初中数学教案

时间:2024-05-20 14:12:24 初中数学教案 我要投稿

初中数学教案15篇[精]

  作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教案,借助教案可以让教学工作更科学化。来参考自己需要的教案吧!下面是小编精心整理的初中数学教案,供大家参考借鉴,希望可以帮助到有需要的朋友。

初中数学教案15篇[精]

初中数学教案1

  教学目标:

  1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

  2、过程与方法:通过观察,归纳一元一次方程的概念。

  3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

  教学重点:归纳一元次方程的概念

  教学难点:感受方程作为刻画现实世界有效模型的意义.

  教学过程:

  一、情景导入:

  我能猜出你们的年龄,相信吗?

  只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.

  问:你的年龄乘以2加3等于多少?

  学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的.吗?

  学生讨论并回答

  二、知识探究:

  1、方程的教学(投影演示)

  小彬和小明也在进行猜年龄游戏,我们来看一看。

  找出这道题中的等量关系,列出方程.

  大家观察,这两个式子有什么特点。

  讨论并回答:什么是方程?方程有哪些特点?

  2、 判断下列式子是不是方程?

  (1)X+2=3(是)(2)X+3Y=6(是)

  (3)3M-6(不是)(4)1+2=3(不是)

  (5)X+3>5(不是)(6)Y-12=5(是)

  三、合作交流

  1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

  情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

  你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

  情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)

  截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%

  1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?

  下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

  2X–5=21

  40+15X=100

  X(1+153.94﹪)=3611

  2[X+(X+12)]=200

  2[Y+(Y–12)]=200

  在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

  问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

  生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

  四、随堂练习

  1、投影趣味习题,

  2、做一做

  下面有两道题,请选做一题。

  (1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。

  (2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

  五、课堂小节

  1、这节课你学到了什么?

  2、这节课给你印象最深的是什么?

  六、作业:分组布置

  数学教案-你今年几岁了搜集整理

初中数学教案2

  教学目标:

  1.使学生能抓住关键找出相对应的量,去分析数量关系,把握解题思路。

  2.渗透对应的数学思想,提高学生分析解决实际问题的能力。

  3.萌发学生的辩证思维,学习全面地分析、考虑问题。

  教学过程:

  一、以旧引新,促进迁移。

  1.提问:

  (1)甲买4本练习本,乙买6本练习本,谁付的钱多?为什么?

  (2)买的本数多,付出的钱也一定多吗?当每本价钱相同时,买的本数多,付出的钱怎样?付的钱少,说明买的本数怎样?

  【评析:这里(1)题的设计颇具匠心,题中有意不说乙和甲买的是同样的练习本,让学生判断谁付的钱多。估计学生中会有两种反馈,一种认为乙买的本数多,付的钱也多;另一种认为不一定乙付的钱多,因为没有说明是同样的练习木。然后在(2)题里,运用反问句强化每本价钱相同这个必要条件。这样的设计,使学生感受到看问题要仔细、全面,不能粗略作出结论。】

  2.出示:(同种铅笔)

  小红买:///

  小刚买://///

  (1)知道哪两个条件可以求出每支铅笔的价钱?若告诉小红付出1元2角,怎样计算出每支铅笔的价钱?(板书:12÷3=4(角)。)

  (2)还可告诉哪些条件,也能计算出每支铅笔的价钱?

  (让学生补条件。估计会有:①小刚付出2元。20÷5=4(角);②两人共付出3元2角。32÷(3+5)=4(角)③小刚比小红多付8角。8÷(5-3)=4(角)。)

  (3)(结合所补条件①、②的解答)提问:求每支铅笔的价钱,关键要找出什么?(铅笔支数及相对应的价钱。)(结合所补条件③)请把条件和问题连起来说一遍。教师出示:同一种铅笔,小红买了3支,小刚买了5支,小刚比小红多付8角钱,每支铅笔多少钱?

