初中数学教案

时间:2022-11-21 11:42:14 初中数学教案 我要投稿

【精】初中数学教案

  作为一名无私奉献的老师,总不可避免地需要编写教案,教案是教学活动的总的组织纲领和行动方案。那么问题来了,教案应该怎么写?以下是小编帮大家整理的初中数学教案,欢迎大家借鉴与参考,希望对大家有所帮助。

【精】初中数学教案

初中数学教案1

  生活中的立体图形:(常见的有)圆柱、圆锥、正方体、长方体、棱柱、球。棱:相邻两个面的交线。

  侧棱:相邻两个侧面的交线。棱柱的所有侧棱长都相等。

  底面:棱柱有上、下两个底面,形状相同。

  侧面:棱柱的侧面都是平行四边形。

  立体图形的分类:锥体、柱体、球体。也可分为有曲面、无曲面。还可以分为有顶点、无顶点。

  棱柱:分为直棱柱、斜棱柱。直棱柱的侧面是长方形。

  特殊的四棱柱:长方体、正方体。正方体的每个面都是正方形。

  圆柱:上、下两个面都是圆形,侧面展开图是长方形。

  圆锥:底面是圆形,侧面展开图是扇形。

  截面:用一个平面去截一个几何体,截出的面。

  球:用一个平面去截,截面图形是圆形。

  正方体的`截面:可以是正方形、长方形、梯形、三角形。

  圆柱体的截面:可以是长方形、圆形、椭圆形、三角形。

  展开与折叠:两个面出现在同一位置的展开图形,是不可折叠的。

  从三个方向看物体的形状:正面看(主视图)、左面看(侧视图)、上面看(俯视图)

初中数学教案2

  教学建议

  知识结构

  重难点分析

  本节的重点是的性质和判定定理。是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

  本节的难点是性质的灵活应用。由于是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

  教法建议

  根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

  1.的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

  2.在现实中的实例较多,在讲解的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

  3.如果条件允许,教师在讲授这节内容前,可指导学生按照教材148页图4-33所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

  4.在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

  5.由于和的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

  6.在性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

  一、教学目标

  1.掌握概念,知道与平行四边形的关系.

  2.掌握的性质.

  3.通过运用知识解决具体问题,提高分析能力和观察能力.

  4.通过教具的演示培养学生的学习兴趣.

  5.根据平行四边形与矩形、的从属关系,通过画图向学生渗透集合思想.

  6.通过性质的学习,体会的图形美.

  二、教法设计

  观察分析讨论相结合的方法

  三、重点·难点·疑点及解决办法

  1.教学重点:的性质定理.

  2.教学难点:把的性质和直角三角形的知识综合应用.

  3.疑点:与矩形的性质的区别.

  四、课时安排

  1课时

  五、教具学具准备

  教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具

  六、师生互动活动设计

  教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨

  七、教学步骤

  【复习提问】

  1.什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?

  2.矩形中对角线与大边的夹角为,求小边所对的两条对角线的夹角.

  3.矩形的一个角的平分线把较长的边分成、,求矩形的周长.

  【引入新课】

  我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,这时可将事先按课本中图4-38做成的一个短边也可以活动的'教具进行演示,如图,改变平行四边形的边,使之一组邻进相等,引出概念.

  【讲解新课】

  1.定义:有一组邻边相等的平行四边形叫做.

  讲解这个定义时,要抓住概念的本质,应突出两条:

  (1)强调是平行四边形.

  (2)一组邻边相等.

  2.的性质:

  教师强调,既然是特殊的平行四边形,因此它就具有平行四边形的一切性质,此外由于它比平行四边形多了“一组邻边相等”的条件,和矩形类似,也比平行四边形增加了一些特殊性质.

  下面研究的性质:

  师:同学们根据的定义结合图形猜一下有什么性质(让学生们讨论,并引导学生分别从边、角、对角线三个方面分析).

  生:因为是有一组邻边相等的平行四边形,所以根据平行四边形对边相等的性质可以得到.

  性质定理1:的四条边都相等.

  由的四条边都相等,根据平行四边形对角线互相平分,可以得到

  性质定理2:的对角线互相垂直并且每一条对角线平分一组对角.

  引导学生完成定理的规范证明.

  师:观察右图,被对角线分成的四个直角三角形有什么关系?

  生:全等.

  师:它们的底和高和两条对角线有什么关系?

  生:分别是两条对角线的一半.

  师:如果设的两条对角线分别为、,则的面积是什么?

  生:

  教师指出当不易求出对角线长时,就用平行四边形面积的一般计算方法计算面积.

  例2已知:如右图,是△的角平分线,交于,交于.

  求证:四边形是.

  (引导学生用定义来判定.)

  例3已知的边长为,,对角线,相交于点,如右图,求这个的对角线长和面积.

  (1)按教材的方法求面积.

  (2)还可以引导学生求出△一边上的高,即的高,然后用平行四边形的面积公式计算的面积.

  【总结、扩展】

  1.小结:(打出投影)(图4)

  (1)、平行四边形、四边形的从属关系:

  (2)性质:图5

  ①具有平行四边形的所有性质.

  ②特有性质:四条边相等;对角线互相垂直,且平分每一组对角.

  八、布置作业

  教材P158中6、7、8,P196中10

  九、板书设计

  标题

  定义……

  性质例2…… 小结:

  性质定理1:……例3…… ……

  性质定理2:……

  十、随堂练习

  教材P151中1、2、3

  补充

  1.的两条对角线长分别是3和4,则周长和面积分别是___________、___________.

  2.周长为80,一对角线为20,则相邻两角的度数为___________、____________.

