初中数学教案

时间:2024-06-20 13:41:17 初中数学教案 我要投稿

[精品]初中数学教案15篇

  作为一名人民教师,通常会被要求编写教案,教案是实施教学的主要依据,有着至关重要的作用。教案要怎么写呢?以下是小编为大家整理的初中数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

[精品]初中数学教案15篇

初中数学教案1

  课型:新授课 备课人:徐新齐 审核人:霍红超

  学习目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

  2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用.

  难点:理解对顶角相等的性质的探索.

  教学过程

  一、复习导入

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

  学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、自学指导

  观察剪刀剪布的过程,引入两条相交直线所成的角

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

  三、 问题导学

  认识邻补角和对顶角,探索对顶角性质

  (1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

  ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的'两角相等.

  (3).概括形成邻补角、对顶角概念.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  四、典题训练

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  2.:判断下列图中是否存在对顶角.

  小结

  自我检测

  一、判断题:

  1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

  2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

  二、填空题:

  1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

  (1) (2)

  2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

  三、解答题:

  1.如图,直线AB、CD相交于点O.

  (1)若∠AOC+∠BOD=100°,求各角的度数.

  (2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛

  2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

初中数学教案2

  4.1二元一次方程

  【教学目标】

  知识与技能目标

  1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

  二元一次方程;

  2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

  3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

   情感与态度目标

  1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

  2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

  【重点、难点】

  重点:二元一次方程的概念及二元一次方程的解的概念。

  难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

  但不是任意的两个数是它的解。

  2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  【教学方法与教学手段】

  1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

  次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

  2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

  空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

  3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

  【教学过程】

  一、创设情境导入新课

  1、一个数的3倍比这个数大6,这个数是多少?

  2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的`数字之和为22?

  思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

  如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

  3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

  二、师生互动探索新知

  1、推陈出新发现新知

  引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

  (板书:二元一次方程)

  根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

  2、小试牛刀巩固新知

  判断下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、师生互动再探新知

  (1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

  (2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

  知数的值,叫做二元一次方程的一个解。)

  ?若未知数设为x,y,记做x?,若未知数设为a,b,记做

  ?y?

  4、再试牛刀检验新知

  (1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

  5、自我挑战三探新知

  有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

  请找出这个方程的一个解,并写出你得到这个解的过程。

  学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

  6、动动笔头巩固新知

  独立完成课本第81页课内练习2

  三、你说我说清点收获

  比较一元一次方程和二元一次方程的相同点和不同点

  相同点:方程两边都是整式

  含有未知数的项的次数都是一次

  如何求一个二元一次方程的解

  四、知识巩固

  1、必答题

  (1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多选题:方程

  y?1

  x?7

  (4)判断题:方程2x?y?15的解是。()y?1

  2、抢答题

  是方程2x?3y?5的一个解,求a的值。(1)已知x??2

  y?a

  (2)写出一个解为x?3的二元一次方程。

  y?1

  3、个人魅力题

  写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

  五、布置作业

初中数学教案3

  教学内容:在学生初步了解,年月日、季度的概念后,寻找历法与扑克之间的关系。

  教学目标:1、通过对"扑克"有趣的研究,培养起学生对生活中平常小事的关注。

  2、调动学生丰富的联想,养成一种思考的习惯。

  教学重难点:"扑克"与年月日、季度的联系。

  教学过程:

  一、谈话引入

  师:同学们,这个你们一定见过吧!这是我们生活中比较常见的"扑克"。谁愿意告诉我们,你对扑克的了解呢?

  生:......

  (教师补充,引发学生的好奇心。)

  师: "扑克"还有一种作用,而且与数学有关!

  生:......

  二、新课

  1、桃、心、梅、方4种花色可以代表一年四季春、夏、秋、冬

  2、大王=太阳 小王=月亮 红=白天 黑=夜晚

  3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1

  4、所有牌的和+小王=平年的天数

  所有牌的和+小王+大王=闰年的天数

  5、扑克中的.K、Q、J共有12张,3×4=12,表示一年有12个月

  6、365÷7≈52一年有52个星期。54张牌中除去大王、小王有52张是正牌,表示一年有52个星期。

  7、一种花色的和=一个季度的天数

  一种花色有13张牌=一个季度有13个星期

  三、小结

  生活中有很多的数学,他每时每刻都在我们的身边出现,只是我们大家没有注意到。请大家都要学会留心观察,做生活的有心人。

初中数学教案4

  一、素质教育目标

  (一)知识教学点

  1.掌握的三要素,能正确画出.

