握同类项的定义;

  2、在具体情境中, 让学生了解合并同类项的法则,能进行同类项的合并。

  3、能运用合并同类项化简多项式,并根据所给字母的值,求多项式的值。

  4、通过“合并同类项”的学习,继续培养学生的运算能力。

  教学的重点、难点和疑点

  1、重点:同类项的概念,合并同类项的法则。

  2、难点:理解同类项的概念中所含字母相同,且相同字母的次数也相同的含义。

  3、疑点:同类项与同次项的区别。

  教具准备

  投影仪(电脑)、自制胶片

  教学过程:

  提出问题

  创设情景 (出示投影)

  如图的长方形由两个小长方形组成,求这个长方形的面积。

  ①当学生列出代数式 8n+5n时,可引导学生是否还有其他表示方法,启发学生得出:

  (8+5)n

  ②接着引导学生写出等式:

  8n+5n=(8+5)n=13n

  启发学生观察上式是怎样的一种变化;

  它类似于我们前面学过的什么运算律

  为什么8n与5n可以合并成一项(组织学生充分

  讨论,从而引出同类项的概念)

  ③同类项的概念

  举出一些具有代表性的同类项的实际例子。

  如:-7a2b , 2a2b ;

  8n , 5n ;

  3x2, -x2

  引导学生观察上面给出的几组代数式具有什么共同特点:

  ①所含的字母相同

  ②相同字母的指数也相同

  教师顺势提出同类项的概念

  强调同类项必须满足以上两条

  ④结合长方形面积问题,引出合并同类项的概念:把同类项合并成一项就叫做合并同类项。 学生观察,思考

  讨论交流

  (反例巩固) 出示问题;

  x与y,

  a2b与ab2,

  -3pa与3pa

  abc与ac,

  a2和a3 是不是同类项

  (给学生留下足够的思考时间,引导学生紧紧结合同类项的两个条件进行判断)

  其中:a2b与ab2可让学生充分讨论交流。

  (教师强调“必须是相同字母的指数相同”这句话的含义,从而分清同类项与同次项的区别)

  (引导学生题后反思,同类项与它们的系数无关,只与所含的字母及字母的指数有关)。

  紧扣定义

  加以判别

  例1 根据乘法分配律合并同类项

  (1)-xy2+3xy2 (2) 7a+3 a2+2a- a2+3

  (教师强调乘法分配律的逆运用)

  (学生板书完毕后,教师引导学生观察合并的前后发生了什么变化?其中系 数怎样变化的?字母及字母的指数又怎样变化了)

  由此引导学生总结出合并同类项的法则:

  在合并同类项时,只把同类项的系数相加减,字母和字母的`指数不变。

  学生思考

  解答(找二生板演其他学生独立写出过程)

  总结法则

  可根据情况适当复习关于乘法分配律的有关知识

  通过上面的实例,学生对怎样合并同类项的问题已有较深刻的印象,但还不能用完整的数学语言将其叙述出来,教师要积极引导,让学生动脑思考。

  应用法则

  例2,合 并同类项

  ①3a+2b-5a-b

  ②-4ab+8-2b2-9ab-8

  给学生留有足够的独立的思考时间

  找二生到黑板上板演。

  学生 板演后,教师组织 学生交流评价,根据出现的问题,作点拔,强调。

  强调:合并同类项的过程实质上就是同类项的系数相加减的过程,在系数相加时,不要遗漏符号,字母和字母的指数都不变。

  教师不给任何提示

  学生在练习本上完成,然后同桌同学互相交换评判。

  (二生到黑板上板演)

  变式

  应用 补充例题

  例3,求代数式的值

  ①2x2-5x+x2+4x-3 x2-2 其中x=

  ②-3 x2+5x-0.5 x2+x-1 其中x=2

  出示 例题后,教师不要给任何提示,先让学生独立思考。

  部分学生会直接把x= 代入式中去计算,出现这一情况后,教师可积极引导。

  问:还有没有其 他方法?学生仔细观察后不难发现先合并化简后,再代入求值,此时教师可提出让学生对比分析哪种方法简便。从而强调,先化简再求值会使运算变得简便。

  独立完成

  分析比较

  寻求简便方法

  随堂

  练习 1、合并同类项

  ①3y+ y=__________

  ②3b-3a2+1+a3-2b=____ _______

  ③2y+6y+2xy-5=_____________

  2、求代数式的值

  8 p2-7q+6q-7p2-7

  其中p=3 q=3

  练习交流合作

  教师可根据情况适当补充

  小结 今天你学会了哪些知识?获得了哪些方法,

  有什么体会? 自己总结

  作业 教材课后习题

初中数学优秀教案7

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

  为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的'水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学优秀教案8