初中数学教案3

  教学目标:

  1、理解并掌握三角形中位线的概念、性质,会利用三角形中位线的性质解决有关问题。

  2、经历探索三角形中位线性质的过程,让学生实现动手实践、自主探索、合作交流的学习过程。

  3、通过对问题的探索研究,培养学生分析问题和解决问题的'能力以及思维的灵活性。

  4、培养学生大胆猜想、合理论证的科学精神。

  教学重点:

  探索并运用三角形中位线的性质。

  教学难点:

  运用转化思想解决有关问题。

  教学方法:

  创设情境——建立数学模型——应用——拓展提高

  教学过程:

  情境创设:测量不可达两点距离。

  探索活动:

  活动一:剪纸拼图。

  操作:怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形。

  观察、猜想: 四边形BCFD是什么四边形。

  探索: 如何说明四边形BCFD是平行四边形?

  活动二:探索三角形中位线的性质。

  应用

  练习及解决情境问题。

  例题教学

  操作——猜想——验证

  拓展:数学实验室

  小结:布置作业。

初中数学教案4

  《正方形》教学设计

  教学内容分析:

  ⑴学习特殊的平行四边形—正方形,它的特殊的性质和判定。

  ⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。

  ⑶对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。

  学生分析

  ⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。

  ⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。

  教学目标:

  ⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。

  ⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。通过运用提高学生的推理能力。

  ⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。

  重点:掌握正方形的性质与判定,并进行简单的推理。

  难点:探索正方形的判定,发展学生的推理能

  教学方法:类比与探究

  教具准备:可以活动的四边形模型。

  一、教学分析

  (一)教学内容分析

  1.教材:义务教育课程标准实验教科书《数学》九年级上册(人民教育出版社)

  2.本课教学内容的地位、作用,知识的前后联系

  《中心对称图形》是新人教版九年级数学上册第二十三章第二单元第二节课的内容。本节教材属于图形变换的内容,是在学习了“轴对称和轴对称图形”、“旋转和中心对称”后的一种对称图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。

  3.本课教学内容的特点,重点分析体现新课程理念的特点

  本节课主要介绍中心对称图形的概念、中心对称图形的识别、中心对称图形与轴对称图形与中心对称的比较、中心对称图形的性质。为使学生感受、理解知识的产生和发展过程,培养学生的抽象思维,我将通过:(1)例举日常生活中的一些旋转对称图形引出中心对称图形的概念;(2)引导学生观察、猜想、实验、归纳、类比等方法探究中心对称图形的性质,(3)通过多媒体演示使学生对中心对称图形的性质有直观的表象。我认为这环环相扣、层层深入、循序渐进的活动过程,符合新课程标准理念和学生建构知识的规律,有利于激发学生的学习情趣。

  (二)教学对象分析

  1.学生所在地区、学校及班级的特色

  我授课的班级是西安市阎良区振兴中学九年级一班,作为九年级的学生,在图形的对称方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力;班级学生具有个性活泼,思维活跃,对各种事物充满好奇,学习情绪易于调动,学习积极性高的特点,但学生的抽象思维能力个体差异较大,并且班级中已出现分化现象。

  2.学生的年龄特点和认知特点

  班级学生的年龄大多在15岁到17岁间。他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的'乐趣。

  教学过程

  一:复习巩固,建立联系

  【教师活动

  问题设置:①平行四边形、矩形,菱形各有哪些性质?

  ②()的四边形是平行四边形。()的平行四边形是矩形。()的平行四边形是菱形。()的四边形是矩形。()的四边形是菱形。

  【学生活动

  学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。

  【教师活动

  评析学生的结果,给予表扬。

  总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。

  演示平行四边形变为矩形菱形的过程。

  二:动手操作,探索发现

  活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?

  【学生活动

  学生拿出自备矩形纸片,动手操作,不难发现它是正方形。

  设置问题:①什么是正方形?

  观察发现,从活动中体会。

  【教师活动】:演示矩形变为正方形的过程,菱形变为正方形的过程。

  【学生活动】认真观察变化过程,思考之间的联系,举手回答设置问题。

  设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?

  【学生活动】

  小组讨论,分组回答。

  【教师活动】

  总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。

  设置问题③正方形有那些性质?

  【学生活动】

  小组讨论,举手抢答。

  【教师活动

  表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角

  活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?

  学生活动

  折纸发现,说出自己的发现。得到正方形的又一性质。正方形是轴对称图形。

  教师活动

  演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?

  ()的菱形是正方形,()的矩形是正方形,()的平行四边形是正方形,()的四边形是正方形。

  学生活动

  小组充分交流,表达不同的意见。

  教师活动

  评析活动,总结发现:

  一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;

  有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;

  有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;

  四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。

  以上是正方形的判定方法。

  正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?

  学生交流,感受正方形

  三,应用体验,推理证明。

  出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO长,及的度数。

  方法一解:∵四边形ABCD是正方形

  ∴∠ABC=90°(正方形的四个角是直角)

  BC=AB=4cm(正方形的四条边相等)

  ∴=45°(等腰直角三角形的底角是45°)

  ∴利用勾股定理可知,AC===4cm

  ∵AO=AC(正方形的对角线互相平分)

  ∴AO=×4=2cm

  方法二:证明△AOB是等腰直角三角形,即可得证。

  学生活动

  独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。

  教师活动

  总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。评析解题步骤,表扬突出学生。

  出示例二:在正方形ABCD中,E、F、G、H分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?