  2.能将已知数在上表示出来,能说出上已知点所表示的数.

  (二)能力训练点

  1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

  2.对学生渗透数形结合的思想方法.

  (三)德育渗透点

  使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

  (四)美育渗透点

  通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的.享受.

  二、学法引导

  1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

  2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

  三、重点、难点、疑点及解决办法

  1.重点:正确掌握画法和用上的点表示有理数.

  2.难点:有理数和上的点的对应关系。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  师生同步画,学生概括三要素,师出示投影,生动手动脑练习

  七、教学步骤

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—(板书课题).

  【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

  (二)探索新知,讲授新课

  1.的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

  【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

  让学生观察画好的直线,思考以下问题:

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。

初中数学教案5

  一、教学目标:

  1、知识目标:能熟练掌握简单图形的移动规律,能按要求作出简单平面图形平移后的图形,能够探索图形之间的平移关系;

  2、能力目标:

  ①,在实践操作过程中,逐步探索图形之间的平移关系;

  ②,对组合图形要找到一个或者几个“基本图案”,并能通过对“基本图案”的平移,复制所求的图形;

  3、情感目标:经历对图形进行观察、分析、欣赏和动手操作、画图等过程,发展初步的审美能力,增强对图形欣赏的`意识。

  二、重点与难点:

  重点:图形连续变化的特点;

  难点:图形的划分。

  三、教学方法:

  讲练结合。使用多媒体课件辅助教学。

  四、教具准备:

  多媒体、磁性板,若干小正六边形,“工”字的砖,组合图形。

  五、教学设计:

  创设情景,探究新知:

  (演示课件):教材上小狗的图案。提问:

  (1)这个图案有什么特点?

  (2)它可以通过什么“基本图案”,经过怎样的平移而形成?

  (3)在平移过程中,“基本图案”的大小、形状、位置是否发生了变化?

  小组讨论,派代表回答。(答案可以多种)

  让学生充分讨论,归纳总结,老师给予适当的指导,并对每种答案都要肯定。

  看磁性黑板,展示教材64页图3-9,提问:左图是一个正六边形,它经过怎样的平移能得到右图?谁到黑板做做看?

  小组讨论,派代表到台上给大家讲解。

  气氛要热烈,充分调动学生的积极性,发掘他们的想象力。

  畅所欲言,互相补充。

  课堂小结:

  在教师的引导下学生总结本节课的主要内容,并启发学生在我们周围寻找平移的例子。

  课堂练习:

  小组讨论。

  小组讨论完成。

  例子一定要和大家接触紧密、典型。

  答案不惟一,对于每种答案,教师都要给予充分的肯定。

  六、教学反思:

  本节的内容并不是很复杂,借助多媒体进行直观、形象,内容贴近生活,学生兴致较高,课堂气氛活跃,参与意识较强,学生一般都能在教师的指导下掌握。教学过程中渗透数学美学思想,促进学生综合素质的提高。

初中数学教案6

  今天小编为大家精心整理了一篇有关初中数学教案之公式的相关内容,以供大家阅读!

  教学设计示例一——公式

  教学目标

  1.了解公式的意义,使学生能用公式解决简单的实际问题;

  2.初步培养学生观察、分析及概括的能力;

  3.通过本节课的教学,使学生初步了解公式来源于实践又反作用于实践。

  教学建议

  一、教学重点、难点

  重点:通过具体例子了解公式、应用公式.

  难点:从实际问题中发现数量之间的关系并抽象为具体的公式,要注意从中反应出来的归纳的思想方法。

  二、重点、难点分析

  人们从一些实际问题中抽象出许多常用的、基本的数量关系,往往写成公式,以便应用。如本课中梯形、圆的面积公式。应用这些公式时,首先要弄清楚公式中的字母所表示的意义,以及这些字母之间的数量关系,然后就可以利用公式由已知数求出所需的未知数。具体计算时,就是求代数式的值了。有的公式,可以借助运算推导出来;有的公式,则可以通过实验,从得到的反映数量关系的一些数据(如数据表)出发,用数学方法归纳出来。用这些抽象出的具有一般性的公式解决一些问题,会给我们认识和改造世界带来很多方便。

  三、知识结构

  本节一开始首先概述了一些常见的公式,接着三道例题循序渐进的讲解了公式的直接应用、公式的先推导后应用以及通过观察归纳推导公式解决一些实际问题。整节内容渗透了由一般到特殊、再由特殊到一般的辨证思想。