  二、尝试练习,归纳思路。

  1.学生独自思考,尝试解答上面的例题。

  2.同桌交流,展示解题的思维过程。

  3.指名学生列式,并结合算式“8÷(5-3)”提问:为什么用8除以2呢?(让学生根据铅笔实物图说理。)

  4.进行鼓励性评价:同学们想得真好。小刚比小红多付8角钱,小刚比小红多买2支铅笔,从这两个相差的数量中找到了相对应的量,即“2支铅笔的价钱是8角钱”。这样就很容易算出每支铅笔的价钱。

  【评析:在上面讨论的基础上,运用形象直观而又简明通俗的实例,提出要求的问题,让学生独立思考,展开想象,在教师的点拨下,补出各种不同的条件。然后从学生所补的条件中,选择一种,组成一个完整的应用题,放手让学生自己去解答。这样的教学能引导学生参与学习的意向,主动地掌握这类问题的结构以及解题的关键,完全改变了教师一步一步发问,学生跟随教师一步一步回答的那种被动学习的状态。从学生的思维来看是变通型、创造型的。】

  5.练一练。

  一辆汽车用同样的速度行驶,上午行了120千米,下午行了200千米,下午比上午多行2小时,平均每小时行多少千米?

  (1)让学生画线段图表述题意,借助线段图找出对应量,进行解答。

  (2)由学生展示思维过程,进行评析。

  【评析:练习题的情节变了,数量之间的关系未变,要求学生画线段图找对应量进行解答,组织学生自己展示思维过程,相互评议,教师只起一个组织者的作用。充分发挥学生的群体作用,使学生的心态处于学习主体的位置,感受到互助合作与成功的愉快。】

  三、分层练习,发展思维。

  第一层:

  选择正确算式的编号(用手势表示)。

  1.同一种自行车,第一天卖出8辆,第二天卖出的比第一天多2辆,第二天收款1500元。每辆自行车多少元?

  (1)1500÷2(2)1500÷(8+2)(3)1500÷(8+2+8)

  先让学生独立思考,画图分析,进行选择。在作出正确选择后,教师继续引发学生深入思考:

  ①若选算式

  (1),应怎样改变条件?

  ②若选算式

  (3),应怎样改变条件?从中突出关键是要找相对应的量。

  2.水果店运来若干箱苹果,每箱苹果一样重。一共运来250千克。已经卖出4箱苹果,卖出100千克。每箱苹果重多少千克?

  (1)10O÷4(2)(250-100)÷4

  先让学生独立思考作出选择,再引导学生画出线段图,并提问:若要选择算式(2),条件该怎么改?从中强调根据所求问题选择有关信息,关键是找出对应量。

  【评析:这两题都采用选择算式的形式,在学生作出正确判断后,教师再次要求学生,根据所给的算式改变应用题的条件,使算式与题目的要求相符合。这种练习方式,既有利于辨析应用题条件与问题的关系,强化解题思路,防止思维负定势,又渗透了事物之间的千变万化,学会具体问题具体分析的科学态度,这确是一种较好的练习形式。】

  第二层:发展题。

  学校新买来10盒羽毛球。如果从每盒中取出2只,剩下的羽毛球正好等于原来的8盒。买来的10盒羽毛球共有多少只?

  在学生独立思考的.基础上,让学生前后四人为一组进行讨论,再指名展示思维过程,师生一起作评价,突出解题关键在于“取出的羽毛球相当于原来的2盒”这个对应量。

  四、课堂小结。

  提问:今天所学的应用题,解题的关键是什么?

  【总评:潘小明老师的这节课,曾在本市和外省市借班上课,教学效果甚佳,表现在学生学得主动,思维活跃,甚至于有些学生不愿意下课,还要讨论下去。究其原因,一是摆正了教与学的关系,千方百计让学生主动地学,使学生真正成为学习的主体。二是改革了应用题传统的教学方法,将原来的“读题→分析(或画线段图)→列式计算→写答句”的模式,改变成“直观形象的实例→提出问题→分析解答→组成语言文字的应用题→完整解答→变化条件或问题→深化认识”的认知过程模式。这种教学模式更贴近学生的认识规律。三是紧紧把握住题目里数量之间的关系,突出解题思路,训练学生思考力。当然,要做到这些还必须具有正确的教学思想和教育观念,承认儿童具有巨大的智力潜在力,力求提高他们的数学素养,培育他们良好的心理素质等宏观上的信念,才能组织好一堂课。从这堂课里还可以看出教师的教学艺术也起到重要的作用。】

初中数学教案3

  教学目标

  1, 整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

  2, 能区分两种不同意义的量,会用符号表示正数和负数;

  3, 体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

  教学难点 正确区分两种不同意义的量。

  知识重点 两种相反意义的量

  教学过程(师生活动) 设计理念

  设置情境

  引入课题 上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生

  活中仅有这些“以前学过的数”够用了吗?下面的例子

  仅供参考.

  师:今天我们已经是七年级的学生了,我是你们的数学老师.下面我先向你们做一下自我介绍,我的名字是XX,身高1.73米,体重58.5千克,今年40岁.我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…

  问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?