  一、教学目的:

  1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

  2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。

  二、重点、难点

  1.教学重点:菱形的两个判定方法。

  2.教学难点:判定方法的证明方法及运用。

  三、例题的意图分析

  本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

  四、课堂引入

  1.复习

  (1)菱形的定义:一组邻边相等的平行四边形;

  (2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;

  (3)运用菱形的'定义进行菱形的判定,应具备几个条件?(判定:2个条件)

  2.问题

  要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

  3.探究

  (教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

  通过演示,容易得到:

  菱形判定方法1对角线互相垂直的平行四边形是菱形。

  注意此方法包括两个条件:

  (1)是一个平行四边形。

  (2)两条对角线互相垂直。

初中数学优秀教案9

  一、教学目标

  知识与技能:使学生了解正数与负数是从实际需要中产生的;

  过程与方法:使学生理解正数与负数的概念,并会判断一个数是正数还是负数,初步会用正负数表示具有相反意义的量;

  情感与态度:在负数概念的形成过程中,培养学生的观察、归纳与概括的能力

  二、教学重点和难点

  负数的引入和意义

  三、教学过程

  创设情景,生活实例引入,观察猜想,合作探究

  (一)、从学生原有的认知结构提出问题

  大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回忆一下,小学里已经学过哪些类型的数?

  学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的。

  为了表示一个人、两只手、……,我们用到整数1,2,……

  为了表示半小时、四元八角七分、……,我们需用到分数1/2和小数4。87、……

  为了表示“没有人”、“没有羊”、……我们要用到0。

  但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示。

  (二)、师生共同研究形成正负数概念

  某市某一天的最高温度是零上5℃,最低温度是零下5℃。要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚。

  它们是具有相反意义的两个量。

  现实生活中,像这样的相反意义的量还有很多。

  例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155 米,“高于”和“低于”其意义是相反的。

  又如,某仓库昨天运进货物 吨,今天运出货物 吨,“运进”和“运出”,其意义是相反的。

  同学们能举例子吗?

  学生回答后,教师提出:怎样区别相反意义的量才好呢?

  现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作—5℃(读作负5℃)。这样,只要在小学里学过的数前面加上“+”或“—”号,就把两个相反意义的'量筒明地表示出来了。

  让学生用同样的方法表示出前面例子中具有相反意义的量:

  高于海平面8848米,记作+8848米;低于海平面155米,记作—155米;

  运进纲物 吨,记作+ ;运出货物 吨,记作— 。

  教师讲解:什么叫做正数?什么叫做负数。

  强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量。并指出,正数,负数的“+”“—”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号

  (三)、运用举例 变式练习

  例1 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:

  —11,4,8,+73,—2,7, , ,—8,12, — ;

  正数集合 负数集合

  此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分。然后,指出不仅可以用圈表示集合,也可以用大括号表示集合

  课堂练习

  任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:

  正数集合:{ …},

  负数集合:{ …}

  四、课堂小结

  由于实际生活中存着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“—”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃

  五、作业布置

  1。北京一月份的日平均气温大约是零下3℃,用负数表示这个温度

  2。在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着—392,这表明死海的湖面与海平面相比的高度是怎样的?

  3。在下列各数中,哪些是正数?哪些是负数?

  —16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。

  4。如果—50元表示支出50元,那么+200元表示什么?

  5。河道中的水位比正常水位低0。2米记作—0。2米,那么比正常水位温0。1米记作什?

  6。如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作么?

  7。一物体可以左右移动,设向右为正,问:

  (1)向左移动12米应记作什么?(2)“记作8米”表明什么?