  四、教法建议

  1.对于给定的可以直接应用的公式,首先在给出具体例子的前提下,教师创设情境,引导学生清晰地认识公式中每一个字母、数字的意义,以及这些数量之间的对应关系,在具体例子的基础上,使学生参与挖倔其中蕴涵的思想,明确公式的应用具有普遍性,达到对公式的灵活应用。

  2.在教学过程中,应使学生认识有时问题的解决并没有现成的公式可套,这就需要学生自己尝试探求数量之间的关系,在已有公式的基础上,通过分析和具体运算推导新公式。

  3.在解决实际问题时,学生应观察哪些量是不变的,哪些量是变化的,明确数量之间的对应变化规律,依据规律列出公式,再根据公式进一步地解决问题。这种从特殊到一般、再从一般到特殊认识过程,有助于提高学生分析问题、解决问题的能力。

  教学设计示例二——公式

  一、教学目标

  (一)知识教学点

  1.使学生能利用公式解决简单的实际问题.

  2.使学生理解公式与代数式的'关系.

  (二)能力训练点

  1.利用数学公式解决实际问题的能力.

  2.利用已知的公式推导新公式的能力.

  (三)德育渗透点

  数学来源于生产实践,又反过来服务于生产实践.

  (四)美育渗透点

  数学公式是用简洁的数学形式来阐明自然规定,解决实际问题,形成了色彩斑斓的多种数学方法,从而使学生感受到数学公式的简洁美.

  二、学法引导

  1.数学方法:引导发现法,以复习提问小学里学过的公式为基础、突破难点

  2.学生学法:观察分析推导计算

  三、重点、难点、疑点及解决办法

  1.重点:利用旧公式推导出新的图形的计算公式.

  2.难点:同重点.

  3.疑点:把要求的图形如何分解成已经熟悉的图形的和或差.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪,自制胶片。

  六、师生互动活动设计

  教者投影显示推导梯形面积计算公式的图形,学生思考,师生共同完成例1解答;教者启发学生求图形的面积,师生总结求图形面积的公式.

  七、教学步骤

  (一)创设情景,复习引入

  师:同学们已经知道,代数的一个重要特点就是用字母表示数,用字母表示数有很多应用,公式就是其中之一,我们在小学里学过许多公式,请大家回忆一下,我们已经学过哪些公式,教法说明,让学生一开始就参与课堂教学,使学生在后面利用公式计算感到不生疏.

  在学生说出几个公式后,师提出本节课我们应在小学学习的基础上,研究如何运用公式解决实际问题.

  板书:公式

  师:小学里学过哪些面积公式?

  板书:S=ah

  (出示投影1)。解释三角形,梯形面积公式

  【教法说明】让学生感知用割补法求图形的面积。

  (二)探索求知,讲授新课

  师:下面利用面积公式进行有关计算

  (出示投影2)

  例1如图是一个梯形,下底(米),上底,高,利用梯形面积公式求这个梯形的面积S。

  师生共同分析:1.根据梯形面积计算公式,要计算梯形面积,必须知道哪些量?这些现在知道吗?

  2.题中“M”是什么意思?(师补充说明厘米可写作cm,千米写作km,平方厘米写作等)

  学生口述解题过程,教师予以指正并指出,强调解题的规范性.

  【教法说明】1.通过分析,引导学生在一个实际问题中,必须明确哪些量是已知的,哪些量是未知的,要解决这个问题,必须已知哪些量.2.用公式计算时,要先写出公式,然后代入计算,养成良好的解题习惯.

  (出示投影3)

  例2如图是一个环形,外圆半径,内圆半径求这个环形的面积

  学生讨论:1.环形是怎样形成的.2.如何求环形的面积讨论后请学生板演,其他同学做在练习本上,教育巡回指导.

  评讲时注意1.如果有学生作了简便计算,则给予表扬和鼓励:如果没有学生这样计算,则启发学生这样计算.

  2.本题实际上是由圆的面积公式推导出环形面积公式.

  3.进一步强调解题的规范性

  教法说明,让学生做例题,学生能自己评判对与错,优与劣,是获取知识的一个很好的途径.

