初中数学优秀教案

时间:2024-06-16 14:40:49 初中数学教案 我要投稿

初中数学优秀教案优秀[15篇]

  在教学工作者实际的教学活动中,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。那么问题来了,教案应该怎么写?以下是小编整理的初中数学优秀教案,仅供参考,欢迎大家阅读。

初中数学优秀教案优秀[15篇]

初中数学优秀教案1

  教学内容:

  教科书第76页,整式的加减单元复习。

  教学目的和要求:

  1.使学生对本章内容的认识更全面、更系统化。

  2.进一步加深学生对本章基础知识的理解以及基本技能(主要是计算)的掌握。

  3.通过复习,培养学生主动分析问题的习惯。

  教学重点和难点:

  重点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。

  难点:本章基础知识的归纳、总结;基础知识的运用;整式的加减运算。

  教学方法:

  分层次教学,讲授、练习相结合。

  教学过程:

  一、复习引入:

  1.主要概念:

  (1)关于单项式,你都知道什么?

  (2)关于多项式,你又知道什么?

  引导学生积极回答所提问题,通过几名同学的回答,复习单项式的定义、单项式的系数、次数的定义,多项式的定义以及多项式的`项、同类项、次数、升降幂排列等定义。

  (3)什么叫整式?

  在学生回答的基础上,进行归纳、总结,用投影演示:

  整式

  2.主要法则:

  ①提问:在本章中,我们学习了哪几个重要的法则?分别如何叙述?

  ②在学生回答的基础上,进行归纳总结:

  整式的加减

  二、讲授新课:

  1.例题:

  例1:找出下列代数式中的单项式、多项式和整式。

  ,4xy, , ,x2+x+ ,0, ,m,―2.01×105

  解:单项式有4xy, ,0,m,―2.01×105;多项式有 ;

  整式有4xy, ,0,m,-2.01×105, 。

  此题由学生口答,并说明理由。通过此题,进一步加深学生对于单项式、多项式、整式的定义的理解。

  例2:指出下列单项式的系数、次数:ab,―x2, xy5, 。

  解:ab:系数是1,次数是2; ―x2:系数是―1,次数是2;

  xy5:系数是 ,次数是6; :系数是― ,次数是9。

  此题在学生回答过程中,及时强调“系数”及“次数”定义中应注意的问题:系数应包括前面的“+”号或“―”号,次数是“指数之和”。

  例3:指出多项式a3―a2b―ab2+b3―1是几次几项式,最高次项、常数项各是什么?

  解:是三次五项式,最高次项有:a3、―a2b、―ab2、b3,常数项是―1。

  例4:化简,并将结果按x的降幂排列:

  (1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);

  (3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。

  解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。

  通过此题强调:(1)去括号(包括去多重括号)的问题;(2)数字与多项式相乘时分配律的使用问题。

  例5:化简、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。

  解:化简的结果是:3ab2,求值的结果是 。

  例6:一个多项式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求这个多项式,并求当x=― ,y= 时,这个多项式的值。

  解:此多项式为3x3―5x2y―2y3;值为― 。

  3.课堂练习:

  课本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7

  四、课堂作业:

  课本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9

  板书设计:

  教学后记:

  ①本节是全章的复习课。首先是复习本章的主要概念和法则。在上节课所留复习作业的基础上,一上课,就进行课堂提问,“关于单项式,你都知道什么”,“关于多项式,你又知道什么”。通过学生的回答,既可检查学生作业完成的情况,又充分地调动学生积极性,使学生主动参与到课堂中来。而且这样的问题具有一定的开放性,可使学生的思维发散,把他们所知道的有关内容都说出来。通过对一个问题的多个侧面地回答,可进一步加深学生对基础知识的理解与重视,又可培养他们主动分析问题的习惯。

  ②对于应该强调的问题,如果只是泛泛而谈,效果不大。因此,在复习了本章的主要知识后,出了一组练习,通过具体的题目,强调有关的问题,将给学生留下更深的印象,学习效果会更好。

初中数学优秀教案2

  4.1二元一次方程

  【教学目标】

  知识与技能目标

  1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

  二元一次方程;

  2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

  3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

   情感与态度目标

  1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

  2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

  【重点、难点】

  重点:二元一次方程的概念及二元一次方程的解的概念。

  难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

  但不是任意的两个数是它的解。

  2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  【教学方法与教学手段】

  1、通过创设问题情境,让学生在寻求问题解决的.过程中认识二元一次方程,了解二元一

  次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

  2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

  空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

  3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

  【教学过程】

  一、创设情境导入新课

  1、一个数的3倍比这个数大6,这个数是多少?

  2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?

  思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

  如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

  3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

  二、师生互动探索新知

  1、推陈出新发现新知

  引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

  (板书:二元一次方程)

  根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

  2、小试牛刀巩固新知

  判断下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、师生互动再探新知

  (1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

  (2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

  知数的值,叫做二元一次方程的一个解。)

  ?若未知数设为x,y,记做x?,若未知数设为a,b,记做

  ?y?