  学生活动:思考,交流

  师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).

  问题2:在生活中,仅有整数和分数够用了吗?

  请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

  (也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)

  学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。 先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多

  地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际.

  这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。

  以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。

  分析问题

  探究新知 问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的.量呢?

  这些问题都必须要求学生理解.

  教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

  这阶段主要是让学生学会正数和负数的表示.

  强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量. 这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。

  举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

  问题4:请同学们举出用正数和负数表示的例子.

  问题5:你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明.

  能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性

  课堂练习 教科书第5页练习

  小结与作业

  课堂小结 围绕下面两点,以师生共同交流的方式进行:

  1, 0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;

  2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

  本课作业 教科书第7页习题1.1 第1,2,4,5(第3题作为下节课的思考题。

  作业可设必做题和选 做题,体现要求的层次性,以满足不同学生的需要

初中数学教案4

  教学目标:

  (1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  (2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

  重点难点:

  能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

  教学过程:

  一、试一试

  1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

  2.x的值是否可以任意取?有限定范围吗?

  3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定, y是x的函数,试写出这个函数的关系式,

  对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的`变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。 对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0 <x <10。 对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函数关系式.

  二、提出问题

  某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大? 在这个问题中,可提出如下问题供学生思考并回答:

  1.商品的利润与售价、进价以及销售量之间有什么关系?

  [利润=(售价-进价)×销售量]

  2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降价x元,则每件商品的利润是多少元?一天可销

  售约多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,请求出它的范围,

  [x的值不能任意取,其范围是0≤x≤2]

  5.若设该商品每天的利润为y元,求y与x的函数关系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  将函数关系式y=x(20-2x)(0 <x <10=化为:

  y=-2x2+20x(0<x<10)……………………………(1) 将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、观察;概括

  1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

  (1)函数关系式(1)和(2)的自变量各有几个?

  (各有1个)

  (2)多项式-2x2+20和-100x2+100x+200分别是几次多项式? (分别是二次多项式)

  (3)函数关系式(1)和(2)有什么共同特点?

  (都是用自变量的二次多项式来表示的)

  (4)本章导图中的问题以及P1页的问题2有什么共同特点? 让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

  2.二次函数定义:形如y=ax2+bx+c (a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

  四、课堂练习

  1.(口答)下列函数中,哪些是二次函数?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3练习第1,2题。

  五、小结

  1.请叙述二次函数的定义.

  2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

  六、作业:略

初中数学教案5

  课 题:几何画板简介

  教学目标:1)通过几何画板课件演示展示其魅力激起兴趣

  2)了解几何画板初步操作

  教学重点:让学生了解几何画板的工作界面

  教学难点:能用几何画板将三角形分成四等份,并用几何画板验证。 教学过程:

  一、概述几何画板

  几何画板是专门为数学学习与教学需要而设计的软件。有人说它是电子圆规,有人说它是绘图仪,有人说它是数学实验室。它号称二十一世纪的动态几何。它可帮助我们理解数学,动态地表达数量关系,并可设计出许多有用或有趣的作品。