  测试反馈,巩固练习

  (出示投影4)

  1.计算底,高的三角形面积

  2.已知长方形的长是宽的1.6倍,如果用a表示宽,那么这个长方形的周长是多少?当时,求t

  3.已知圆的半径,,求圆的周长C和面积S

  4.从A地到B地有20千米上坡路和30千米下坡路,某车上坡时每小时走千米,下坡时每小时走千米。

  (1)求A地到B地所用的时间公式。

  (2)若千米/时,千米/时,求从A地到B地所用的时间。

  学生活动:分两次完成,每次两题,两人板演,其他同学在练习本上完成,做好后同桌交换评判,第一次可请两位基础较差的同学板演,第二次请中等层次的学生板演.

  【教法说明】面向全体,分层教学,能照顾两极,使所有的同学有所发展.

  师:公式本身是用等号联接起来的代数式,许多公式在实际中都有重要的用处,可以用公式直接计算还可以利用公式推导出新的公式.

  八、随堂练习

  (一)填空

  1.圆的半径为R,它的面积________,周长_____________

  2.平行四边形的底边长是,高是,它的面积_____________;如果,,那么_________

  3.圆锥的底面半径为,高是,那么它的体积__________如果,,那么_________

  (二)一种塑料三角板形状,尺寸如图,它的厚度是,求它的体积V,如果,,,V是多少?

  九、布置作业

  (一)必做题课本第xx页x、x、x第xx页x组x

  (二)选做题课本第xx页xx组x

初中数学教案7

  湖北省咸宁市咸安区实验中学 章福枝

  一、内容与内容解析(一)内容

  一元一次不等式组的概念及解法

  (二)内容解析

  上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键.教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念.学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念.求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验. 基于以上的分析,本节课的教学重点:一元一次不等式组的解法.

  二、目标及目标解析(一)目标

  (1)理解一元一次不等式组、一元一次不等式组的解集等概念.(2)会解一元一次不等式组,并会用数轴确定解集.(二)目标解析

  达到目标(1)的标志是:学生能说出一元一次不等式组的特征.

  达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤.

  三、教学问题诊断分析 通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻. 本节课的教学难点:在数轴上找公共部分,确定不等式组的解集.

  四、教学过程设计

  (一)提出问题 形成概念

  问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么? 设问(1):依据题意,你能得出几个不等关系? 设问(2):设抽完污水所用的时间还是范围?

  小组讨论,交流意见,再独立设未知数,列出所用的不等关系. 教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示? 学生自学概念,说出表示方法.教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围? 学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围. 教师追问(3):怎样解不等式,并用数轴表示解集? 学生独立完成. 教师追问(4):通过数轴,怎样得出不等式组的解集? 学生独立完成,老师点评 教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组? 学生自学概念.

  设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力.并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的`意义.

  (二)解法探讨 步骤归纳 例1 解下列不等式组

  学生尝试独立解不等式组,老师强调规范格式

  设问1:当两个不等式的解集没有公共部分,表示什么意思? 设问2:解一元一次不等式组的一般步骤是什么?

  学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:(1)求每个不等式的解集;(2)利用数轴找出各个不等式的解集的公共部分;(3)写出不等式组的解集.

  设计意图:初步感受解一元一次不等式组的方法和步骤.

  (三)应用提高 深化认知

  例2 x取那些整数值时,不等式5x+2>3(x-1)与

  都成立?

  设问1:不等式都成立表示什么意思? 小组讨论

  设问2:要求x取哪些整数值,要先解决什么问题? 学生先合作交流,再独立解不等式组 设问3.怎样取值?

  学生在不等式组的解集范围内,取整数值.老师强调即求不等式组的特殊解. 设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练.

  (四)归纳总结 反思提高

  教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题.(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?(2)解一元一次不等式组的一般步骤?

  (3)一元一次不等式组解集的一般规律是什么?

  设计意图:通过问题归纳总结本节课所学的主要内容.

  (五)布置作业 课外反馈 教科书习题9.3第1,2,3题

  设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.