初中数学优秀教案10

  教学目标:

  知识与技能:会用计算器进行数的加、减、乘、除、乘方运算。

  过程与方法:了解计算器的性能,并会操作和使用,能运用计算器进行较为复杂的运算。

  情感态度与价值观:使学生能运用计算器探索一些有趣的数学规律。

  教学重点:用计算器进行数的加、减、乘、除、乘方的运算。

  教学难点:能用计算器进行数的乘方的运算。

  教材分析:在日常生活中,经常会出现一些较为复杂的混合运算,这就要求使用科学计算器。因此,使学生会用计算器进行数加、减、乘、除、乘方的运算就成为本节的重点和难 点。

  教学方法:师生互动法。

  课时安排:1课时。

  教具:Powerpoint幻灯片、科学计算器。

  环节 教 师 活 动 学 生 活 动 设 计 意 图

  创设情境 一、从问题情境入手,揭示课题。

  (出示幻灯一)

  在棋盘上放米,第一格放1粒米,第二格放2粒米,第三格放22粒米,然后是23粒、24粒、25粒……一直到64格,你能计算第64格应放多少粒米?有简单的`计算方法吗

  教师对学生的回答给予点评,并带着问题引入本节课题:

  板书:3.4 用计算器进行数的计算 在教师的引导下,学生仔细观察、思考,积极回答。 通过师生的相互探讨,使学生认识到学会使用计算器的必要性,并激发学生的 求知欲。

  探究活动一 一、 介绍计算器的使用方法。

  (出示幻灯二)

  B型计算器的面板示意图如下:

  教师结合示意图介绍按键的使用方法。

  学生根据教师的介绍,使用计算器进行实际操作。 通过训练,使学生掌握计算器 的按键操作,熟悉计算器的程序设计模式。

  探究活动二 二、用计算器进行加、减、乘、除、乘方运算

  (出示幻灯三)

  例1 用计算器求下列各式的值

  (1)(-3.75)+(-22.5)

  (2)51.7(-7.2)

  解:(1)

  (-3.75)+(-22.5)=-26.25

  学生相互交流,并用计算器进行实际操作。 通过计算,使学生熟悉计算器的用法。

  探究活动二 (2)

  51.7(-7.2)=-372.24

  学生相互交流,并用计算器进行实际操作。

  通过计算,使学生会用计算器进行有理数的加、减、乘、除运算。

  探究活动二 例2 用计算器计算(精确到0.001)

  (-0.45)5

  (-0.45)5-0.018

  相互讨论,并进行实际操作。 通过计算,使学生会用计算器进行有理数的乘方运算。

  探究活动二

  例3 用计算器求值

  (1)(-6)2(2)-62

  解:

  思考:

  注意观察它们的按键顺序有什么不同?

  学生认真观察、讨论,得出结论。

  通过对比,使学生能区分两种按键的不同,灵活运用计算器进行计算。

  探究活动三 三、随堂练习

  (出示幻灯四)

  用计算器求值

  1.9.23+10.2

  2 . (-2.35)(-0.46)

  3.( -3.45)3

  4.-2.082

  学生独立操作完成。 通过训练,使学生能熟练地用计算器进行数的运算。

  探究活动四 四、实际应用,能力提高。

  1.用计算器解决“创设情境”中提出的问题。

  (出示幻灯五)

  2.张老师在银行贷月息为0.456%的住房 贷款50 000元,满5年时共需付款50 000(1+600.456%)元,其中包括贷款本金和贷款利息。张老师共需付利息多少元? 在教师的引导下,分组讨论,互相交流,回答有关的信息,学生互评。 通过实际应用,进一步提高学生运用计算器解决实际问题的能力。

  学习总结 五、学习总结

  这节课你有哪些收获?有什么体会?

  教师简要点评:

  (1)由于受计算器显示数位的限制,计算结果是一个近似数。

  (2)当计算结果很大时,计算器能将计算结果自动转化为科学记数法的形式来显示。

  学生相互交流自己的 收获和体会,教师参与互动并给予鼓励 性的评价。 学生自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。

  课堂反馈

  1.用计算器进行计算(略)

  2.(1)用计算器计算下列各式:

  1111,111111,1 1111 111,11 11111 111 。

  (2)根据 (1)的计算结果,你发现了什么规律?