  二、几何画板作品展示

  三、几何画板简介

  1)启动

  开始|程序|几何画板|几何画板。启动几何画板后将出现 菜单、工具、 画板。工具(从上到下) 选择 、画点、画圆 、画线、 文本 、对象信息、 脚本工具目录。

  2)操作初步

  1、文件

  新画板 打开一个新的空白画板。

  新脚本 打开一个新的空白脚本窗口。用于录制画板的画图过程。 打开 打开一个已存在的画板文件(.gsp)或脚本文件(.gss)。

  保存 [保存当前画板窗口画板文件或脚本窗口脚本文件],路径+文件名,确认。

  打印预览

  打印

  退出

  2、 选择 几何画板的操作都是先选定,后操作。

  选工具(选择 画点 画圆 画线 文本 对象信息 脚本工具目录) 单击:工具选项。

  选选择方式 移到选择按左键不放→平移/旋转/缩放;拖曳到平移/旋转/缩放;放→选定。

  功能:移动选定的目标按 平移/旋转/缩放 方式移动。

  选一个目标 鼠标对准画板中的目标(点、线、圆等),指针变为横向箭头,单击。

  选两个以上目标 法一 第二个及以后,Shift+单击。

  选两个以上目标 法二 空白处拖曳→虚框;虚框中的目标被选。 选角 选三点:第一、第三点:角两边上的点;第二点:顶点。 不选 单击:空白处。

  从多个选中的目标中不选一个 Shift+单击。

  选目标的`父母和子女 选定,编辑|选择父母/或选择子女。

  选所有 编辑|选择所有。

  选画点/画圆...,编辑|选择所有点/圆...。

  3、删除

  删除目标 选目标;Del键(注:同时删除子女目标)。

  复原一步 Ctrl+Z = 编辑|复原。

  画板变成空白画板 Shift+Ctrl+Z = Shift+编辑|复原。

  4、显示

  线类型 设置选定的线/轨迹 为 粗线/细线/虚线。应用 使对象更突出。 颜色 设置选定的图形的颜色。应用 使对象更突出。

  字号/字型 设置选定的标注、符号、测算等文字的字号和字型。

  字体 设置选定的标注、符号、测算等文字的字体。

  显示/隐藏 显示/隐藏 选定的目标(Ctrl+H)。

  显示所有隐藏 显示所有的隐藏目标。

  显示符号 显示/隐藏 选定目标的符号。

  符号选项 更改 符号/符号序列。

  轨迹跟踪 设置/消除 选定目标为轨迹跟踪状态。

  动画 根据选定的目标条件进行动画运动。

  参数设置 角度、弧度、精确度等的设置。

  5、对象信息 单击对象信息→?;单击对象→简单信息;双击对象→目标信息对话框。

  6、快捷键 隐藏Ctrl+H显示符号Ctrl+K轨迹跟踪Ctrl+T当前目标可操作的内容右键。

  (以上简略选讲1、2、3)

  四、熟悉几何画板的界面,了解常用工具的用法,

  五、把一个三角形分成四等份:

  1)用画线工具画一个三形,2)标注:选文本工具,单击画好的点,用文本工具双击显示的标签,可进行修改。

  3)选择“构造”,---“画中点”

  六、验证面积相等:

  1)按住shift键,选取点。

  2)“构造”---“多边形内部”。

  3)“测算”---“面积”

  七、等分线段:

  1)画射线作辅助线。

  2)选取一段做标记向量。

  3)“变换”---“平移”。

  4)“作图”---“平行线”。

  用平行线的性质等分线段。

  八、画基本图形

  1、画点 选画点,单击画板上一点。(并显示标签)

  2、画圆 画圆的两种方法及区别。 (设置不同显示方式)

  3、选线段/射线/直线 选画线;按左键不放→线段/射线/直线

  九、课后反思

  在图中标注文本文字,用辅助线把一线段如何分为四等份

初中数学教案6

  生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

  侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

  底面:棱柱有上、下两个底面,形状相同。

  侧面:棱柱的'侧面都是平行四边形。

  立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

  棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

  特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

  圆柱:上、下两个面都是圆形,侧面展开图是长方形。

  圆锥:底面是圆形,侧面展开图是扇形。

  截面:用一个平面去截一个几何体,截出的面。

  球:用一个平面去截,截面图形是圆形。

  正方体的截面:可以是正方形、长方形、梯形、三角形。

  圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

  展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

  从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

初中数学教案7

  图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。

  他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。

  在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。 生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270 古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?

  还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的`荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。

  荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。

  他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。

  这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的<<几何原本>>从此成为他整个漫长一生的必读之书。。。。。。

  战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。

  非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。 而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。

  船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。

  一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。

  幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。

  "别动我的图案!"老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。

  据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。

初中数学教案8

  4.1二元一次方程

  【教学目标】

  知识与技能目标

  1、通过与一元一次方程的比较,能说出二元一次方程的概念,并会辨别一个方程是不是

  二元一次方程;

  2、通过探索交流,会辨别一个解是不是二元一次方程的解,能写出给定的二元一次方程的解,了解方程解的不唯一性;

  3、会将一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式。过程与方法目标经历观察、比较、猜想、验证等数学学习活动,培养分析问题的能力和数学说理能力;

   情感与态度目标

  1、通过与一元一次方程的类比,探究二元一次方程及其解的概念,进一步培养运用类比转化的思想解决问题的能力;

  2、通过对实际问题的分析,培养关注生活,进一步体会方程是刻画现实世界的有效数学模型,培养良好的数学应用意识。

  【重点、难点】

  重点:二元一次方程的概念及二元一次方程的解的概念。

  难点1、了解二元一次方程的解的不唯一性和相关性。即了解二元一次方程的解有无数个,

  但不是任意的两个数是它的解。

  2、把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

  【教学方法与教学手段】

  1、通过创设问题情境,让学生在寻求问题解决的过程中认识二元一次方程,了解二元一

  次方程的特点,体会到二元一次方程的引入是解决实际问题的需要。

  2、通过观察、思考、交流等活动,激发学习情绪,营造学习气氛,给学生一定的时间和

  空间,自主探讨,了解二元一次方程的解的不唯一性和相关性。

  3、通过学练结合,以游戏的形式让学生及时巩固所学知识。

  【教学过程】

  一、创设情境导入新课

  1、一个数的3倍比这个数大6,这个数是多少?