初中数学教案8

  一、指导思想

  教育教学工作是一个头绪众多的系统工程,在纷繁的头绪中需要各项工作有序进展,尤为重要的是强化常规,做好细节,教学常规是对学校教学工作的基本要求,落实教学常规是学校教学工作得以正常有序开展的根本保证。只有搞好教学常规才有可能获得成功的教育。教师教学水平的高低体现于教学各个步骤的细节中,空洞地谈教学能力是苍白的,只有用教师的备课情况、讲课细节、作业批改情况。教学常规培养着教师的基本功,决定着教师的教学能力,可以说教师的教学水平就是在这些常规细节中培养起来。

  二、检查反馈

  本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的'特点与不足。

  特点:

  1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

  2、教学环节齐全,注重引语与小结,使教学设计前后呼应,环节完整。

  3、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

  4、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

  不足:

  1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

  2、个别教师教案过于简单。

  作业方面的特点与不足

  特点:

  1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

  2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

  不足:

  1、对于学生书写的工整性,还需加强教育。

  2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案9

  【教学目标】

  1、掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题。

  2、经历探索多边形内角和计算公式的过程,体会如何探索研究问题。

  3、通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想。

  【教学重点与教学难点】

  1、重点:多边形的内角和公式。

  2、难点:多边形内角和的推导。

  3、关键:。多边形"分割"为三角形。

  【教具准备】

  三角板、卡纸

  【教学过程】

  一、创设情景,揭示问题

  1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

  2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

  你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

  二、探索研究学会新知

  1、回顾旧知,引出问题:

  (1)三角形的内角和等于_________。外角和等于____________

  (2)长方形的内角和等于_____,正方形的内角和等于__________。

  2、探索四边形的内角和:

  (1)学生思考,同学讨论交流。

  (2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形。)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想。以四边形的内角和作为探索多边形的。突破口。

  (3)引导学生用"分割法"探索四边形的'内角和:

  方法一:连接一条对角线,分成2个三角形:

  180°+180°=360°

  从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形。

  180°×4-360°=360°

  3、探索多边形内角和的问题,提出阶梯式的问题:

  你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

  你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

  n边形3456.。.n分成三角形的个数1234.。.n—2内角和。.。.

  4、及时运用,掌握新知:

  (1)一个八边形的内角和是_____________度

  (2)一个多边形的内角和是720度,这个多边形是_____边形

  (3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

  通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和。

  三、点例透析

  运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

  四、应用训练强化理解

  4、第83页练习1和2多边形内角和定理的应用

  五、知识回放

  课堂小结提问方式:本节课我们学习了什么?

  1、多边形内角和公式。

  2、多边形内角和计算是通过转化为三角形。

  六、作业练习

  1、书面作业:

  2、课外练习:

初中数学教案10

  教学目标

  (一)知识认知要求

  1、回顾收集数据的方式、

  2、回顾收集数据时,如何保证样本的代表性、

  3、回顾频率、频数的概念及计算方法、

  4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式、

  5、能利用计算器或计算机求一组数据的算术平均数、

  (二)能力训练要求

  1、熟练掌握本章的知识网络结构、

  2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力、

  3、经历调查、统计等活动,在活动中发 展学生解决问题的能力、

  (三)情感与价值观要求

  1、通过对本章内容的回顾与思考,发展学 生用数学的意识、

  2、在活动中培养学生团队精神、

  教学重点

  1、建立本章的知识框架图、

  2、体会收集数据的方式,保证样本的代表性,频率、频数及刻画数据离散程度的统 计量在实际情境中的意义和应用、

  教学难点

  收集数据的方式、抽样时保证样本的代表性、频率、频数、刻画数据离散程度的统计量在不同情境中的应用、

  教学过程

  一、导入新课

  本章的内容已全部学完、现在如何让你调查一个情况、并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数、

  例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?

  先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要、

  同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?

  二、讲授新课

  1、举例说明收集数据的方式主要有哪几种类型、

  2、抽样调查时,如何保证样本的代表性?举例说明、

  3、举出与频数、频率有关的几个生活实例?

  4、刻画数据波动的统计量有 哪些?它们有什么作用?举例说明、

  针对上面的几个问题,同学们先独 立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答、

  (教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)、

  收集数据的方式有两种类型:普查和抽样调查、

  例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式、

  在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间、

  用普查的方式可以直接获得总体情况、但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查、

  例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数、中位数、众数 、极差、方差等、

  上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只 有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性、

  例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商、

  刻画数据波动的统计量有极差、方差、标准差、它们是用来描述一组数据的稳定性的、一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定、

  例如:某农科所在8个试验点,对甲、乙两种玉米进行对比试验,这两种玉米在各试验点的亩产量如下(单位:千克)

  甲:450 460 450 430 450 460 440 460

  乙:440 470 460 440 430 450 470 4 40

  在这个试验点甲、乙两种玉米哪一种产量比较稳定?