  (3)如果不用计算器,你能直接写出1 111 1111 111 1 11的结果吗? 让学生熟练运用计算器进行操作,学以致用。 及时反馈,并使学生能运用计算器探究一些有趣的数学规律。

  附:板书设计:

  3.4用计算器进行数的计算

  1.介绍计算器的使用方法;

  2.运用计算器进行数的运算;

  3.运用计算器探究数学规律。

  教学反思:

  1.只停留在powerpoint的使用上,有一定的局限性,如能演示使用计算器的方法,效果会更好。

  2.更新教学观念,最好以学生自学使用计算器的方法为主,使学生主动参与探索,培养学生的创新精神。

  3.教师主导课堂,忽视学生的学习主体作用,不利于创新思维及个性化发展。而通过网络或多媒体的教学过程中,往往易忽视教师的作用,过分的 依赖于学习者的主观能动性,教学成本也大幅度提高。

初中数学优秀教案11

  【教学目标】:

  通过实例,使学生体会用样本估计总体的思想,能够根据统计结果作出合理的判断 和推测,能与 同学进行交流,用清晰的语言表达自己的观点。

  【重点难点】:

  重点、难点:根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。

  【教学过程】:

  一、课前准备

  问题:20xx年北京的空气质量情况如何?请用简单随机抽样方法选取该年的30天,记录并统计这30天北京的空气污染指数,求出这30天的平均空气污染指数,据此估计北京20xx年全年的平均空气 污染指数和空气质量状况。请同学们查询中国环境保护网。

  二、新课

  师生用随机抽样的方法选定如下表中的30天,通过上网得知北京在这30天的空气污染指数及质量级别,如下表所示:

  这30个空气污染指数的平均数为107,据此估计该城市20xx年的平均空气污染指数为107, 空气质量状况属于轻微污染。

  讨论:同学们之 间互相交流,算一算自己选取的样本的污染指数为多少?根据样本的空气污染指数的平均数,估计这个城市的空气质量 。

  2、体会用样本估计总体的合理性

  下面是老师抽取的样本的空气 质量级别、所占天数及比例的统计图和该城市20xx年全年的相应数据的统计图,同学们可以通过比较两张统计图,体会用样本估计总体的合理性。

  经比较可以发现,虽然从样本获得的数据与总体的不完全一致,但这样的误差 还是可以接受的,是一个较好的估计。

  练习:同学们根据自己所抽取的样本绘制统计图,并 和20xx年全年的相应数据的统计图进行比较,想一想用你所抽取的样本估计总体是否合理?

  显然,由于各位同学所抽取的样本的不同,样本的污染指数不同。但是,正如我们前面已经看到的,随着样本容量(样本中包含的个体的个数)的增加,由样本得出的平均数往往会更接近总体的'平均数,数学家已经证明随机抽样方法是科学而可靠的 . 对于估计总体特性这类问 题,数学上的一般做法是给出具有一定可靠程度的一个估计值的范围,将来同学们会学习到有关的数学知识。

  3、加权平均数的求法

  问题1:在计算20个男同学平均身高时,小华先将所有数据按由小到大的顺序排列,如下表所示:

  然后,他这样计算这20个学生的平均身高:

  小华这样计算平均数可以吗?为什么?

  问题2:假设你们年级共有四个班级,各班的男同学人数和平均身高如下表所示.

  小强这样计算全年级男同学的平均身高:

  小强这样计算平均数可以吗?为什么?

  练习:在一个班的40学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,求这个班级学生的平均年 龄。

  三、小结

  用样本估计总体 时,样本容量越大,样本对总体的估计也就越精确。相应地,搜集、整理、计算数据的工作量也就越大,随机抽样是经过数学证明了的可靠的方法,它对于 估计总体特征是很有帮助的。

  四、作业

  习题4.2 1

初中数学优秀教案12

  教学目标

  1. 使学生掌握不等式的三条基本性质;

  2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.

  教学重点和难点

  重点:不等式的三条基本性质的运用.

  难点:不等式的基本性质3的运用.

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1. 什么叫不等式?说出不等式的三条基本性质.

  2. 当x取下列数值时,不等式1-5x<16是否成立?

  3,-4,-3,4,2.5,0,-1.

  3. 用不等式表示下列数量关系:

  (1) x的3倍大于x的2倍与5的差; (3)y的与x的的差小于2;

  (2) y的一半与4的`和是负数; (4)5与a的4倍的差不是正数.