  2、写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的`数字之和为22?

  思考:这个问题中,有几个未知数?能列一元一次方程求解吗?

  如果设黄卡取x张,蓝卡取y张,你能列出方程吗?

  3、在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米。如果设轿车的速度是a千米/时,卡车的速度是b千米/时,你能列出怎样的方程?

  二、师生互动探索新知

  1、推陈出新发现新知

  引导学生观察所列的方程:5x?2y?22,2a?3b?20,这两个方程有哪些共同特征?这些特征与一元一次方程比较,哪些是相同的,哪些是不同的?你能给它们取个名字吗?

  (板书:二元一次方程)

  根据它们的共同特征,你认为怎样的方程叫做二元一次方程?(二元一次方程的定义:含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。)

  2、小试牛刀巩固新知

  判断下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、师生互动再探新知

  (1)什么是方程的解?(使方程两边的值相等的未知数的值,叫做方程的解。)

  (2)你能给二元一次方程的解下一个定义吗?(使二元一次方程两边的值相等的一对未

  知数的值,叫做二元一次方程的一个解。)

  ?若未知数设为x,y,记做x?,若未知数设为a,b,记做

  ?y?

  4、再试牛刀检验新知

  (1)检验下列各组数是不是方程2a?3b?20的解:(学生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能写出方程x-y=1的一个解吗?(再一次让学生感悟二元一次方程的解的不唯一性)

  5、自我挑战三探新知

  有3张写有相同数字的蓝卡和2张写有相同数字的黄卡,这五张卡片上的数字之和为10。设蓝卡上的数字为x,黄卡上的数字为y,根据题意列方程。3x?2y?10

  请找出这个方程的一个解,并写出你得到这个解的过程。

  学生在解二元一次方程的过程中体验和了解二元一次方程解的不唯一性。

  6、动动笔头巩固新知

  独立完成课本第81页课内练习2

  三、你说我说清点收获

  比较一元一次方程和二元一次方程的相同点和不同点

  相同点:方程两边都是整式

  含有未知数的项的次数都是一次

  如何求一个二元一次方程的解

  四、知识巩固

  1、必答题

  (1)填空题:若mxy?9x?3yn?1?7是关于x,y的二元一次方程,则m?n?x?2y?5变形正确的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多选题:方程

  y?1

  x?7

  (4)判断题:方程2x?y?15的解是。()y?1

  2、抢答题

  是方程2x?3y?5的一个解,求a的值。(1)已知x??2

  y?a

  (2)写出一个解为x?3的二元一次方程。

  y?1

  3、个人魅力题

  写有数字5的黄卡和写有数字2的蓝卡若干张,问黄卡和蓝卡各取几张,才能使取到的卡片上的数字之和为22?设黄卡取x张,蓝卡取y张,根据题意列方程:5x?2y?22你能完成这道题目吗?

  五、布置作业

初中数学教案9

  学习目标

  1.理解平行线的意义两条直线的两种位置关系;

  2.理解并掌握平行公理及其推论的内容;

  3.会根据几何语句画图,会用直尺和三角板画平行线;

  学习重点

  探索和掌握平行公理及其推论.

  学习难点

  对平行线本质属性的理解,用几何语言描述图形的性质

  一、学习过程:预习提问

  两条直线相交有几个交点?

  平面内两条直线的位置关系除相交外,还有哪些呢?

  (一)画平行线

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"画"。

  3、请你根据此方法练习画平行线:

  已知:直线a,点B,点C.

  (1)过点B画直线a的'平行线,能画几条?

  (2)过点C画直线a的平行线,它与过点B的平行线平行吗?