  4、再试牛刀检验新知

  (1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

  5、自我挑战三探新知

  有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

  请找出这个方程的一个解,并写出你得到这个解的过程。

  学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

  6、动动笔头巩固新知

  独立完成课本第81页课内练习2

  三、你说我说清点收获

  比较一元一次方程和二元一次方程的相同点和不同点

  相同点:方程两边都是整式

  含有未知数的项的次数都是一次

  如何求一个二元一次方程的解

  四、知识巩固

  1、必答题

  (1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多选题:方程

  y?1

  x?7

  (4)判断题:方程2x?y?15的解是。()y?1

  2、抢答题

  是方程2x?3y?5的一个解,求a的值。(1)已知x??2

  y?a

  (2)写出一个解为x?3的二元一次方程。

  y?1

  3、个人魅力题

  写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

  五、布置作业

初中数学优秀教案3

  一、教学目的:

  1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

  2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力。

  二、重点、难点

  1.教学重点:菱形的两个判定方法。

  2.教学难点:判定方法的证明方法及运用。

  三、例题的意图分析

  本节课安排了两个例题,其中例1是教材P109的`例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

  四、课堂引入

  1.复习

  (1)菱形的定义:一组邻边相等的平行四边形;

  (2)菱形的性质1菱形的四条边都相等;性质2菱形的对角线互相平分,并且每条对角线平分一组对角;

  (3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

  2.问题

  要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

  3.探究

  (教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

  通过演示,容易得到:

  菱形判定方法1对角线互相垂直的平行四边形是菱形。

  注意此方法包括两个条件:

  (1)是一个平行四边形。

  (2)两条对角线互相垂直。

初中数学优秀教案4

  教学目的

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  重点、难点

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  教学过程

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得

  1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授:

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得。

  44x+64=328 (1)

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的.解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  三、巩固练习

  教科书第3页练习1、2。

  四、小结。

  本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业 。

  教科书第3页,习题6.1第1、3题。

初中数学优秀教案5

  4.2.(一)

  教材分析:

  本节课是紧接《平行四边形的性质》一节,其探究的主要内容是“两条对角线互相平分的四边形是平行四边形”,以及“一组对边平行且相等的四边形是平行四边形”这两种判别方法。它是在学生掌握了平行线、三角形全等及简单图形的平移和旋转、平行四边形的定义、性质等基础性知识上学习的。在教学内容上起着承上启下的作用。首先,在探索方式上运用了学习机“图形计算器”的度量、旋转、平移等方法、其次、在探究判别条件的合理性上和运用判别条件时除用到了全等三角形的相关知识,还可以通过直观体验的方法来获取信息。其次,平行四边形的判别条件是研究特殊的平行四边形的基础;再有,平行四边形判别条件的探究模式从方法上为)(研究特殊的平行四边形奠定了基础。并且,本节内容还是学生运用化归思想的良好素材。教材从学生年龄特征、文化知识的实际水平出发,先让学生动手做,动脑思考,然后与同伴交流、利用学习机“图形计算器”探索、总结归纳,升华得出平行四边形的判别方法,再用这些方法去对四边形是否是平行四边形进行判别。这样的安排使抽象的推理让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。

  教学目标:

  1.经历并了解平行四边形判别方法的探索过程,使学生逐步掌握说理的基本方法。

  探索并掌握平行四边形的两种判别条件,能根据判别方法进行相关的应用。

  2.在探索过程中发展学生的合理推理意识、主动探究的习惯。

  体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。

  3.在操作学习机的“图形计算器”活动过程中,加深师生的情感。培养学生的观察能力,并提高学生的学习兴趣。在学习过程中,来体会平行四边形的图形美和内在美。同时使“图形计算器”真正成为学生的学具。

  教学重点:探索并掌握平行四边形的判别条件。(一组对边平行且相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形)。

  教学难点:经历平行四边形判别条件的探索过程,发展学生的合情推理意识、主动探索的习惯,逐步掌握说理的基本方法。

  教学媒体设计:

  为了实现教学目标、优化教学过程、突破教学难点、充分调动学生的各种感官、吸引注意力,课堂上主要采用诺亚舟学习机的“图形计算器”进行辅助教学,通过大屏幕媒体展示教学和学生对“图形计算器”充分利用,使教学过程与知识发展过程和思维过程三者同步,分别在创设情境;观察、探索;理顺、归纳;运用、提高;回顾、反思;布置作业环节都将发挥“图形计算器”的实战功能、让学生真正做到课上听懂、理解透彻。将学生的课堂练习成果进行快速展示,从而节约时间,提高课堂效率。

  教学过程设计:(t—教师,s—学生)

  问题与情境师生行为设计意图

  活动板块1

  前面我们已经学习了平行四边形概念和性质,我们来复习:

  (1)平行四边形概念。

  (2)平行四边形性质。

  (3)如果我们自己作平行四边形,你是如何说明理由的?

  进而得出需进行平行四边形判别条件的探究。

  先由学生根据自主做图的基础上,进行猜想,具备什么条件的四边形是平行四边形,将猜想记录到练习本上。利用学习机的“图形计算器”将你的猜想进行验证。

  活动板块2

  在学生合作探究基础上,对小组活动及时评价、引导。

  同时观察是否有小组已经经过猜想、通过实验验证的方法获得了平行四边形判别条件。

  适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

  适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

  得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的'四边形是平行四边形)。

  活动板块3

  学生继续活动,探究平行四边形判别的其他方法。

  适时地将学生的探究方向指引到通过平行四边形的性质来反向探究平行四边形判别条件,进而得出平行四边形判别方法。

  适时地选出一小组成员在台前利用教师学习机的“图形计算器”通过大屏幕演示小组成果…

  得出平行四边形判别方法:两条对角线互相平分的四边形是平行四边形或(一组对边平行且相等的四边形是平行四边形)。

  活动板块4

  通过小结后,借助大屏幕展示学习机的“图形计算器”中预先保存的练习题。

  活动板块5

  小结及学生谈感受、体会、特别是对学习机的使用情况谈体会和认识。

  活动板块6

  课后思考题:(将问题的探究记录在学习机的“图形计算器”中保存)