  我们可以算极差、甲种玉米极差为460-430=30千克;乙种玉米极差为470-430=40千克、所以甲种玉米较稳定、

  还可以用方差来比较哪一种玉米稳定、

  s甲2=100,s乙2=200、

  s甲2<s乙2,所以甲种玉米的产量较稳定、

  三、建立知识框架图

  通 过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图、

  四、随堂练习

  例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个 大商场同类产品销量的40%、由此在广告中宣传,他们的产品在国内同类产品的销售量占40%、请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________、

  分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断, 同时运 用统计原理给予准确的`解释、因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性、

  例2在举国上下众志成城抗击“非典” 的斗争中,疫情变化牵动着全国人民的心 、请根据下面的疫情统计图表回答问题:

  (1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:

  ①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;

  ②在本题的统计中,新增确诊病例的人数的中位数是___________;

  ③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________、

  (2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表、(按人数分组)

  ①100人以下的分组组距是________;

  ②填写本统计表中未完成的空格;

  ③在统计的这段时期中,每天新增确诊

  病例人数在80人以下的天数共有_________天、

  解:(1)①7 ②26 ③5月11日至29日每天新增确诊病例人数 19

  (2)①10人 ②11 40 0、125 0、325 ③25

  五.课时小结

  这节课我们通过回顾与思考这一章的重点内容,共同建立的知识框架图,并进一步用统计的思想和知识解决问题,作出决策、

  六.课后作业:

  七.活动与探究

  从鱼塘捕得同时放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1、5,1、6,1、4,1、6,1、3,1、4,1、2,1、7,1、8(单位:千克)、依此估计这240尾鱼的总质量大约是

  A、300克 B、360千克C、36千克 D、30千克

初中数学教案11

  教学建议

  知识结构

  重难点分析

  本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

  本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

  教法建议

  根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

  1.的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

  2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

  3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

  4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

  5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

  6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

  一、教学目标

  1.掌握概念,知道与平行四边形的关系.

  2.掌握的性质.

  3.通过运用知识解决具体问题,提高分析能力和观察能力.

  4.通过教具的演示培养学生的学习兴趣.

  5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.

  6.通过性质的学习,体会的图形美.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点·难点·疑点及解决办法

  1.教学重点:的性质定理.

  2.教学难点:把的性质和直角三角形的知识综合应用.

  3.疑点:与矩形的性质的区别.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  【复习提问】

  1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的`关系是什么?

  2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.

  3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.

  【引入新课】

  我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.

  【讲解新课】

  1.定义:有一组邻边相等的平行四边形叫做.

  讲解这个定义时,要抓住概念的本质,应突出两条:

  (1)强调是平行四边形.

  (2)一组邻边相等.

  2.的性质:

  教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.

  下面研究的性质:

  师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).

  生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.

  性质定理1:的四条边都相等.

  由的四条边都相等,根据平行四边形对角线互相平分,可以得到

  性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.

  引导学生完成定理的规范证明.

  师:观察右图,被对角线分成的四个直角三角形有什么关系?

  生:全等.

  师:它们的底和高和两条对角线有什么关系?

  生:分别是两条对角线的一半.

  师:如果设的两条对角线分别为、,则的面积是什么?

  生:

  教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.

  例2已知:如右图,是△的角平分线,交于,交于.

  求证:四边形是.

  (引导学生用定义来判定.)

  例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.

  (1)按教材的方法求面积.

  (2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.

  【总结、扩展】

  1.小结:(打出投影)(图4)

  (1)、平行四边形、四边形的从属关系:

  (2)性质:图5

  ①具有平行四边形的所有性质.

  ②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.

  八、布置作业

  教材P158中6、7、8,P196中10

  九、板书设计

  标题

  定义……

  性质例2…… 小结:

  性质定理1:……例3…… ……

  性质定理2:……

  十、随堂练习

  教材P151中1、2、3

  补充

  1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.

  2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.

初中数学教案12

  教学目标:

  1、使学生学会较熟炼地运用切线的判定方法和切线的性质证明问题.

  2、掌握运用切线的性质和切线的判定的有关问题中辅助线引法的基本规律.

  教学重点:

  使学生准确、熟炼、灵活地运用切线的判定方法及其性质.教学难点:学生对题目不能准确地进行论证.证题中常会出现不知如何入手,不知往哪个方向证的情形.

  教学过程:

  一、新课引入:

  我们已经系统地学习了切线的判定方法和切线的性质,现在我们来利用这些知识证明有关几何问题.