  4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:

  (1)m>n,两边都减去3; (2)m>n,两边同乘以3;

  (3)m>n,两边同乘以-3; (4)m>n,两边同乘以-3;

  (5)m>n,两边同乘以 .

  (以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。

  二、讲授新课

  例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.

  (1)若a–3<9,则a_____12; (2)若-a<10,则a_____–10;

  (3)若a>–1,则a_____–4; (4)若-a>,则a_____0.

  答:(1)a<12,根据不等式基本性质1. (2)a>-10,根据不等式基本性质3.

  (3)a>-4,根据不等式基本性质2. (4)a<0,根据不等式基本性质3.

  (在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=

  例2 已知,用a<0,“<”或“>”号填空:

  (1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

  答:(1)a+2<2,根据不等式基本性质1. (2)a-1<-1,根据不等式基本性质1.

  (3)因为3a,根据不等式基本性质2. (4)->0,根据不等式基本性质3.

  (5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.

  (6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。

  (7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.

  又已知,-1<0,所以a-1<0.

  (8)因为。a<0,所以a≠0,所以|a|>0.

  (本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)

  例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)

  (1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为a<b,所以<>'

  (5)因为>-1,所以a>4; (6)因为-1>-2,所以-a-1>-a-2;

  (7)因为3>2,所以3a>2a.

  答:(1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1.

  (3)正确,根据不等式基本性质2. (4)不对,根据不等式基本性质3,应改为>; (5)因为>-1,所以a>4

  答:(1)正确,根据不等式基本性质3。 (2)正确,根据不等式基本性质1。

  (3)正确,根据不等式基本性质2。 (4)不对,根据不等式基本性质3,应改为。

  (5)不对,根据不等式基本性质5,应改为a<4。

  (6)正确,根据不等式基本性质1。 (7)不对,应分情况逐一讨论。

  当a>0时,3a>2a。(不等式基本性质2)

  当a=0时,3a<2a。

  当a<0时,3a<2a。(不等式基本性质3)

  (当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

  三、课堂练习(投影)

  1。按照下列条件,写出仍能成立的不等式:

  (1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;

  (3)由7>5,两边都乘以不为零的-a。

  2?用“>”或“<”号填空:

  (1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;

  (3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;

  (5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。

  四、师生共同小结

  在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。

  五、作业

  1。根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:

  (1)x-1<0; (2)x>-x+6;

  (3)3x>7; (4)-x<-3。

  2。设a<b,用“>”或“>”号连接下列各题中的两个代数式:

  (1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;

  (4); (5); (6)-b,-a。

  3。用“>”号或“<”号填空:

  (1)若a-b<0,则a_____b; (2)若b<0,则a+b_____a;

  (3)若a=0,则a+b_____b; (4)若<0,则ab_____;

  (5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

  课堂教学设计说明

  由于本节课的教学目标是使学生进一步掌握不等式基本性质,尤其是基本性质3。故在设计教学过程时,注意在教师的主导作用下让学生以练为主,从而使学生在初步掌握不等式的三条基本性质的基础上,通过口答,笔做,讨论等不同的方式的练习,提高学生将不等式正确、灵活进行变形的能力。

初中数学优秀教案13

  教学设计思想:本节安排1课时讲授;影子是生活中常见的现象,教学中引用太阳光照射下的影子种种生活中的实例,目的是让学生体会影子在生活中的存在,激发学习的兴趣。课前布置作业让学生观察不同时刻物体影子的变化,亲自感受变化的情况,再通过教师讲授逐步加深对投影相关概念的理解,并掌握其应用。

  教学目标:

  1.知识与技能

  经历实践、探索的过程,知道平行投影、正投影的含义;

  能够确定物体在太阳光下的影子的特征;

  知道在不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

  2.过程与方法

  通过观察、想象、实践形成一定的空间想象能力,发展空间观念;

  探索不同时刻不同物体的影子的变化规律:影子长的比等于物体高度的比。

  3.情感、态度与价值观

  通过理论研究自然现象,引发对大自然和社会生活探索的欲望,提高学习兴趣,增进数学的应用意识。

  教学重点:理解平行投影的含义。

  教学难点:通过对平行投影的认识进行物体与投影之间的相互转化。

  教学方法:启发式。

  教学安排:1课时。

  教学媒体:幻灯片。

  教学过程:

  课前准备:让学生在课前观察物体在阳光下的影子,自己总结出一些结论。

  一、创设情景

  问题1:

  师:请看这幅图片,哪位同学知道这是什么?(提出问题,激发学生的兴趣)

  教师陈述:日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成。

  当太阳光照在日晷上时,晷针的影子就会投向晷面。随着时间的推移,晷针的影子在晷面上慢慢地移动。以此来显示时刻。(看下图)

  设疑激趣:利用古代显示时刻的物体来引起学生的兴趣。

  二、引出课题

  问题2:

  师:太阳光可看成平行的直线,在阳光下,我们经常看见物体的影子,那同学们你们知道影子的长短和方向在一天中是怎样变化的吗?

  下面我们来看几副图片:(幻灯显示)

  (1) (2) (3)

  上面的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,请根据树的影子,判断拍摄的先后顺序,并说明理由。

  生:通过这几天观察,如果上午观察物体的影子,都是逐渐变短的一个过程,所以拍摄的先后顺序是:(3)→(2)→(1)。

  师:这位同学回答的很正确;但是哪位同学能解释一下呢?

  生:上午太阳从东方地平线上升起,逐渐升高,这里我们把太阳光线看成平行的.直线,根据以前我们学过的几何知识,通过画图,显而易见影子随着太阳的升高逐渐变短的。

  师:回答的很好;根据上面的总结,我们观看下面的图片,观察有什么变化?

  在我国北方地区,人们居住的房屋窗户大多是朝南的,中午某时刻室内的窗影在一年四季里会有什么变化呢?

  学生相互讨论,交流。

  生:夏天的时候影子是最短的,冬天是最长的,春秋次之。

  活动:学生有丰富的关于影子的生活经验,让他们结合经验想象自己的影子从早到晚是如何变化的(包括大小和方向)?并叫三个学生代表太阳、物体、影子,模拟太阳东升西落。得出结论:大——小——大;西——北偏西——正北——北偏东——东。

  教师总结:物体在光线的照射下,会在地面或墙面上留下它的影子,这种现象就是投影(projection)。

  太阳的光线可看做平行线的,像这样的光线照射在物体上,所形成的投影叫做平行投影。光线是投影线,地面或墙面是投影面。

  如上图,用一束平行光线竖直照射水平放置的三角尺上,投影线、三角尺在水平面上的投影是平行投影。在这种平行投影中,光线是竖直照射在水平面上的。像这种平行投影又叫做正投影。

  现在大家对投影有了一定的了解,再看下面这个图形,思考问题:[

  如图,正方体正面(R面)在V面上的正投影 。

  1.R面的正投影是什么图形?与R面相对的面的在正投影是什么图形?

  2.Q面的正投影是什么图形?与Q面相对的面的正投影是什么图形?

  3.P面及与它相对的面的正投影分别是什么图形?

  学生相应回答上面的问题。

  师:我们学习了投影的相关概念,也观看了许多投影的图片,那同学们思考这样的问题:

  (1)一个物体的正投影是立体图形还是平面图形?

  (2)点、线段和多边形的正投影可能分别是什么图形?

  第一问显而易见,教师可以找中下等学生回答。

  第二问教师可以通过课件演示,学生观看,回答问题。(参看课件:点、线、面的投影)

  师生互动:

  例:旗杆直立在A处,它的平行投影如图所示。

  (1)请画出小明站在B处时的投影(用线段表示)。并说明你这样画的理由。

  (2)如果小明站在C处,请画出他的投影(用线段表示),并比较小明站在B、C两处投影的长短。

  (3)旗杆的高度与它投影长的比和小明的身高与他投影长的比有什么关系?为什么?

  学生在教师的引导下,自主完成这道例题,教师再进行讲解。

  教师总结:一般地,两个直立于地面的物体在阳光下的投影,或平行或在同一条直线上,两个物体、他们的平行投影及过物体顶端的投影线,分别组成直角三角形,这两个三角形相似。

  三、练习

  1.大致说出我国北方的确一天中(早晨、中午、傍晚),人在阳光下的投影的方向和长短。

  2.下图是一棵大树在阳光下的投影,请画出另一棵树的投影(用线段表示)。

  3.结合地理知识,谈谈在我国哪些地区会有太阳直射现象。这时人的投影是什么样的?