  1.平行四边形abcd中,在对角线所在直线上取ae、cf,使ae=cf,连接be、df,试说明:be=df。

  2.利用学习机的“图形计算器”制作一组以平行四边形为基本图案的美丽图形。

  t:提出复习概念和性质。

  s:思考,回答结合一起

  复习。

  s:思考、作图、自主参与交流。

  t:引导、合作,对小组活动及时评价。

  t:注意s猜想、验证过程中出现哪些问题,他们想如何解决所遇到的问题。

  t:引导发展s的探究意识和合作中团结解决所遇到的各种问题。

  t:引导和补充。关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

  s:互动学习,提出论证方法。

  t:引导、合作,对回答问题及时评价。

  s:通过对学具学习机的“图形计算器”的自主探求,获得平行四边形判别方法。

  s:小组成员合作,其他学生观察、思考得出探究的正确方向。

  s:互动学习,提出论证方法。

  t:引导、合作,对回答问题及时评价。

  t:关注学生是否交流方法,互动学习。能否发现问题,研究并解决问题

  s:小组成员合作,其他学生观察、思考得出探究的正确方向。

  t:根据授课情况,板演解题过程,或学生口述解题过程。s:板演或口述。

  t:演示引例,解决具体问题中感受应用的价值。

  s:畅所欲言

  t:进行补充,总结。

  s:小组一名同学记录问题题干,另一名同学在学习机的“图形计算器”上记录下图形。课后将问题的探究记录在学习机的“图形计算器”中保存

  立足于旧知识的基础上,引导学生的注意力。

  在情境引入中充分使用学习机“图形计算器”来促进学生学习过程。

  为全体学生提供借助“图形计算器”为基础平台,使全体学生都有信心学习数学知识,调动学生积极性,主动地参与到课程过程中来,树立学习的信心。为教学目标1服务。

  通过全体学生借助“图形计算器”,获得直观的平行四边形判别方法的印象,通过小组间的合作探究,更容易将所获得的信息结论加以认识、记忆。

  学生在学习过程中,对学习机的“图形计算器”的自主发现时,大胆创新,想解决问题。教师起引导者作用,引入符号语言,使学生轻松愉悦地接受并获取经验为今后学习特殊四边形打基础。达成目标1。

  直觉思维能力是数学注意培养发展的能力之一,它有利于人的探究能力的成长和创新精神培养。

  提引问题时教师起组织者作用,使学生感受师生合作、生生合作的愉快,不断的对学具学习机的“图形计算器”的自主探求,获得数学发展,激发学生的学习热情,调动学生学习自主性。共同发展,达成目标1.2。

  在学生最近的知识发展区建立新的生长点,解释应用与拓展的学习主题,在本活动中得以体现。达成教学目标2。

  创设一个平等和谐的畅谈空间,调动学生的积极性,养成良好的总结习惯,善于从能力,情感、态度等方面关注学生对课堂整体感受,发现集体的力量是无穷的,培养集体主义精神。提供一发展平台,给学生留有学习探索的空间。

  展示提出问题,为下节课的学习提出预想。并利用“图形计算器”探求问题,带来直观体验,同时培养学生的观察能力,并提高学生的学习兴趣。

初中数学优秀教案6

  学习目标:

  1、进一步理解平均数、中位数和众数等统计量的统计意义。

  2、会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势。

  3、会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况。

  4、会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想。

  一、知识点回顾

  1、数学期末总评成绩由作业分数,课堂参与分数,期考分数三部分组成,并按3:3:4的比例确定。已知小明的期考80分,作业90分,课堂参与85分,则他的总评成绩为________。

  2、样本1、2、3、0、1的平均数与中位数之和等于___.

  3、一组数据5,-2,3,x,3,-2,若每个数据都是这组数据的众数,则这组数据的平均数是.

  4、数据1,6,3,9,8的极差是

  5、已知一个样本:1,3,5,x,2,它的平均数为3,则这个样本的方差是。

  二、专题练习

  1、方程思想:

  例:某次考试A、B、C、D、E这5名学生的平均分为62分,若学生A除外,其余学生的平均得分为60分,那么学生A的得分是_____________.

  点拨:本题可以用统计学知识和方程组相结合来解决。

  同类题连接:一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,设原来参加春游的学生x人。可列方程:

  2、分类讨论法:

  例:汶川大地震牵动每个人的心,一方有难,八方支援,5位衢州籍在外打工人员也捐款献爱心。已知5人平均捐款560元(每人捐款数额均为百元的整数倍),捐款数额最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款数额的中位数,那么其余两人的捐款数额分别是___________;

  点拨:做题过程中要注意满足的条件。

  同类题连接:数据-1 , 3 , 0 , x的极差是5 ,则x =_____.

  3、平均数、中位数、众数在实际问题中的应用

  例:某班50人右眼视力检查结果如下表所示:

  视力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

  人数2 2 2 3 3 4 5 6 7 11 5

  求该班学生右眼视力的平均数、众数与中位数.发表一下自己的看法。

  4、方差在实际问题中的.应用

  例:甲、乙两名射击运动员在相同条件下各射靶5次,各次命中的环数如下:

  甲:5 8 8 9 10

  乙:9 6 10 5 10

  (1)分别计算每人的平均成绩;

  (2)求出每组数据的方差;

  (3)谁的射击成绩比较稳定?

  三、知识点回顾

  1、平均数:

  练习:在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?

  2、中位数和众数

  练习:1.一组数据23、27、20、18、X、12,它的中位数是21,则X的值是.

  2.如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  3.在一次环保知识竞赛中,某班50名学生成绩如下表所示:

  得分50 60 70 80 90 100 110 120

  人数2 3 6 14 15 5 4 1

  分别求出这些学生成绩的众数、中位数和平均数.