  学生活动

  小组交流,分析题意,整理思路,指名口答。

  教师活动

  说明思路,从已知出发或者从已有的判定加以选择。

  四,归纳新知,梳理知识。

  这一节课你有什么收获?

  学生举手谈论自己的收获。

  请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。

  发表评论

  教学目标:

  情意目标:培养学生团结协作的精神,体验探究成功的乐趣。

  能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。

  认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。

  教学重点、难点

  重点:等腰梯形性质的探索;

  难点:梯形中辅助线的添加。

  教学课件:PowerPoint演示文稿

  教学方法:启发法、

  学习方法:讨论法、合作法、练习法

  教学过程:

  (一)导入

  1、出示图片,说出每辆汽车车窗形状(投影)

  2、板书课题:5梯形

  3、练习:下列图形中哪些图形是梯形?(投影)

  结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。

  5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)

  6、特殊梯形的分类:(投影)

  (二)等腰梯形性质的探究

  【探究性质一】

  思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)

  猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)

  如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C

  想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?

  等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。

  【操练】

  (1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)

  (2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)

  【探究性质二】

  如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)

  如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)

  等腰梯形性质:等腰梯形的两条对角线相等。

  【探究性质三】

  问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)

  问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)

  等腰梯形性质:同以底上的两个内角相等,对角线相等

  (三)质疑反思、小结

  让学生回顾本课教学内容,并提出尚存问题;

  学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。

初中数学教案5

  教学目标

  1笔寡生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

  2迸嘌学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学重点和难点

  重点和难点:正确地求出代数式的值

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1庇么数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%

  2庇糜镅孕鹗龃数式2n+10的意义

  3倍杂诘2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50蔽颐墙上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值闭饩褪潜窘诳挝颐墙要学习研究的内容

  二、师生共同研究代数式的值的意义

  1庇檬值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值

  2苯岷仙鲜隼题,提出如下几个问题:

  (1)求代数式2x+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应

  (3)求代数式的`值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案(教师板书例题时,应注意格式规范化)

  例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70

  注意:如果代数式中省略乘号,代入后需添上乘号

  例2根据下面a,b的值,求代数式a2-的值

  (1)a=4,b=12,(2)a=1,b=1

  解:(1)当a=4,b=12时,

  a2-=42-=16-3=13;

  (2)当a=1,b=1时,

  a2-=-=

  注意(1)如果字母取值是分数,作乘方运算时要加括号;

  (2)注意书写格式,“当……时”的字样不要丢;

  (3)代数式里的字母可取不同的值,但是所取的值不应当使代数式或代数式所表示的数量关系失去实际意义,如此例中a不能为零,在代数式2n+10中,n是代数班的个数,n不能取分数最后,请学生总结出求代数值的步骤:①代入数值②计算结果

  三、课堂练习

  1(1)当x=2时,求代数式x2-1的值;

  (2)当x=,y=时,求代数式x(x-y)的值

  2钡盿=,b=时,求下列代数式的值:

  (1)(a+b)2;(2)(a-b)2

  3钡眡=5,y=3时,求代数式的值

  答案:1.(1)3;(2);2.(1);(2);3..

  四、师生共同小结

  首先,请学生回答下面问题:

  1北窘诳窝习了哪些内容?

  2鼻蟠数式的值应分哪几步?

  3痹“代入”这一步应注意什么”

  其次,结合学生的回答,教师指出:(1)求代数式的值,就是用数值代替代数式里的字母按照代数式的运算顺序,直接计算后所得的结果就叫做代数式的值;(2)代数式的值是由代数式里字母所取值的确定而确定的.

  五、作业

  当a=2,b=1,c=3时,求下列代数式的值:(1)c-(c-a)(c-b);

  今天的内容就介绍到这里了。

初中数学教案6

  知识技能

  会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。

  数学思考

  1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。进一步发展符号意识。

  2.通过一元一次方程的学习,体会方程模型思想和化归思想。

  解决问题

  能在具体情境中从数学角度和方法解决问题,发展应用意识。

  经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。

  情感态度

  经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。

  教学重点

  建立方程解决实际问题,会通过移项解 “ax+b=cx+d”类型的一元一次方程。

  教学难点

  分析实际问题中的相等关系,列出方程。

  教学过程

  活动一 知识回顾

  解下列方程:

  1. 3x+1=4

  2. x-2=3

  3. 2x+0.5x=-10

  4. 3x-7x=2

  提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?

  教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。

  出示问题(幻灯片)。

  学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。

  教师提问:(略)

  教师追问:变形的依据是什么?

  学生独立思考、回答交流。

  本次活动中教师关注:

  (1)学生能否准确理解运用等式性质和合并同列项求解方程。

  (2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。

  通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。

  活动二 问题探究

  问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?

  教师:出示问题(投影片)

  提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?

  (学生尝试提问)

  学生:读题,审题,独立思考,讨论交流。

  1.找出问题中的已知数和已知条件。(独立回答)

  2.设未知数:设这个班有x名学生。

  3.列代数式:x参与运算,探索运算关系,表示相关量。(讨论、回答、交流)

  4.找相等关系:

  这批书的总数是一个定值,表示它的`两个等式相等.(学生回答,教师追问)

  5.列方程:3x+20=4x-25(1)

  总结提问:通过列方程解决实际问题分析时,要经历那些步骤?书写时呢?

  教师提问1:这个方程与我们前面解过的方程有什么不同?

  学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与-25).

  教师提问2:怎样才能使它向x=a的形式转化呢?

  学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20.

  3x-4x=-25-20(2)

  教师提问3:以上变形依据是什么?

  学生回答:等式的性质1。

  归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。

  师生共同完成解答过程。

  设问4:以上解方程中“移项”起了什么作用?