  (二)平行公理及推论

  1、思考:上图中,①过点B画直线a的平行线,能画 条;

  ②过点C画直线a的平行线,能画 条;

  ③你画的直线有什么位置关系? 。

  ②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

  二、自我检测:

  (一)选择题:

  1、下列推理正确的是 ( )

  A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d

  C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c

  2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )

  A.0个 B.1个 C.2个 D.3个

  (二)填空题:

  1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。

  2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

  (1)L1与L2 没有公共点,则 L1与L2 ;

  (2)L1与L2有且只有一个公共点,则L1与L2 ;

  (3)L1与L2有两个公共点,则L1与L2 。

  3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。

  4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。

  三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.

初中数学教案10

  课型:新授课 备课人:徐新齐 审核人:霍红超

  学习目标

  1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

  2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角

  重点、难点

  重点:邻补角、对顶角的概念,对顶角性质与应用.

  难点:理解对顶角相等的性质的探索.

  教学过程

  一、复习导入

  教师在轻松欢快的音乐中演示第五章章首图片为主体的课件.

  学生欣赏图片,阅读其中的文字.

  师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线. 本章要研究相交线所成的角和它的.特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.

  二、自学指导

  观察剪刀剪布的过程,引入两条相交直线所成的角

  握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.

  三、 问题导学

  认识邻补角和对顶角,探索对顶角性质

  (1).学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类?

  学生思考并在小组内交流,全班交流.

  ∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线.

  ∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线.

  ( 2).学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等.

  (3).概括形成邻补角、对顶角概念.

  有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角.

  如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角.

  四、典题训练

  1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.

  2.:判断下列图中是否存在对顶角.

  小结

  自我检测

  一、判断题:

  1.如果两个角有公共顶点和一条公共边,而且这两角互为补角, 那么它们互为邻补角. ( )

  2.两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补. ( )

  二、填空题:

  1.如图1,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF 的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.

  (1) (2)

  2.如图2,直线AB、CD相交于点O,∠COE=90°,∠AOC=30°,∠FOB=90°, 则∠EOF=________.

  三、解答题:

  1.如图,直线AB、CD相交于点O.

  (1)若∠AOC+∠BOD=100°,求各角的度数.

  (2)若∠BOC比∠AOC的2倍多33°,求各角的度数.毛

  2.两条直线相交,如果它们所成的一对对顶角互补, 那么它的所成的各角的度数是多少?

初中数学教案11

  教学目标

  1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;

  2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;

  3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;

  4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。

  教学建议

  1. 知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。

  2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法 ,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:

  (1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.

  (2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.

  等都不是代数式.

  3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。

  如:说出代数式7(a-3)的意义。

  分析 7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。

  4.书写代数式的注意事项:

  (1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.

  如3×a ,应写作3.a 或写作3a ,a×b 应写作3.a 或写作ab .带分数与字母相乘,应把带分数化成假分数,

  #FormatImgID_0#

  .数字与数字相乘一般仍用“×”号.

  (2)代数式中有除法运算时,一般按照分数的写法来写.

  (3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.

  5.对本节例题的分析:

  例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.

  例2是说出一些比较简单的代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.

  6.教法建议

  (1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。

  (2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。

  (3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。

  (4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。

  (5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。

  7.教学重点、难点:

  重点:用字母表示数的意义

  难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。

  教学设计示例

  课堂教学过程设计

  一、从学生原有的认知结构提出问题

  1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?

  (通过启发、归纳最后师生共同得出用字母表示数的五种运算律)

  (1)加法交换律 a+b=b+a;

  (2)乘法交换律 a·b=b·a;

  (3)加法结合律 (a+b)+c=a+(b+c);

  (4)乘法结合律 (ab)c=a(bc);

  (5)乘法分配律 a(b+c)=ab+ac

  指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;

  (2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数

  2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?

  3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?

  4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?

  (用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)

  此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t 以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.

  三、讲授新课

  1代数式

  单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义

  2举例说明

  例1 填空:

  (1)每包书有12册,n包书有__________册;

  (2)温度由t℃下降到2℃后是_________℃;

  (3)棱长是a厘米的正方体的体积是_____立方厘米;

  (4)产量由m千克增长10%,就达到_______千克

  (此例题用投影给出,学生口答完成)

  解:(1)12n; (2)(t-2); (3)a3; (4)(1+10%)m

  例2 说出下列代数式的意义:

  解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;

  (5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方

  说明:(1)本题应由教师示范来完成;

  (2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等

  例3 用代数式表示:

  (1)m与n的和除以10的商;

  (2)m与5n的差的平方;

  (3)x的2倍与y的和;

  (4)ν的立方与t的3倍的积

  分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面

  四、课堂练习

  1填空:(投影)

  (1)n箱苹果重p千克,每箱重_____千克;

  (2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;

  (3)底为a,高为h的三角形面积是______;

  (4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____

  2说出下列代数式的意义:(投影)

  3用代数式表示:(投影)

  (1)x与y的和; (2)x的`平方与y的立方的差;

  (3)a的60%与b的2倍的和; (4)a除以2的商与b除3的商的和

  五、师生共同小结

  首先,提出如下问题:

  1本节课学习了哪些内容?2用字母表示数的意义是什么?