  3.极差和方差

  练习:1.一组数据X 、X …X的极差是8,则另一组数据2X +1、2X +1…,2X +1的极差是( )

  A. 8 B.16 C.9 D.17

  2.如果样本方差,

  那么这个样本的平均数为.样本容量为.

  四、自主探究

  1、已知:1、2、3、4、5、这五个数的平均数是3,方差是2.

  则:101、102、103、104、105、的平均数是,方差是。

  2、4、6、8、10、的平均数是,方差是。

  你会发现什么规律?

  2、应用上面的规律填空:

  若n个数据x1x2……xn的平均数为m,方差为w。

  (1)n个新数据x1+100,x2+100, …… xn+100的平均数是,方差为。

  (2)n个新数据5x1,5x2, ……5xn的平均数,方差为。

  五、学后反思:

  xxx

初中数学优秀教案7

  知识点:

  因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

  教学目标:

  理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

  考查重难点与常见题型:

  考查因式分解能力,在中考试题中,因式分解出现的频率很高。重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。习题类型以填空题为多,也有选择题和解答题。

  教学过程:

  因式分解知识点

  多项式的因式分解,就是把一个多项式化为几个整式的积。分解因式要进行到每一个因式都不能再分解为止。分解因式的常用方法有:

  (1)提公因式法

  如多项式

  其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

  (2)运用公式法,即用

  写出结果。

  (3)十字相乘法

  对于二次项系数为l的.二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则

  (4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

  分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

  (5)求根公式法:如果有两个根X1,X2,那么

  2、教学实例:学案示例

  3、课堂练习:学案作业

  4、课堂:

  5、板书:

  6、课堂作业:学案作业

  7、教学反思:

初中数学优秀教案8

  【教学目标】:

  通过实例,使学生体会用样本估计总体的思想,能够根据统计结果作出合理的判断 和推测,能与 同学进行交流,用清晰的语言表达自己的观点。

  【重点难点】:

  重点、难点:根据有关问题查找资料或调查,用随机抽样的方法选取样本,能用样本的平均数和方差,从而对总体有个体有个合理的估计和推测。

  【教学过程】:

  一、课前准备

  问题:20xx年北京的空气质量情况如何?请用简单随机抽样方法选取该年的30天,记录并统计这30天北京的空气污染指数,求出这30天的平均空气污染指数,据此估计北京20xx年全年的平均空气 污染指数和空气质量状况。请同学们查询中国环境保护网。

  二、新课

  师生用随机抽样的方法选定如下表中的30天,通过上网得知北京在这30天的空气污染指数及质量级别,如下表所示:

  这30个空气污染指数的平均数为107,据此估计该城市20xx年的平均空气污染指数为107, 空气质量状况属于轻微污染。

  讨论:同学们之 间互相交流,算一算自己选取的样本的污染指数为多少?根据样本的空气污染指数的平均数,估计这个城市的空气质量 。

  2、体会用样本估计总体的'合理性

  下面是老师抽取的样本的空气 质量级别、所占天数及比例的统计图和该城市20xx年全年的相应数据的统计图,同学们可以通过比较两张统计图,体会用样本估计总体的合理性。

  经比较可以发现,虽然从样本获得的数据与总体的不完全一致,但这样的误差 还是可以接受的,是一个较好的估计。

  练习:同学们根据自己所抽取的样本绘制统计图,并 和20xx年全年的相应数据的统计图进行比较,想一想用你所抽取的样本估计总体是否合理?

  显然,由于各位同学所抽取的样本的不同,样本的污染指数不同。但是,正如我们前面已经看到的,随着样本容量(样本中包含的个体的个数)的增加,由样本得出的平均数往往会更接近总体的平均数,数学家已经证明随机抽样方法是科学而可靠的 . 对于估计总体特性这类问 题,数学上的一般做法是给出具有一定可靠程度的一个估计值的范围,将来同学们会学习到有关的数学知识。

  3、加权平均数的求法

  问题1:在计算20个男同学平均身高时,小华先将所有数据按由小到大的顺序排列,如下表所示:

  然后,他这样计算这20个学生的平均身高:

  小华这样计算平均数可以吗?为什么?

  问题2:假设你们年级共有四个班级,各班的男同学人数和平均身高如下表所示.

  小强这样计算全年级男同学的平均身高:

  小强这样计算平均数可以吗?为什么?

  练习:在一个班的40学生中,14岁的有5人,15岁的有30人,16岁的有4人,17岁的有1人,求这个班级学生的平均年 龄。

  三、小结

  用样本估计总体 时,样本容量越大,样本对总体的估计也就越精确。相应地,搜集、整理、计算数据的工作量也就越大,随机抽样是经过数学证明了的可靠的方法,它对于 估计总体特征是很有帮助的。

  四、作业

  习题4.2 1

初中数学优秀教案9

  一、 教材内容及设置依据

  【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。

  【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。

  二、教材的地位和作用

  本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,

  特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了

  类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。

  三、对重点、难点的处理

  【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型 2、实际应用型 3、方法多变型 4、知识拓展型等。

  【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的`空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)

  四、关于教学方法的选用

  根据本节课的内容和学生的实际水平,本节课可采用的方法:

  1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。

  2 、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。

  3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。

  五、关于学法的指导

  “授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。

  六、课时安排:1课时

  教学程序:

  一、复习铺垫:

  首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。

  1、45+(-23) 2、9-(-5)

  3、-28-(-37)4、(-13 )+0

  5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)

  从四排学生中个推选一名学生代表板演6、7、8、题。

  通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。

  然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。

  二、新知探索:

  1、 出示引例1: 一架飞机作特技表演,起飞后的高度变化如下表: 高度变化 记作

  上升4.5千米 +4.5千米

  下降3.2千米 -3.2千米

  上升1.1千米 +1.1千米

  下降1.4千米 -1.4千米

  此时飞机比起飞点高了多少米?