  学生讨论、回答,师生共同整理:

  通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。

  教师提问5:解这个方程,我们经历了那些步骤?列方程时找了怎样的相等关系?

  学生思考回答。

  教师关注:

  (1)学生对列方程解决实际问题的一般步骤:设未知数,列代数式,列方程,是否清楚?

  在参与观察、比较、尝试、交流等数学活动中,体验探究发现成功的快乐。

  活动三 解法运用

  例2解方程

  3x+7=32-2x

  教师:出示问题

  提问:解这个方程时,第一步我们先干什么?

  学生讲解,独立完成,板演。

  提问:“移项”是注意什么?

  学生:变号。

  教师关注:学生“移项”时是否能够注意变号。

  通过这个例题,掌握“ax+b=cx+d”类型的一元一次方程的解法。体验“移项”这种变形在解方程中的作用,规范解题步骤。

  活动四 巩固提高

  1.第91页练习(1)(2)

  2.某货运公司要用若干辆汽车运送一批货物。如果每辆拉6吨,则剩余15吨;如果每辆拉8吨,则差5吨才能将汽车全部装满。问运送这批货物的汽车多少量?

  3.小明步行由A地去B地,若每小时走6千米,则比规定时间迟到1小时;若每小时走8千米,则比规定时间早到0.5小时。求A、B两地之间的距离。

  教师按顺序出示问题。

  学生独立完成,用实物投影展示部分学而生练习。

  教师关注:

  1.学生在计算中可能出现的错误。

  2.x系数为分数时,可用乘的办法,化系数为1。

  3.用实物投影展示学困生的完成情况,进行评价、鼓励。

  巩固“ax+b=cx+d”类型的一元一次方程的解法,反馈学生对解方程步骤的掌握情况和可能出现的计算错误。

  2、3题的重点是在新情境中引导学生利用已有经验解决实际问题,达到巩固提高的目的。

  活动五

  提问1:今天我们学习了解方程的那种变形?它有什么作用、应注意什么?

  提问2:本节课重点利用了什么相等关系,来列的方程?

  教师组织学生就本节课所学知识进行小结。

  学生进行总结归纳、回答交流,相互完善补充。

  教师关注:学生能否提炼出本节课的重点内容,如果不能,教师则提出具体问题,引导学生思考、交流。

  引导学生对本节所学知识进行归纳、总结和梳理,以便于学生掌握和运用。

  布置作业:

  第93页第3题

初中数学教案7

  学习目标:

  1、通过具体动手操作得出矩形的概念,知道矩形与平行四边形的区别与联系

  2、通过类比平行四边形的性质定理,推导并掌握矩形的性质定理,会用定理进行一些简单的计算证明、

  3、通过矩形的对角线相等这一性质能推导出直角三角形斜边上的中线等于斜边的一半,感受直角三角形与矩形之间的内在联系,发展学生的合理推理的能力

  学习重难点:

  重点:矩形的性质定理

  难点:灵活应用矩形的性质进行有关的计算与证明

  课前准备

  教具准备:活动平行四边形框架、教师准备PPT课件

  教学过程:

  知识回顾

  1、什么叫平行四边形?

  2、平行四边形有哪些性质?

  【设计意图】:

  通过对旧知的复习,一方面巩固就知,另一方面为学习新知做好铺垫

  合作探究一:矩形的定义

  阅读课本第17-18页,“实验与探究”,思考:什么叫做矩形?

  用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示下图,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形、从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?

  【设计意图】:

  通过小组合作观察,讨论平行四边形具备什么条件时,就成了矩形,自己归纳出矩形的定义、给学生更多的思考空间,促进学生积极思考,发展学生的思维

  归纳:有一个角是直角的平行四边形叫做矩形、

  合作探究二:矩形的性质定理

  1、自主完成18页的观察与思考,通过实际操作回答提出的问题

  2、小组合作:完成对性质的证明过程

  【设计意图】:

  通过利用手中的矩形纸片动手操作使学生对矩形的性质获得丰富的直观体验,为总结矩形的性质定理打下坚实基础

  矩形的性质定理1:矩形的四个角都是直角

  矩形的性质定理2:矩形的两条对角线相等

  合作探究三:直角三角形的性质定理3

  设矩形的对角线AC与BD交于点O,那么,BE是Rt△AB中一条怎样的特殊线段

  (BO是Rt△ABC中斜边AC上的中线)它与AC有什么大小关系,为什么?

  【设计意图】:

  根据图形学生很容易猜想结果,关键是从数学的角度证明留足充分的时间让学生交流,教师适时引导,明确论证方法、学生独立完成证明,以培养学生的推理能力、让学生感受数学结论的确定性和证明的必要性

  结论:直角三角形斜边上的.中线等于斜边的一半

  例题讲解:

  例1、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=6㎝,求矩形对角线AC的长?

  当堂检测:

  1、矩形具有而平行四边形不具有的性质()

  (A)对角相等(B)对边相等(C)对角线相等(D)对角线互相平分

  2、已知Rt△ ABC中,∠ABC=900,BD是斜边AC上的中线

  (1)若BD=3㎝,则AC=㎝

  (2)若∠C=30°,AB=5㎝,则AC=㎝,BD=㎝

  3、在矩形ABCD中,若已知∠DOC=120°,AC=8㎝,求AD的长

  4、工人师傅做铝合金窗框分下面三个步骤进行:

  (1)先截出两对符合规格的铝合金窗料(如图1),使AB=CD,EF=GH;

  (2)摆放成如图(2)的四边形,则这时窗框的形状是_____,根据的数学道理是__________;

  (3)将直角尺靠紧窗框的一个角(如图3)调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图4),说明窗框合格,这时窗框是____,根据的数学道理是________________。

  课堂小结:

  请说出你本节课的收获,与大家一块分享!!