  四、课堂总结

  板书设计:

  平行投影

  一、导入 平行投影

  问题1: 正投影

  二、新授 例:

  问题2:

  三、练习

  投影:

  四、总结

初中数学优秀教案14

  一、 教材内容及设置依据

  【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

  【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

  二、教材的地位和作用

  本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

  特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

  类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的.重要作用。

  三、对重点、难点的处理

  【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。

  【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

  四、关于教学方法的选用

  根据本节课的内容和学生的实际水平,本节课可采用的方法:

  1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

  2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

  3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

  五、关于学法的指导

  “授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

  六、课时安排:1课时

  教学程序:

  一、复习铺垫:

  首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

  1、45+(-23) 2、9-(-5)

  3、-28-(-37)4、(-13 )+0

  5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

  从四排学生中个推选一名学生代表板演6、7、8、题。

  通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

  然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

  二、新知探索:

  1、 出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作

  上升4.5千米 +4.5千米

  下降3.2千米 -3.2千米

  上升1.1千米 +1.1千米

  下降1.4千米 -1.4千米

  此时飞机比起飞点高了多少米?

  让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

  ① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4) =1.3+1.1-1.4

  =2.4+(-1.4) =2.4-1.4

  =1千米 =1千米

  教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

初中数学优秀教案15

  ●教学目标

  (一)教学知识点

  1.掌握极差、方差、标准差的概念.

  2.明白极差、方差、标准差是反映一组数据稳定性大小的.

  3.用计算器(或计算机)计算一 组数据的标准差与方差.

  (二)能力训练要求

  1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力.

  2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力.

  (三)情感与价值观要求

  1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界.

  2.通过小组活动,培养学生的合作意识和能力.

  ●教学重点

  1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量.

  2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .

  ●教学难点

  理解方差、标准差的概念,会求一组数据的方差、标准差.

  ●教学方法

  启发引导法

  ●教学过程

  Ⅰ.创设现实问题情景,引入新课

  [师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断.

  当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口 一批规格为75 g的鸡腿.现有2个厂家提供货源.

  [生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.

  (2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得

  甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

  乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

  (3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).

  (4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小.

  [师]很好.在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况.

  从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小.

  这节课我们就来学习关于数据的离散程度的几个量.

  Ⅱ.讲授新课

  [师]在上面几个问题中,你认为哪一个数值是反映数据的'离散程度的一个量呢?

  [生]我认为最大值与最小值的差是反映数据离 散程度的一个量.

  [师]很正确.我们把一组数据中最大数据与 最小数据的差叫极差.而极差是刻画数据离散程度的一个统计量.

  [生](1)丙厂这20只鸡腿质量的平均数:

  丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

  极差为:79-72=7(g)

  [生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距.

  甲厂20只鸡 腿的质量与相应的平均数的差距为:

  (75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

  =0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

  丙厂20只鸡腿的质量与相应的平均数的差距为:

  (75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

  由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小.

  数学上,数据的离散程度还可以用方差或标准差来刻画.

  其中方差是各个数据与平均数之差的平方的平均数,即

  s2= [(x1- )2+(x2- )2+…+(xn- )2]

  其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根.

  [生]为什么方差概念中要除以数据个数呢?

  [师]是为了消除数据个数的印象.

  由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.

  [生]极差还比较容易算出.而方差、标准差算起来就麻烦多了.

  [师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差.

  同学们可在自己的计算器上探 索计算标准差的具体操作

  计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差.

  [生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

  s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

  因为s甲2<s丙2.

  所以根据计算的结果,我认为甲厂的产品更符合要求.

  Ⅲ.随堂练习

  Ⅳ.课时小结

  这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别.

  Ⅴ.课后作业

  Ⅵ.活动与探究

  甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:

  (1)请你填上表中乙学生的相关数据;

  (2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平.

【初中数学优秀教案】相关文章:

初中数学优秀教案10-26

初中数学优秀教案09-29

初中数学优秀教案[精选]06-18

初中数学优秀教案【精】12-30

【精】初中数学优秀教案02-24

初中数学优秀教案通用04-06

初中数学优秀教案【荐】12-28

初中数学优秀教案[精华]06-12

初中数学优秀教案(精品)06-10

(精华)初中数学优秀教案06-09