  让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:

  ① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4

  =1.3+1.1+(-1.4) =1.3+1.1-1.4

  =2.4+(-1.4) =2.4-1.4

  =1千米 =1千米

  教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学

初中数学优秀教案10

  【教学内容】

  【教学目标】

  1.掌握多边形的内角和的计算方法,并能用内角和知识解决一些简单的问题.

  2.经历探索多边形内角和计算公式的过程,体会如何探索研究问题.

  3.通过将多边形"分割"为三角形的过程体验,初步认识"转化"的数学思想.

  【教学重点与教学难点】

  1.重点:多边形的内角和公式

  2.难点:多边形内角和的推导

  3.关键:.多边形"分割"为三角形.

  【教具准备】三角板、卡纸

  【教学过程】

  一、创设情景,揭示问题

  1、在一次数学基础知识抢答赛中,老师出了这么一个问题,一个五边形的所有角相加等于多少度?一个学生马上能回答,你们能吗?

  2、教具演示:将一个五边形沿对角线剪开,能分割成几个三角形?

  你能说出五边形的内角和是多少度吗?(点题)意图:利用抢答问题和教具演示,调动学生的学习兴趣和注意力

  二、探索研究学会新知

  1、回顾旧知,引出问题:

  (1)三角形的内角和等于_________.外角和等于____________

  (2)长方形的内角和等于_____,正方形的内角和等于__________.

  2、探索四边形的内角和:

  (1)学生思考,同学讨论交流.

  (2)学生叙述对四边形内角和的认识(第一二组通过测量相加,第三四组通过画对角线分成两个三角形.)回顾三角形,正方形,长方形内角和,使学生对新问题进行思考与猜想.以四边形的内角和作为探索多边形的突破口。

  (3)引导学生用"分割法"探索四边形的.内角和:

  方法一:连接一条对角线,分成2个三角形:

  180°+180°=360°

  从简单的思维方式发散学生的想象力达到"分割"问题,并让学生发现问题,解决问题教学步骤教学内容备注方法二:在四边形内部任取一点,与顶点连接组成4个三角形.

  180°×4-360°=360°

  3、探索多边形内角和的问题,提出阶梯式的问题:

  你能尝试用上面的方法一求出五边形的内角和吗?(第一二组)

  你能尝试用上面的方法一求出六边形的内角和吗?(第三,四组)那么n边形呢?完成后填表:

  n边形3456...n分成三角形的个数1234...n-2内角和...4、及时运用,掌握新知:

  (1)一个八边形的内角和是_____________度

  (2)一个多边形的内角和是720度,这个多边形是_____边形

  (3)一个正五边形的每一个内角是________,那么正六边形的每个内角是_________

  通过学生动手去用分割法求五(六)边形的内角和,从简单到复杂,从而归纳出n边形的内角和

  三、点例透析

  运用新知例题:想一想:如果一个四边形的一组对角互补,那么另一组对角有什么关系呢?

  四、应用训练强化理解

  4、第83页练习1和2多边形内角和定理的应用

  五、知识回放

  课堂小结提问方式:本节课我们学习了什么?

  1多边形内角和公式

  2多边形内角和计算是通过转化为三角形

  六、作业练习

  1、书面作业:

  2、课外练习:

初中数学优秀教案11

  教学目标

  知识

  技能 1.通过观察实验,使学生了解圆心角的概念.

  2.掌握在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等,以及它们在解题中的应用.

  过程

  方法 通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题,进一步理解和体会研究几何图形的各种方法.

  情感

  态度 激发学生观察、探究、发现数学问题的兴趣和欲望.

  教学重点

  在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用.

  教学难点

  探索定理和推导及其应用.

  教学过程设计

  教学程序及教学内容 师生行为 设计意图

  一、导语这节课我们继续研究圆的性质,请同学们完成下题.

  1.已知△OAB,如图所示,作出绕O点旋转30、45、60的图形.

  2.圆是中心对称图形吗?将圆旋转任意角度后会出现什么情况?我们学过的几何图形中既是中心对称图形,又是轴对称图形的是?

  二、探究新知

  (一)、圆心角定义

  在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,AOB的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.

  (二)、圆心角、弧、弦之间的关系定理

  1.按下列要求作图并回答问题:

  如图所示的⊙O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到A‵OB‵的位置,你能发现哪些等量关系?为什么?

  得到: 在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.

  2.在等圆中相等的圆心角是否也有所对的弧相等,所对的弦相等呢?

  综合1、2,我们可以得到关于圆心角、弧、弦之间的关系定理:

  在同圆或等圆中,相等的圆心角所对的.弧相等,所对的弦也相等.

  3.分析定理:去掉“在同圆或等圆中”这个条件,行吗?

  4.定理拓展:

  ○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?

  ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?综上得到

  在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦也相等.

  在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角也相等.

  综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.

  (三)、定理应用

  1.课本例1

  2.如图,在⊙O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF.

  (1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?

  (2)如果OE=OF,那么 与 的大小有什么关系?AB与CD的大小有什么关系?为什么?AOB与COD呢?

  三、课堂训练

  完成课本83页练习

  补充:如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,APM=CPM.

  (1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.

  (2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由.

  四、小结归纳

  1.圆心角概念.

  2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,则它们所对应的其余各组量都分别相等,及它们的应用.