  作业:

  课本P、20第2题

  板书设计:

  xxx

初中数学教案8

  教学目标

  1.经历不同的拼图方法验证公式的过程,在此过程中加深对因式分解、整式运算、面积等的认识。

  2.通过验证过程中数与形的结合,体会数形结合的思想以及数学知识之间内在联系,每一部分知识并不是孤立的。

  3.通过丰富有趣的拼图活动,经历观察、比较、拼图、计算、推理交流等过程,发展空间观念和有条理地思考和表达的能力,获得一些研究问题与合作交流方法与经验。

  4.通过获得成功的体验和克服困难的经历,增进数学学习的信心。通过丰富有趣拼的图活动增强对数学学习的兴趣。

  重点1.通过综合运用已有知识解决问题的过程,加深对因式分解、整式运算、面积等的认识。

  2.通过拼图验证公式的过程,使学习获得一些研究问题与合作交流的方法与经验。

  难点利用数形结合的方法验证公式

  教学方法动手操作,合作探究课型新授课教具投影仪

  教师活动学生活动

  情景设置:

  你已知道的关于验证公式的拼图方法有哪些?(教师在此给予学生独立思考和讨论的时间,让学生回想前面拼图。)

  新课讲解:

  把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子。美国第二十任总统伽菲尔德就由这个图(由两个边长分别为a、b、c的.直角三角形和一个两条直角边都是c的直角三角形拼成一个新的图形)得出:c2=a2+b2他的证法在数学史上被传为佳话。他是这样分析的,如图所示:

  教师接着在介绍教材第94页例题的拼法及相关公式

  提问:还能通过怎样拼图来解决以下问题

  (1)任意选取若干块这样的硬纸片,尝试拼成一个长方形,计算它的面积,并写出相应的等式;

  (2)任意写出一个关于a、b的二次三项式,如a2+4ab+3b2

  试用拼一个长方形的方法,把这个二次三项式因式分解。

  这个问题要给予学生充足的时间和空间进行讨论和拼图,教师在这要引导适度,不要限制学生思维,同时鼓励学生在拼图过程中进行交流合作

  了解学生拼图的情况及利用自己的拼图验证的情况。教师在巡视过程中,及时指导,并让学生展示自己的拼图及让学生讲解验证公式的方法,并根据不同学生的不同状况给予适当的引导,引导学生整理结论。

  小结:

  从这节课中你有哪些收获?

  (教师应给予学生充分的时间鼓励学生畅所欲言,只要是学生的感受和想法,教师要多鼓励、多肯定。最后,教师要对学生所说的进行全面的总结。)

  学生回答

  a(b+c+d)=ab+ac+ad

  (a+b)(c+d)=ac+ad+bc+bd

  (a+b)2=a2+2ab+b2

  学生拿出准备好的硬纸板制作

  给学生充分的时间进行拼图、思考、交流经验,对于有困难的学生教师要给予适当引导。

  作业第95页第3题

  板书设计

  复习例1板演

  ………………

  ………………

  ……例2……

  ………………

  ………………

  教学后记

初中数学教案9

  [教学目标]

  1、体会并了解反比例函数的图象的意义

  2、能列表、描点、连线法画出反比例函数的图象

  3、通过反比例函数的图象的分析,探索并掌握反比例函数的图象的性质

  [教学重点和难点]

  本节教学的重点是反比例函数的图象及图象的性质

  由于反比例函数的图象分两支,给画图带来了复杂性是本节教学的难点

  [教学过程]

  1、情境创设

  可以从复习一次函数的图象开始:你还记得一次函数的图象吗?在回忆与交流中,进一步认识函数图象的直观有助于理解函数的性质。转而导人关注新的函数——反比例函数的图象研究:反比例函数的图象又会是什么样子呢?

  2、探索活动

  探索活动1反比例函数y?

  由于反比例函数y?

  要分几个层次来探求:

  (1)可以先估计——例如:位置(图象所在象限、图象与坐标轴的交点等)、趋势(上升、下降等);

  (2)方法与步骤——利用描点作图;

  列表:取自变量x的哪些值?——x是不为零的任何实数,所以不能取x的值的为零,但仍可以以零为基准,左右均匀,对称地取值。

  描点:依据什么(数据、方法)找点?

  连线:怎样连线?——可在各个象限内按照自变量从小到大的顺序用两条光滑的曲线把所描的点连接起来。

  探索活动2反比例函数y??2的图象.x2的图象是曲线型的,且分成两支.对此,学生第一次接触有一定的难度,因此需x2的图象.x

  可以引导学生采用多种方式进行自主探索活动:

  2的.图象的方式与步骤进行自主探索其图象;x

  222(2)可以通过探索函数y?与y??之间的关系,画出y??的图象.xxx

  22探索活动3反比例函数y??与y?的图象有什么共同特征?xx(1)可以用画反比例函数y?

  引导学生从通过与一次函数的图象的对比感受反比例函数图象“曲线”及“两支”的特征.(即双曲线)反比例函数y?

  k(k≠0)的图象中两支曲线都与x轴、y轴不相交;并且当k?0时,图象在第一、第x

初中数学教案10

  平行线的判定(1)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.

  2.掌握直线平行的条件,领悟归纳和转化的数学思想

  学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.

