初中数学数据的波动优秀教案
●教学目标
(一)教学知识点
1.掌握极差、方差、标准差的概念.
2.明白极差、方差、标准差是反映一组数据稳定性大小的.
3.用计算器(或计算机)计算一 组数据的标准差与方差.
(二)能力训练要求
1.经历对数据处理的过程,发展学生初步的统计意识和数据处理能力.
2.根据极差、方差、标准差的大小,解决问题,培养学生解决问题的能力.
(三)情感与价值观要求
1.通过解决现实情境中问题,增强数学素养,用数 学的眼光看世界.
2.通过小组活动,培养学生的合作意识和能力.
●教学重点
1.掌握极差、方差或标准差的概念,明白极差、方差、标准差是刻画数量离散程度的几个统计量.
2.会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性 .
●教学难点
理解方差、标准差的概念,会求一组数据的方差、标准差.
●教学方法
启发引导法
●教学过程
Ⅰ.创设现实问题情景,引入新课
[师]在信息技术不断发展的社会里,人们需要对大量纷繁复杂的'信息作出恰当的选择与判断.
当我们为加入“WTO”而欣喜若狂的时刻,为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口 一批规格为75 g的鸡腿.现有2个厂家提供货源.
[生](1)根据20只鸡腿在图中的分布情况,可知甲、乙两厂被抽取鸡腿的平均质量分别为75 g.
(2)设甲、乙两厂被抽取的鸡腿的平均质量 甲, 乙,根据给出的数据,得
甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)
乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)
(3) 从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值是72 g,它们相差78-72=6 g;从乙厂抽取的这20只鸡腿质量的最大值是80 g,最小值是71 g,它们相差80-71=9(g).
(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿,因为甲厂鸡腿规格比较稳定,在75 g左右摆动幅度较小.
[师]很好.在我们的实际生活中,会出现上面的情况,平均值一样,这里我们也关心数据与平均值的离散程度 .也就是说,这种情况下,人们除了关心数据的“平均值”即“平均水平”外,人们往往还关注数据的离散程度,即相对于“平均水平”的偏离情况.
从上图也能很直观地观察出:甲厂相对于“平均水平”的偏离程度比乙厂相对于“平均水平” 的偏离程度小.
这节课我们就来学习关于数据的离散程度的几个量.
Ⅱ.讲授新课
[师]在上面几个问题中,你认为哪一个数值是反映数据的离散程度的一个量呢?
[生]我认为最大值与最小值的差是反映数据离 散程度的一个量.
[师]很正确.我们把一组数据中最大数据与 最小数据的差叫极差.而极差是刻画数据离散程度的一个统计量.
[生](1)丙厂这20只鸡腿质量的平均数:
丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)
极差为:79-72=7(g)
[生]在第(2)问中,我认为可以用丙厂这20只鸡腿的质量与其平均数的差的和来刻画这20只鸡腿的质量与其平均数的差距.
甲厂20只鸡 腿的质量与相应的平均数的差距为:
(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)
=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;
丙厂20只鸡腿的质量与相应的平均数的差距为:
(75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0
由此可知不能用各数据与平均数的差的和来衡量这组数据 的波动大小.
数学上,数据的离散程度还可以用方差或标准差来刻画.
其中方差是各个数据与平均数之差的平方的平均数,即
s2= [(x1- )2+(x2- )2+…+(xn- )2]
其中 是x1,x2,…,xn的平均数,s2是 方差,而标准差就是方差的算术平方根.
[生]为什么方差概念中要除以数据个数呢?
[师]是为了消除数据个数的印象.
由此我们知道:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.
[生]极差还比较容易算出.而方差、标准差算起来就麻烦多了.
[师]我们可以使用计算器,它可以很方便地计算出一组数据的标准差与方差,其大体步骤是 ;进入统计计算状态,输入数据,按键就可得出标准差.
同学们可在自己的计算器上探 索计算标准差的具体操作
计算器一般不具有求方差的功能,可以先求出标准差,再平方即可求出方差.
[生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;
s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.
因为s甲2<s丙2.
所以根据计算的结果,我认为甲厂的产品更符合要求.
Ⅲ.随堂练习
Ⅳ.课时小结
这节课 ,我们着重学习:对于一组数据,有时只知道它的平均数还不够,还需要知道它的波动大小;描述一组数据的波动大小的量不止一种,最常用的极差、方差、标准差;方差 和标准差既有联系 ,也有区别.
Ⅴ.课后作业
Ⅵ.活动与探究
甲、乙两名学生进行射击练习,两人在相同条件下各射靶10次,将射击结果作统计分析如下:
(1)请你填上表中乙学生的相关数据;
(2)根据你所学的统计数知识,利用上述某些数据评价甲、乙两人的射击水平.
【初中数学数据的波动优秀教案】相关文章:
数学教案:数据的波动08-27
初中数学说课稿《数据的波动》01-01
《数据的收集与处理》初中数学教案10-17
初中数学教案:数据的收集与处理10-21
初中数学优秀教案09-29
八年级数学《数据的波动》教学反思范文01-01
初中数学优秀教案范文01-11
初中数学《方程》优秀教案12-01
初中数学《分式》优秀教案12-03