  五、作业设计

  作业:复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做. 教师布置学生画图,复习旋转知识,为探究本节课定理作铺垫

  学生通过画图复习旋转知识,明白绕O点旋转,O点就是旋转中心,旋转30,就是旋转角是30

  学生画一个圆,按教师要求操作,观察,思考,交流,教师给出圆心角定义,

  学生按照要求作图,并观察图形,结合圆的旋转不变性和相关知识进行思考,尝试得出关系定理,再进行严格的几何证明.

  学生思考,类比同圆中得到的结论进行探究,猜想,并验证

  学生思考,明白该前提条件的不可缺性,师生分析,进一步理解定理.

  教师引导学生类比定理独立用类似的方法进行探究,得到推论

  学生审题,理清题中的数量关系,由本节课知识思考解决方法.

  教师组织学生进行练习,教师巡回检查,集体交流评价,教师指导学生写出解答过程,体会方法,总结规律.

  让学生尝试归纳,总结,发言,体会,反思,教师点评汇总

  通过学生亲自动手操作发现圆的旋转不变性,为后续探究打下基础

  通过该问题引起学生思考,进行探究,发现关系定理,初步感知培养学生的分析能力,解题能力.

  为继续探究其推论奠定基础.

  感受类比思想,类比中全面透彻地理解和掌握关系定理和它的推论,并进行推广,得到其他几个定理,完整的把握所学知识.

  给出一般叙述,以其更好的应用.

  培养学生解决问题的意识和能力,体会转化思想,化未知为已知,从而解决本题.

  运用所学知识进行应用,巩固知识,形成做题技巧

  让学生通过练习进一步理解,培养学生的应用意识和能力

  归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯

  巩固深化提高

  板 书 设 计

  课题

  圆心角、弧、弦之间的关系定理 关系定理应用

  1. 2. 归纳

  教 学 反 思

初中数学优秀教案12

  一、教材、学情分析

  “扇形统计图”是义务教育课程标准实验教科书浙江教育出版社七年级上册第六章第四节的学习内容,是从生活中实际问题出发,结合新课程标准的理念,创造使用教材设计的一节课。生活中经常需要收集数据,而统计图是展示数据的重要方法,经常出现在报刊杂志媒体中,为此教科书安排了扇形统计图的认识和制作。

  学生在小学里曾经学习过扇形统计图,对扇形统计图的意义、特点和制作有初步的了解。本节课数据的收集是从学生身边熟悉的简单问题入手,让学生体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中获得有用的信息,进而养成数据说话的习惯,初一学生积极要求上进喜欢表现自己,课堂上应该给学生广阔的舞台,让学生充分思考、合作交流和探究,品尝学习带来的快乐。

  二、教学目标

  知识与技能目标:

  1、通过实际问题认识扇形统计图的含义和特点;

  2、能从扇形统计图中获取正确的信息,并能作出合理的解释和推断。

  过程与方法目标:

  1、在收集数据的过程当中,学会合作学习,并了解收集数据的方法步骤;

  2、在从扇形统计图中获取信息的过程当中,学会相互交流、相互评价;

  3、在决策和形成猜想中的'过程当中,感受收集和利用数据是非常重要的。

  情感与态度目标:

  1、通过从身边的一些简单问题,体验数据在解决不少现实问题中是有用的;

  2、在问题解决的过程当中,品尝发现带来的欢乐,树立学好数学的自信心。

  三、教学重点和难点

  重点:在合作讨论的过程当中体会数据在现实生活中的作用,理解扇形统计图的特点,学会制作扇形统计图。

  难点:从扇形统计图中尽可能多并且正确地获取信息、利用数据进行分析、作出判断。

  四、教学和活动过程

  (一)教学准备阶段

  1、利用PowerPoint制作一个简单课件(没有多媒体教室可采用小黑板展示);

  2、布置学生准备,圆规、铅笔、彩色笔、计算器、剪刀等工具。

  (二)教学流程

  1、引入 前面我们学习了折线统计图和条形统计图,今天我们将学习另外一种统计图——扇形统计图,大家小学里已经学过,有印象吗?能回忆起来是怎样的一个图吗?学生回答(是一个圆分成几部分),下面先让大家欣赏一个扇形统计图。(展示)同学们暑假肯定看了奥运会,能知道中国得了多少枚金牌吗?(32)

  射击 4 12。5%

  球类 8 25%

  水上项目 8 25%

  力量型项目 9 28。125%

  田径 2 6。25%

  体操 1 3。125%

  从这个统计图中同学们能知道中国在什么项目上有优势,什么项目上薄弱呢?大家知道吗?美国在什么项目上有优势?(田径)

  引入设计说明:

  1、从学生感兴趣的奥运会引入,激发学生的兴趣,调节课堂气氛。2、突出扇形统计图的优点——能直观反映各部分在总体中所占的比例,区别于折线型统计图和条形统计图。

  今天这节课我们来更深入一步认识一下扇形统计图,并教大家如何来画扇形统计图。

  2、出示课本学生快餐营养成份统计图,学生观察、思考,老师介绍扇形统计图的特点。

  用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫做扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例。

  第一问、第二问学生回答;

  第三问先说明什么是圆心角,顶点在圆心的角,课本上有摩天轮图(学生观察)。我们可以更直观向学生介绍,用事先准备好圆纸片对折,再对折,把圆分成相等四部分,这个直角就是圆心角。

  这样学生更直观、清楚地理解了圆心角的概念。

  还有奔驰汽车的标志,把圆分成相等的三部分,圆心角为120。

  总结:圆心角的度数为所占的比例乘以360。

  请一个学生回答第三问。

  3、做一做,P152,第(2)小题后面部分,老师分析。

  4、合作活动,师生互动(主要让学生学会画扇形统计图)