  一、探索直线平行的条件

  平行线的判定方法1:

  二、练一练1、判断题

  1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )

  2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )

  2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、选择题

  1.如图3所示,下列条件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右图,由图和已知条件,下列判断中正确的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.

  五、作业课本15页-16页练习的1、2、3、

  5.2.2平行线的'判定(2)

  课型:新课: 备课人:韩贺敏 审核人:霍红超

  学习目标

  1.经历观察、操作、想像、推理、交流等活动,进一步发展空

  间观念,推理能力和有条理表达能力.

  毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.

  学习重点:直线平行的条件的应用.

  学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.

  一、学习过程

  平行线的判定方法有几种?分别是什么?

  二.巩固练习:

  1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1题) (第2题)

  2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.

  二、选择题.

  1.如图,下列判断不正确的是( )

  A.因为∠1=∠4,所以DE∥AB

  B.因为∠2=∠3,所以AB∥EC

  C.因为∠5=∠A,所以AB∥DE

  D.因为∠ADE+∠BED=180°,所以AD∥BE

  2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答题.

  1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.

  2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.

初中数学教案11

  一、内容特点

  在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。

  内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

  二、设计思路

  整体设计思路:

  无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

  学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

  具体过程:

  首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

  第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的'思想;会判断一个数是有理数还是无理数。

  第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

  第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

  第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。

  第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

  三、一些建议

  1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

  2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

  3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

  4.淡化二次根式的概念。

初中数学教案12

  一、教材分析

  本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

  二、教学目标

  1、知识目标:了解多边形内角和公式。

  2、数学思考:通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。

  3、解决问题:通过探索多边形内角和公式,尝试从不同角度寻求解决问题的方法并能有效地解决问题。

  4、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

  三、教学重、难点

  重点:探索多边形内角和。

  难点:探索多边形内角和时,如何把多边形转化成三角形。

  四、教学方法:

  引导发现法、讨论法

  五、教具、学具

  教具:多媒体课件

  学具:三角板、量角器

  六、教学媒体:

  大屏幕、实物投影

  七、教学过程:

  (一)创设情境,设疑激思

  师:大家都知道三角形的内角和是180,那么四边形的内角和,你知道吗?

  活动一:探究四边形内角和。

  在独立探索的基础上,学生分组交流与研讨,并汇总解决问题的方法。

  方法一:用量角器量出四个角的度数,然后把四个角加起来,发现内角和是360。

  方法二:把两个三角形纸板拼在一起构成四边形,发现两个三角形内角和相加是360。

  接下来,教师在方法二的基础上引导学生利用作辅助线的方法,连结四边形的对角线,把一个四边形转化成两个三角形。

  师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?

  活动二:探究五边形、六边形、十边形的内角和。

  学生先独立思考每个问题再分组讨论。

  关注:

  (1)学生能否类比四边形的方式解决问题得出正确的结论。

  (2)学生能否采用不同的方法。

  学生分组讨论后进行交流(五边形的内角和)

  方法1:把五边形分成三个三角形,3个180的和是540。

  方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180的和减去一个周角360。结果得540。

  方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180的和减去一个平角180,结果得540。

  方法4:把五边形分成一个三角形和一个四边形,然后用180加上360,结果得540。

  师:你真聪明!做到了学以致用。

  交流后,学生运用几何画板演示并验证得到的方法。

  得到五边形的内角和之后,同学们又认真地讨论起六边形、十边形的内角和。类比四边形、五边形的讨论方法最终得出,六边形内角和是720,十边形内角和是1440。

  (二)引申思考,培养创新

  师:通过前面的讨论,你能知道多边形内角和吗?

  活动三:探究任意多边形的内角和公式。

  思考:

  (1)多边形内角和与三角形内角和的关系?

  (2)多边形的边数与内角和的关系?

  (3)从多边形一个顶点引的.对角线分三角形的个数与多边形边数的关系?

  学生结合思考题进行讨论,并把讨论后的结果进行交流。

  发现1:四边形内角和是2个180的和,五边形内角和是3个180的和,六边形内角和是4个180的和,十边形内角和是8个180的和。发现2:多边形的边数增加1,内角和增加180。

  发现3:一个n边形从一个顶点引出的对角线分三角形的个数与边数n存在(n-2)的关系。

  得出结论:多边形内角和公式:(n-2)·180。

  (三)实际应用,优势互补

  1、口答:(1)七边形内角和()

  (2)九边形内角和()

  (3)十边形内角和()

  2、抢答:(1)一个多边形的内角和等于1260,它是几边形?

  (2)一个多边形的内角和是1440,且每个内角都相等,则每个内角的度数是()。

  3、讨论回答:一个多边形的内角和比四边形的内角和多540,并且这个多边形的各个内角都相等,这个多边形每个内角等于多少度?

  (四)概括存储

  学生自己归纳总结:

  1、多边形内角和公式

  2、运用转化思想解决数学问题

  3、用数形结合的思想解决问题

  (五)作业:练习册第93页1、2、3

初中数学教案13

  图样,图样,还是图样。到处都是图样,有的用尖细的木片潦草地写在满是灰尘的大理石桌上,有的用一块木炭涂在墙上,有的用粉笔画在地上。阿基米德穿着一件白色的旧长袍,坐在桌子上思索起来。手指象发烧似的微微颤抖。豆大的汗珠裹着灰尘,从他极度疲倦的脸上落在手上,落到衣服上,落到随手扔在桌子上的一卷草片纸上。