  3什么叫代数式?

  教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号

  六、作业

  1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长

  2张强比王华大3岁,当张强a岁时,王华的年龄是多少?

  3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3 ,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?

  4a千克大米的售价是6元,1千克大米售多少元?

  5圆的半径是R厘米,它的面积是多少?

  6用代数式表示:

  (1)长为a,宽为b米的长方形的周长;

  (2)宽为b米,长是宽的2倍的长方形的周长;

  (3)长是a米,宽是长的1/3 的长方形的周长;

  (4)宽为b米,长比宽多2米的长方形的周长

初中数学教案12

  一、课题

  27.3 过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2.. 知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点A画圆,并考虑这样的圆有多少个?

  2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

  3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的.实际意义确定问题的解.

  (二)、小结

  七、练习设计

  P15习题2、3

  八、教学后记

  后备练习:

  1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

  2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  A.在AC,BC两边高线的交点处

  B.在AC,BC两边中线的交点处

  C.在AC,BC两边垂直平分线的交点处

  D.在A,B两内角平分线的交点处

初中数学教案13

  教学目标:

  1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

  2、收集统计在生活中应用的例子,整理收集数据的方法。

  3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

  教学过程:

  一、课前预习,出示预习提纲:

  1、我们学习了哪几种统计图?

  2、这几种统计图各有什么特点?

  3、概率的.知识有哪些?

  二、展示与交流

  (一)提出问题

  1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

  2、师:先独立列出几个你想调查的问题。(写在练习本上)

  3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

  4、接着全班汇报交流(师罗列在黑板上)

  师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

  (二)收集数据和整理数据

  1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

  2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

  (三)开展调查

  1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

  2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

  3、全班汇总、整理、归纳各小组数据。(板书)

  4、师:分析上面的数据,你能得到哪些信息?

  5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

  6、师:根据这些信息,你还能提出什么数学问题?

  (四)回顾统计活动

  1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

  师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

  2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

  指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

  3、结合生活中的例子说说收集数据有哪些方法?

  (1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来

  的实例)来说说自己的方法。

  (2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

  4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

初中数学教案14

  知识技能

  会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

  数学思考

  1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。

  2.通过一元一次方程的学习,体会方程模型思想和化归思想。

  解决问题

  能在具体情境中从数学角度和方法解决问题,发展应用意识。

  经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

  情感态度

  经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

  教学重点

  建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。

  教学难点

  分析实际问题中的相等关系,列出方程。

  教学过程

  活动一 知识回顾

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?

  教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

  出示问题(幻灯片)。

  学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

  教师提问:(略)

  教师追问:变形的依据是什么?

  学生独立思考、回答交流。

  本次活动中教师关注:

  (1)学生能否准确理解运用等式性质和合并同列项求解方程。

  (2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

  通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

  活动二 问题探究

  问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

  教师:出示问题(投影片)

  提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?

  (学生尝试提问)

  学生:读题,审题,独立思考,讨论交流。

  1.找出问题中的已知数和已知条件。(独立回答)

  2.设未知数:设这个班有x名学生。

  3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)

  4.找相等关系:

  这批书的总数是一个定值,表示它的两个等式相等.(学生回答,教师追问)

  5.列方程:3x+20=4x-25(1)

  总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?

  教师提问1:这个方程与我们前面解过的方程有什么不同?

  学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).

  教师提问2:怎样才能使它向x=a的形式转化呢?

  学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的.左边没有常数项,等号两边同减去20.

  3x-4x=-25-20(2)

  教师提问3:以上变形依据是什么?

  学生回答:等式的性质1。

  归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。

  师生共同完成解答过程。

  设问4:以上解方程中“移项”起了什么作用?

  学生讨论、回答,师生共同整理:

  通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

  教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?

  学生思考回答。

  教师关注:

  (1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?

  在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。

  活动三 解法运用

  例2解方程

  3x+7=32-2x

  教师:出示问题

  提问:解这个方程时,第一步我们先干什么?