  提出问题—→调查情况—→收集数据—→整理数据—→画图

  问题:同学们从家里到学校交通情况。

  学生举手,一个学生点数,另一个学生记录,得出有关数据。

  ①步行 20人 40% 144 不妨设有50名学生,统计数据若如下(根据现场统计情况有不同的数据)。

  ②骑自行车 15人 30% 108

  ③坐公交 10人 20% 72

  ④其他 5人 10% 36

  画图步骤:1、画一个圆;

  2、按各组成部分所占的比例算出各个扇形的圆心角度数;

  3、根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明。

  注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图。

  学生再看例题:气象资料统计图,计算圆心角度数需用计算器。

  5、课内练习,学生板演,一个学生计算数据,一个学生画出扇形统计图。

  6、作业 1)P153 ①②③④,思考题⑤

  2)收集扇形统计图,渠道来自报纸、杂志、上网查询。

  3)自己设计一个调查方案,用调查的数据制作一个扇形统计图。

  五、教学设计说明

  新课程标准下的教学设计应全面贯彻六大基本理念,更加侧重理念③和理念④,本节课突出生动有趣的特点,学习方式多样化,让学生成为课堂的主人。引入的情景设计是学生身边的问题,例题采用学生自己收集数据、整理数据,最后画图,让学生感到一种自己研究成果的成就感,相比之下,比课本的气象资料更具有感染力。作业中有一题是自己设计一个调查方案,培养学生动手能力、实践能力,这就是新课程大力倡导的。

初中数学优秀教案13

  教学目标:

  1、通过学生自己动手画图,让学生体会轴对称、平移和旋转三者之间的联系,培养学生探究的精神。

  2、让学生深刻体会对称思想的重要性,提高应用能力。

  教学过程:

  一、向学生展示生活中美丽的对称图形,并指出其是怎样的对称?(展示课件)

  二、探究规律:

  课前完成书本第6页:做一做、和第14页:做一做。(展示课件)

  轴对称、平移和旋转是图形变换的三种最基本的形式。表面上它们是三件不相干的事,可经过反复轴对称,我们发现:

  规律1:当对称轴两两互相平行的时候,经过偶数次的轴对称变换相当于实现一次伟大的平移变换,平移的方向与对称轴距离矢量和的方向一致,平移的距离恰好是对称轴距离的代数和的2倍;

  若对称轴两两相交于同一点,经过偶数次的轴对称变换相当于实现一次伟大的旋转变换,旋转中心就是对称轴的交点,旋转方向就是对称轴交角矢量和的方向一致,旋转的角度恰好是对称轴交角的代数和的2倍。(难点)

  规律2:一些图形经过轴对称、平移、旋转变换后的,图形的形状、大小与原图完全一样。这里的“完全一样”是一个非常好用的性质,因为它意示着:对应线段、对应角、对应图形的周长、面积相等。

  三、应用规律解题:(重点)(展示课件)

  例1、已知:如图,点A和点D关于直线MN对称,点B和点C也关于直线MN对称,AC与BD相交于点O,且点0在直线MN上,请你写出尽可能多的结论。(至少写出8条)

  例2、如图,在一个长为200米,宽为150米的长方形公园里,拟建三条宽都为C米的人行道,其余部分为绿化带,试问,绿化带面积是多少平方米?(列式即可)

  例3、已知正方形ABCD和正方形AEFG有一个公共点A,点D、E分别在线段AD、 AB上。

  (2)若将正方形AEFG绕点A按顺时针方向旋转,连结DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等。并以图2为例说明理由。

  解答:连结BE,

  因为在正方形ABCD和正方形AEFG中,

  AD=AB; AG=AE;

  所以在旋转过程中,

  线段AD对应线段AB;

  线段AG对应线段AE;

  则线段DG对应线段BE;

  因此:BE=DG。

  练习1、如图所示,请你用三种方法,把左边的小正方形分别移到右边的三个图形中,使它成为轴对称图形。

  练习2、如图所示,已知AE∥DF,BE∥CF,AD∥BC,AD=BC且AB⊥BC,AB=3,AD=4。求多边形AEBCFD的面积。

  练习3、如图,将一个扇形(∠AOB=90°)平移到一个长方形上,恰好OCDE为正方形,若正方形边长为1,则图中阴影部分的面积为多少?

  练习4、如图所示,点O是边长为a的正方形ABCD的中心,将一块半经足够长,圆心角∠EOF=90°的扇形纸板的.圆心放在点O处,并将纸板绕点O旋转。求正方形ABCD的边被纸板覆盖部分的长度和被纸板覆盖部分的面积。

  四、小结:

  三种图形变换的联系和两个规律及其应用。

  五、作业:

  1、请同学们设计符合下列要求的图形

  (1) 使它是中心对称图形,又是轴对称图形;

  (2) 使它是中心对称图形,但不是轴对称图形;

  2、预习下一章内容,尝试用对称的思想分析平行四边形的性质。

  六、课后反思:

  本节教学前,经备课组老师建议,取消了规律1的探索,补充了下面的一道开放式探索题:在正方形的瓷砖面上画花纹,要求将砖面分成4部分,每部分形状、大小完全一样,请作出你的设计。 学生设计出12种的方案,并用对称的思想加以归类总结,取得了很好的效果。但作为一堂“指导----自主----合作”的教学模式,老师安排的内容是否太多,学生自主学习放到课前,该如何监控等问题还有待进一步探索。

初中数学优秀教案14

  教学目标:

  1、初步理解垂直与平行是同一平面内两直线的特殊位置关系,初步认识垂线和平行线。

  2、在“演示操作验证解释应用”的过程中,发展学生的空间观念,渗透猜想、与验证的数学思想方法。

  教学重点、难点

  正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象力。

  教学过程:

  一、平面内两直线位置关系

  1、操作:

  请每位同学在一张纸上画两条直线,这两条直线的位置关系会出现哪些情况?