  他没有跑,没有象一个无耻的胆小鬼那样从战场上逃跑。他竭尽全力,把全部的智慧和热情都献给了这座城市。多少个不眠之夜,多少个酷热难耐的白天,他就是整个叙拉古防御阵地的大脑和心脏。一提到他的名字,罗马人就惊恐地逃离城墙,他们唯恐躲避不及致命的投石炮,以及纷纷落下的炽热的涂满油脂的麻屑,标枪与长矛的骤雨。不就是他,不动咫尺就把接近城市海防工事的罗马舰队都烧毁了吗?不就是他,一个人用他发明的一组复杂的滑车把罗马的兵船吊在半空,再从高处把船抛向深海里去了吗?但这对于一个人的独创才能和精力来说,已经是极限了,他已经是一个衰弱的老人,他的手握不住战剑。他坚持留在阵地上,直至敌人出现在城墙外边。而这时戴着盔形帽的罗马人已经开始在被岁月磨出来的马路的石块上晃动。希腊人竭尽最后的力量进行抵抗,肉搏战当然没有阿基米德参加的份。。。。。。

  在中午被烈日晒的发烫的物体,现在让令人惬意的凉爽的空气温柔地笼罩着。战斗的喊声透过厚实的门帘隐隐约约地传进屋里。挂在两个窗户上的草帘子使得屋里稍微有点昏暗,但一点也不妨碍看清楚眼睛看惯的东西。 生命就要完结,这一生是漫长而又艰难的。在命运给予他的七十五年里,在不停的探索中,在持续的紧张中,在旅行中,在工作室,造船厂和采石场的不断的争论中,他从未能回顾过自己的人生,没有考虑一下是否活得合理。伊壁鸠鲁(前341—前270 古希腊唯物主义哲学家,在伦理观上,主张人生的目的在于避免苦痛,使心身安宁,怡然自得,这才是人生最高的幸福)这位激进的老人如此忘情地说过的那种快乐,哪怕是一部分,阿基米德也没有从生活中得到过。在他还是一个十七岁的青年人时,曾经站在这位伟大哲学家的坟墓上,思索着用自己的一生实现他富有人生乐趣的哲学。他实现了吗?

  还在青年时代,他就踏上了这条荆棘丛生的,曲折的,布满无数坎坷的学者道路。学者的生活。。。。。。当生活道路开始的时候,他曾经把生活想象的很不实际。他用充满甜蜜的幸福,普遍的崇敬和持久不变的,任凭什么也不能蒙蔽的荣誉来描绘自己青年时代雄心勃勃的梦想。但生活并非如此,他竟然是格外地严酷。他实际体验到,这生活是一天一时也不停地,终身为一个神灵,一个偶像,一个各种思想和愿望的主宰服务。科学就是一个催眠术家,只要一次受到科学真理魔术般的诱惑,立刻就会为了科学而忘掉一切,直至最后进入坟墓。

  荣誉是有的,但是这荣誉足以为不学无术者和嫉妒者们的大声嘲笑所败坏。是有许多狂热的崇拜者,但也有许多恶毒的非难者,他们不错过任何一个机会,通过假借的名义,公开和秘密地对他进行侮辱,诋毁和诽傍,以他为笑柄。。。。。。

  他本人的生活是这样,他父亲的生活也是这样。他父亲叫做菲迪亚斯。供人参阅的备忘录描述了他很早的童年时代的情形,小阿基米德似乎不得不让每一个新认识的人相信,他的父亲只是和奥利匹亚的<<宙斯>>像和雅典的女神像的著名的建造者,比阿基米德天文学家的父亲早生一百多年的雕刻家菲迪亚斯同姓。奇怪的是,菲迪亚斯竟然不是国王亥厄洛的亲戚,相反,完全出乎意料之外,阿基米德却是国王亥厄洛的一个亲戚,就是说,也是国王儿子格隆的一个亲戚。。。。。。

  这里是繁华的亚历山大城。阿基米德花了许多时间沿着城市的石头道散步,登上佛洛斯灯塔,从那里了望拥簇着似乎是从地球上所有有人居住的地方抵达到这里的希腊,罗马,腓尼基,波斯和其它国家的船只的港湾。但是,比这多得多的时间,他是在著名的亚历山大图书馆里度过的。世界上任何一个图书馆可能都要羡慕这家图书馆所收集的抄本和手稿。在图书馆里,集中了伟大的亚历山大城所有最优秀的青年人。在和那些崇拜本国著名的欧几里德的年轻人的热烈争论中,阿基米德对自己的科学立场的.理解逐渐成熟,有些地方与亚历山大人接近,有些地方则与他们截然不同。但是,尽管在观点上有所不同,他刚一熟悉欧几里德的著作,对已故的伟大学者欧几里德的虔诚的敬意就完全征服了阿基米德。欧几里德的<<几何原本>>从此成为他整个漫长一生的必读之书。。。。。。

  战斗的呐喊声越来越大。厚实的窗帘已经挡不住获胜的罗马人狂喜的欢呼声,战剑打击叙拉古最后一批保卫者的盾牌的叮当声,还有那刺向他们被长时间的防御战折磨得精疲力尽的身体的沉闷声。获胜的敌人已经占领了这座苦难的城市,又醉心于卑鄙无耻的,令人痛恶的杀掠,连儿童,妇女和老人也不放过。