  二、新课讲解:

  实际上在几何证明题中,我们更多地将切线的.判定定理和性质定理应用在具体的问题中,而一道几何题的分析过程,是证题中的最关键步骤.p.109例3如图7-58,已知:ab是⊙o的直径,bc是⊙o的切线,切点为b,oc平行于弦ad.求证:dc是⊙o的切线.

  分析:欲证cd是⊙o的切线,d是⊙o的弦ad的一个端点当然在⊙o上,属于公共点已给定,而证直线是圆的切线的情形.所以辅助线应该是连结oc.只要证od⊥cd即可.亦就是证∠odc=90°,所以只要证∠odc=∠obc即可,观察图形,两个角分别位于△odc和△obc中,如果两个三角形相似或全等都可以产生对应角相等的结果.而图形中已存在明显的条件od=ob,oc=oc,只要证∠3=∠4,便可造成两个三角形全等.

  ∠3如何等于∠4呢?题中还有一个已知条件ad∥oc,平行的位置关系,可以造成角的相等关系,从而导致∠3=∠4.命题得证.证明:连结od.教师向学生解释书上的证题格式属于推出法和因为所以法的联用,以后证题中同学可以借鉴.p.110例4如图7-59,在以o为圆心的两个同心圆中,大圆的弦ab和cd相等,且ab与小圆相切于点e求证:cd与小圆相切.

  分析:欲证cd与小⊙o相切,但读题后发现直线cd与小⊙o并未已知公共点.这个时候我们必须从圆心o向cd作垂线,设垂足为f.此时f点在直线cd上,如果我们能证得of等于小⊙o的半径,则说明点f必在小⊙o上,即可根据切线的判定定理认定cd与小⊙o相切.题目中已告诉我们ab切小⊙o于e,连结oe,便得到小⊙o的一条半径,再根据大⊙o中弦相等则弦心距也相等,则可得到of=oe.证明:连结oe,过o作of⊥cd,重足为f.

  请同学们注意本题中证一条直线是圆的切线时,这种证明途径是由直线与圆的公共点来给定所决定的.

  练习一

  p.111,1.已知:oc平分∠aob,d是oc上任意一点,⊙d与oa相切于点e.求证:ob与⊙d相切.分析:审题后发现欲证的ob与⊙d相切,属于ob与⊙d无公共点的情况.这时应从圆心d向⊙b作垂线,垂足为f,然后证垂线段df等于⊙b的一条半径,而题目中已给oa与⊙d切于点e,只要连结de.再根据角平分线的性质,问题便得到解决.证明:连结de,作df⊥ob,重足为f.p.111中2.已知如图7-61,△abc为等腰三角形,o是底边bc的中点,⊙o与腰ab相切于点d.求证:ac与⊙o相切.

  分析:欲证ac与⊙o相切,同第1题一样,同属于直线与圆的公共点未给定情况.辅助线的方法同第1题,证法类同.只不过要针对本题特点还要连结oa.从等腰三角形的”三线合一”的性质出发,证得oa平分∠bac,然后再根据角平分线的性质,使问题得到证明.证明:连结od、oa,作oe⊥ac,垂足为e.同学们想一想,在证明oe=od时,还可以怎样证?

  (答案)可通过“角、角、边”证rt△odb≌rt△oec.

  三、新课讲解

  :为培养学生阅读教材的习惯让学生阅读109页到110页.从中总结出本课的主要内容:

  1.在证题中熟练应用切线的判定方法和切线的性质.

  2.在证明一条直线是圆的切线时,只能遇到两种情形之一,针对不同的情形,选择恰当的证明途径,务必使同学们真正掌握.

  (1)公共点已给定.做法是“连结”半径,让半径“垂直”于直线.

  (2)公共点未给定.做法是从圆心向直线“作垂线”,证“垂线段等于半径”.

  四、布置作业

  1.教材p.116中8、9.2.教材p.117中2.

初中数学教案13

  知识技能目标

  1、理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;

  2、利用反比例函数的图象解决有关问题。

  过程性目标

  1、经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;

  2、探索反比例函数的图象的性质,体会用数形结合思想解数学问题。

  教学过程

  一、创设情境

  上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线。那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k≠0)的图象,探究它有什么性质。

  二、探究归纳

  1、画出函数的图象。

  分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x≠0。

  解

  1、列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:

  2、描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(—6,—1)、(—3,—2)、(—2,—3)等。

  3、连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支。这两个分支合起来,就是反比例函数的图象。

  上述图象,通常称为双曲线(hyperbola)。

  提问这两条曲线会与x轴、y轴相交吗?为什么?