  2、分类:根据学生想象,出示下图(网格):

  师:老师课前也绘制了这样6幅图,想一想,按两条直线的不同位置关系,你可以分成哪几类?说说你的分类依据。

  3、讨论交流,揭示平面内两条直线的位置关系。

  小结:

  两条直线,除了“相交”和“不相交”,还可能存在其他的位置关系吗?

  板书:

  相交

  两条直线的位置关系

  不相交

  二、探究一:垂直

  1、平面内两直线相交构成的4个角的特点。

  师:首先来研究平面内两条直线“相交”这一情况。

  师:平面内直线a和直线b相交与点O,已知1=60,谁能马上求出2、3、4的度数?你是怎么想的?

  2、平面内两直线相交的特殊情况。

  提问:这4个角的度数有什么特点?固定点O,旋转后,情况还是一样吗?

  (旋转至垂直)

  师:现在两条直线相交成直角了。继续旋转呢?

  除了相交成直角以外,其余的情况,都是任意相交的。

  板书: 任意相交

  相交

  平面内两条直线的位置关系 相交成直角

  不相交

  3、练习:

  下列图形中哪两条直线相交成直角。

  ○1 ○2 ○3

  4、揭示概念。(媒体出示)

  板书: 任意相交

  相交

  平面内两条直线的位置关系 相交成直角 垂直

  不相交

  5、平面图形中的垂直现象。

  下面图形中哪些角是直角?在图上用直角记号标出。哪些线段互相垂直?用垂直符号表示。

  ○1 ○2 ○3

  记作: 记作: 记作:

  6、动手操作。

  三、探究二:平行

  1、提问:长方形中,如果把相对的`两条边无限延长,是否会在某一点相交?

  2、揭示概念

  板书: 任意相交

  相交

  平面内两条直线的位置关系 相交成直角 垂直

  不相交 平行

  3、平面图中的平行现象

  4、练习

  (1)说说下列哪些直线互相垂直?哪些互相平行?

  将图2改为:

  提问:e和f还平行吗?

  将图2改为:

  当角1等于角2时,e和f还平行吗?

  (2)渗透“同一”平面观念

  长方体中,这两条棱相交吗?那么他们平行吗?

  板书: 任意相交

  相交

  同一平面内两条直线的位置关系 相交成直角 垂直

  不相交 平行

  四、生活中的平行与垂直

  1、举例:生活中,你有没有发现“垂直与平行”的现象?

  2、提问:为什么这些地方要设计成“垂直”或者“平行”?

  五、课堂总结

初中数学优秀教案15

  ●教学目标

  (一)教学知识点

  1.掌握极差、方差、标准差的概念.

  2.明白极差、方差、标准差是反映一组数据稳定性大小的.

  3.用计算器(或计算机)计算一 组数据的标准差与方差.

  (二)能力训练要求

  1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力.

  2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力.

  (三)情感与价值观要求

  1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界.

  2.通过小组活动,培养学生的合作意识和能力.

  ●教学重点

  1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量.

  2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .

  ●教学难点

  理解方差、标准差的概念,会求一组数据的方差、标准差.

  ●教学方法

  启发引导法

  ●教学过程

  Ⅰ.创设现实问题情景,引入新课

  [师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的信息作出恰当的选择与判断.

  当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口 一批规格为75 g的鸡腿.现有2个厂家提供货源.

  [生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的`平均质量分别为75 g.

  (2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得

  甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

  乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

  (3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).

  (4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小.

  [师]很好.在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况.

  从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小.

  这节课我们就来学习关于数据的离散程度的几个量.

  Ⅱ.讲授新课

  [师]在上面几个问题中,你认为哪一个数值是反映数据的离散程度的一个量呢?

  [生]我认为最大值与最小值的差是反映数据离 散程度的一个量.

  [师]很正确.我们把一组数据中最大数据与 最小数据的差叫极差.而极差是刻画数据离散程度的一个统计量.

  [生](1)丙厂这20只鸡腿质量的平均数:

  丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

  极差为:79-72=7(g)

  [生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距.

  甲厂20只鸡 腿的质量与相应的平均数的差距为:

  (75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

  =0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

  丙厂20只鸡腿的质量与相应的平均数的差距为:

  (75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

  由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小.

  数学上,数据的离散程度还可以用方差或标准差来刻画.

  其中方差是各个数据与平均数之差的平方的平均数,即

  s2= [(x1- )2+(x2- )2+…+(xn- )2]

  其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根.

  [生]为什么方差概念中要除以数据个数呢?

  [师]是为了消除数据个数的印象.

  由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.

  [生]极差还比较容易算出.而方差、标准差算起来就麻烦多了.

  [师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差.

  同学们可在自己的计算器上探 索计算标准差的具体操作

  计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差.

  [生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

  s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

  因为s甲2<s丙2.

  所以根据计算的结果,我认为甲厂的产品更符合要求.

  Ⅲ.随堂练习

  Ⅳ.课时小结

  这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别.

  Ⅴ.课后作业

  Ⅵ.活动与探究

  甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:

  (1)请你填上表中乙学生的相关数据;

  (2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平.

【初中数学优秀教案】相关文章:

初中数学优秀教案10-26

初中数学优秀教案09-29

初中数学优秀教案【精】12-30

【精】初中数学优秀教案02-24

初中数学优秀教案通用04-06

初中数学优秀教案【荐】12-28

初中数学优秀教案[精华]06-12

初中数学优秀教案(精品)06-10

(精华)初中数学优秀教案06-09

【必备】初中数学优秀教案06-11