  非常奇怪的是,所以这一切————战剑的叮当声,垂死者的呻吟声,罗马人胜利的欢呼声,都是这样地遥远,似乎是在半个多世纪以前发出的。阿基米德突然以一种可怕的清醒回想起自己乘一艘小船从亚历山大到叙拉古所经历的漫长而又十分危险的旅程。在危机四伏的不平静的大海中,绿色的波涛的巅峰翻腾着白色的大理石般的泡沫,不停地撞击着毫无保护的不坚固的小船,船上可怜的人们觉得好像无论是人,还是超人的力量都已经不能把他们从海神的怀抱里解救出来。 而就在这时,舵手使出全身的力气掌稳沉重的船舵,高高地向上搬动舵尾,用力地冲向那轰隆作响的摇荡的浪山。船象一匹戴上嚼子的马,战栗着,一会儿呆立在高高的浪峰上,一会儿又摇晃着跌进随之而来的无底的深渊。。。。。。

  船驶离亚历山大之时,装饰着色彩缤纷的船帆,宛如一位服装时髦的美女,而抵达叙拉古时,却遍体鳞伤,千疮百孔,失去了桅杆和船帆,简直就是一个衣衫褴褛的女乞丐了。。。。。。

  一个罗马兵凶恶的面孔突然出现在眼前,在他身后是一群形形色色的叙拉古人,正在走去迎接无数条载着有半死不活的航海者的战船。这个外国的不速之客从哪里来?是怎么来的呢?这个人张牙舞爪,脖子上的青筋暴起,叫嚷者什么,阿基米德却听不见他的话。往事仍然把阿基米德死死地拖住不放,忘却现实的销魂的魔力还没有退却。。。。。。

  幻影没有消失。在它还没有最后填满整个房间,把整个古老的叙拉古阳光充足的港湾里毫无剩余地从房间里排挤出去之前,它在数学家视线模糊的眼睛里仍然在扩大,扩大。啊,原来这里还有个人。这时,一个强盗,杀人凶手找到了数学家阿基米德的住宅。这个残忍的罗马士兵————数学家以前几乎没有想过的死亡就这样悄悄地向她逼近了。

  "别动我的图案!"老人声音低微,但语气却强硬地命令道。这就是他说的最后一句话。一把宽大的双刃剑用力地砍在这位伟大的世界公民头发斑白,疲惫不堪的,但却威严自豪,充满灵感的头颅上。。。。。。

  据说,阿基米德就这样在位于被罗马人攻取并抢劫的叙拉古的一条街道上的房间里被杀害了。甚至罗马主将马尔采勒,这个长期徒劳地企图占领这座城市的不共戴天的,阴险的敌人,在得知这位最伟大的学者和最热情和无畏的爱国主义者的死讯之后,也感到极度的悲伤。

初中数学教案14

  一、课题引入

  为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.

  对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.

  二、课题研究

  在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.

  为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.

  我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.

  在正数的前面添加一个“-”号,比如在5的`前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.

  于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.

  利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.

  借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.

  三、巩固练习

  例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?

  思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.

  特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.

  再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.

  例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元

  日期周二周三周四周五

  开盘+0.16+0.25+0.78+2.12

  收盘-0.23-1.32-0.67-0.65

  当日收盘价

  试在表中填写周二到周五该股票的收盘价.

  思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.

  因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:

  周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.

初中数学教案15

  一、素质教育目标

  (一)知识教学点

  1.掌握的三要素,能正确画出.

  2.能将已知数在上表示出来,能说出上已知点所表示的数.

  (二)能力训练点

  1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.

  2.对学生渗透数形结合的思想方法.

  (三)德育渗透点

  使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.

  (四)美育渗透点

  通过画,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受.

  二、学法引导

  1.教学方法:根据教师为主导,学生为主体的'原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.

  2.学生学法:动手画,动脑概括的三要素,动手、动脑做练习.

  三、重点、难点、疑点及解决办法

  1.重点:正确掌握画法和用上的点表示有理数.

  2.难点:有理数和上的点的对应关系。

  四、课时安排

  1课时

  五、教具学具准备

  电脑、投影仪、自制胶片.

  六、师生互动活动设计

  师生同步画,学生概括三要素,师出示投影,生动手动脑练习

  七、教学步骤

  (一)创设情境,引入新课

  师:大家知识温度计的用途是什么?

  生:温度计可以测量温度

  (出示投影1)

  三个温度计.其中一个温度计的液面在0上20个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.

  师:三个温度计所表示的温度是多少?

  生:2℃,-5℃,0℃.

  我们能否用类似温度计的图形表示有理数呢?

  这种表示数的图形就是今天我们要学的内容—(板书课题).

  【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—.再从温度计这个实物形象抽象出来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.

  (二)探索新知,讲授新课

  1.的画法

  与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:

  第一步:画直线定原点原点表示0(相当于温度计上的0℃).

  第二步:规定从原点向右的为正方向那么相反的方向(从原点向左)则为负方向.(相当于温度计上℃以上为正,0℃以下为负).

  第三步:选择适当的长度为单位长度(相当于温度计上每1℃占1小格的长度).

  【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.

  让学生观察画好的直线,思考以下问题:

  (出示投影1)

  (1)原点表示什么数?

  (2)原点右方表示什么数?原点左方表示什么数?

  (3)表示+2的点在什么位置?表示-1的点在什么位置?

  (4)原点向右0.5个单位长度的A点表示什么数?原点向左个单位长度的B点表示什么数?

  根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出的定义。

  学生活动:同学们思考,并要求同桌相互叙述,互相纠正补充,语句通顺后举手回答.大家思考准备更正或补充。

【初中数学教案】相关文章:

初中数学教案08-12

角初中数学教案12-30

人教版初中数学教案07-17

初中数学教案模板11-02

初中数学教案范文02-21

初中数学教案《圆》03-05

初中数学教案:矩形01-01

【荐】初中数学教案11-26

初中趣味数学教案02-02

初中数学教案【热门】11-20