  学生讲解,独立完成,板演。

  提问:“移项”是注意什么?

  学生:变号。

  教师关注:学生“移项”时是否能够注意变号。

  通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。

  活动四 巩固提高

  1.第91页练习(1)(2)

  2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?

  3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。

  教师按顺序出示问题。

  学生独立完成,用实物投影展示部分学而生练习。

  教师关注:

  1.学生在计算中可能出现的错误。

  2.x系数为分数时,可用乘的办法,化系数为1。

  3.用实物投影展示学困生的完成情况,进行评价、鼓励。

  巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。

  2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。

  活动五

  提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?

  提问2:本节课重点利用了什么相等关系,来列的方程?

  教师组织学生就本节课所学知识进行小结。

  学生进行总结归纳、回答交流,相互完善补充。

  教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。

  引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。

  布置作业:

  第93页第3题

初中数学教案15

  复习目标:

  (1)了解方程、一元一次方程以及方程的解等基本概念。

  (2)会解一元一次方程。

  (3)会根据具体问题中的数量关系列出一元一次方程并求解。

  重点、难点:

  1.重点:

  一元一次方程及方程的解的基本概念。

  一元一次方程的解法。

  会用一元一次方程解决实际问题。

  2.难点:

  一元一次方程的解法的灵活应用。

  寻找实际问题中的等量关系。

  【典型例题】

  例1.

  分析: 明确一元一次方程的概念。方程中含有一个未知数,未知数的次数是1,且含有未知数的式子为整式,未知数的系数不为0。

  在这里特别注意:未知数的次数及系数。

  这三个方程中含有两个未知数x、y,要想成为一元一次方程就要使其中一个未知数的系数为0。

  解:

  例2.

  分析: 此题要明确两点:(1)当方程中含有多个字母时,指出关于哪个字母的方程,这个字母就是方程的未知数,而其它的字母是代替已知数的字母系数,这类方程也叫字母系数方程。(2)方程的解,即使方程左右两边相等的未知数的`值。

  此题从问题出发,求解关于x的方程即要求出x的值,而要求x的值要先求出m的值,如何求m的值呢?已知y=1是关于y的方程的解,即关于y的方程中字母y=1,因此可将y=1代入方程,从而求出m的值。

  解:

  将m=1代入关于x的方程,得:

  例3.

  解:

  注意:解一元一次方程的一般步骤为以上五步,但在解方程时,要注意灵活运用。

  例4.

  分析: 此题的括号较多,如果按照一般的做法先去小括号,再去中括号,最后去大括号的方法比较麻烦,所以要观察分析方程找一种比较简单的方法。

  解:

  例5.

  分析: 此题中分母出现小数,如果用一般的方法先去分母,则比较麻烦,公分母就不好找,所以采取一个巧妙的方法,先利用“分数的基本性质”将方程中分母中的小数化为整数,再用去分母……解之。

  解:

  注:用分数的基本性质化简用的是分子、分母扩大相同倍数分数值不变,与去分母不同。

  解:

  例6.已知某铁路桥长1000米,现有列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整个火车完全在桥上的时间为40秒,求火车的速度。

  分析: 列方程解应用题的关键要找出题目中的等量关系,而由题意可知,此题有两个不变的量,即车的速度和车身的长度。在题目中不变的量,即可为等量,从而列出方程。例如以车身长度为等量,可列方程,设车的速度为xm/s,60x-1000=1000-40x,以车的速度为等量,可列方程,设车身长为xm

  解一: 设车的速度为xm/s

  经检验,符合题意。

  答: 车的速度为20m/s。

  解二: 设车身的长度为xm

  经检验,符合题意。

  答: 车的速度为(1000+200)/60=20m/s

  例7.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票

  售票的一半。如果在六月份内,团体票按每张16元出售,并计划在六月份售完全部余票,那么零售票应按每张多少元出售才能使两个月的票款收入持平?

  分析: 此题的等量关系比较好找,即五六月份的票款相等,但团体票及零售票的张数不知道,可用字母表示出来,设而不求。

  解: 设团体票共2a张,零售票共a张,零售票价x元

  经检验,符合题意。

  答: 零售票价为19.2元。

【初中数学教案】相关文章:

初中数学教案08-12

初中数学教案02-21

初中数学教案[经典]02-21

人教版初中数学教案07-17

角初中数学教案12-30

初中数学教案模板11-02

【热门】初中数学教案11-18

初中数学教案【荐】11-14

【推荐】初中数学教案11-16

初中数学教案【精】11-19