  学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤)。

  学生讨论、交流以下问题,并将讨论、交流的结果回答问题。

  1、这个函数的`图象在哪两个象限?和函数的图象有什么不同?

  2、反比例函数(k≠0)的图象在哪两个象限内?由什么确定?

  3、联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?

  反比例函数有下列性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  注

  1、双曲线的两个分支与x轴和y轴没有交点;

  2、双曲线的两个分支关于原点成中心对称。

  以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?

  在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少。

  在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小。

  三、实践应用

  例1若反比例函数的图象在第二、四象限,求m的值。

  分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1<0,由这两个条件可解出m的值。

  解由题意,得解得。

  例2已知反比例函数(k≠0),当x>0时,y随x的增大而增大,求一次函数y=kx—k的图象经过的象限。

  分析由于反比例函数(k≠0),当x>0时,y随x的增大而增大,因此k<0,而一次函数y=kx—k中,k<0,可知,图象过二、四象限,又—k>0,所以直线与y轴的交点在x轴的上方。

  解因为反比例函数(k≠0),当x>0时,y随x的增大而增大,所以k<0,所以一次函数y=kx—k的图象经过一、二、四象限。

  例3已知反比例函数的图象过点(1,—2)。

  (1)求这个函数的解析式,并画出图象;

  (2)若点A(—5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?

  分析(1)反比例函数的图象过点(1,—2),即当x=1时,y=—2。由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;

  (2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上。

  解(1)设:反比例函数的解析式为:(k≠0)。

  而反比例函数的图象过点(1,—2),即当x=1时,y=—2。

  所以,k=—2。

  即反比例函数的解析式为:。

  (2)点A(—5,m)在反比例函数图象上,所以,

  点A的坐标为。

  点A关于x轴的对称点不在这个图象上;

  点A关于y轴的对称点不在这个图象上;

  点A关于原点的对称点在这个图象上;

  例4已知函数为反比例函数。

  (1)求m的值;

  (2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?

  (3)当—3≤x≤时,求此函数的最大值和最小值。

  解(1)由反比例函数的定义可知:解得,m=—2。

  (2)因为—2<0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大。

  (3)因为在第个象限内,y随x的增大而增大,

  所以当x=时,y最大值=;

  当x=—3时,y最小值=。

  所以当—3≤x≤时,此函数的最大值为8,最小值为。

  例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米。

  (1)写出用高表示长的函数关系式;

  (2)写出自变量x的取值范围;

  (3)画出函数的图象。

  解(1)因为100=5xy,所以。

  (2)x>0。

  (3)图象如下:

  说明由于自变量x>0,所以画出的反比例函数的图象只是位于第一象限内的一个分支。

  四、交流反思

  本节课学习了画反比例函数的图象和探讨了反比例函数的性质。

  1、反比例函数的图象是双曲线(hyperbola)。

  2、反比例函数有如下性质:

  (1)当k>0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;

  (2)当k<0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加。

  五、检测反馈

  1、在同一直角坐标系中画出下列函数的图象:

  (1);(2)。

  2、已知y是x的反比例函数,且当x=3时,y=8,求:

  (1)y和x的函数关系式;

  (2)当时,y的值;

  (3)当x取何值时,?

  3、若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值。

  4、已知反比例函数经过点A(2,—m)和B(n,2n),求:

  (1)m和n的值;

  (2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1<0

初中数学教案14

  生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

  侧棱:相邻两个侧面的交线。棱柱的'所有侧棱长都相等。

  底面:棱柱有上、下两个底面,形状相同。

  侧面:棱柱的侧面都是平行四边形。

  立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

  棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

  特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

  圆柱:上、下两个面都是圆形,侧面展开图是长方形。

  圆锥:底面是圆形,侧面展开图是扇形。

  截面:用一个平面去截一个几何体,截出的面。

  球:用一个平面去截,截面图形是圆形。

  正方体的截面:可以是正方形、长方形、梯形、三角形。

  圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

  展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

  从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

初中数学教案15

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的'意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

  为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

【初中数学教案】相关文章:

初中数学教案02-21

初中数学教案[经典]02-21

初中数学教案08-12

人教版初中数学教案07-17

初中数学教案模板11-02

角初中数学教案12-30

初中数学教案《圆》03-05

【荐】初中数学教案11-26

初中趣味数学教案02-02

初中数学教案【热】11-17