初中数学《点和圆的位置关系》的教案设计

时间:2023-11-16 10:50:17 飞宇 初中数学教案 我要投稿
  • 相关推荐

初中数学《点和圆的位置关系》的教案设计(精选11篇)

  作为一名默默奉献的教育工作者,常常需要准备教案,借助教案可以更好地组织教学活动。那么你有了解过教案吗?下面是小编整理的初中数学《点和圆的位置关系》的教案设计,欢迎大家借鉴与参考,希望对大家有所帮助。

初中数学《点和圆的位置关系》的教案设计(精选11篇)

  初中数学《点和圆的位置关系》的教案设计 1

  教学目标

  (一)教学知识点

  了解不在同一条直线上的三个点确定一个圆,以及过不在同一条直线上的三个点作圆的方法,了解三角形的外接圆、三角形的外心等概念.

  (二)能力训练要求

  1.经历不在同一条直线上的三个点确定一个圆的探索过程,培养学生的探索能力.

  2.通过探索不在同一条直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略.

  (三)情感与价值观要求

  1.形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神.

  2.学会与人合作,并能与他人交流思维的过程和结果.

  教学重点

  1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论.

  2.掌握过不在同一条直线上的三个点作圆的方法.

  3.了解三角形的外接圆、三角形的外心等概念.

  教学难点

  经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆.

  教学方法

  教师指导学生自主探索交流法.

  教具准备

  投影片三张

  第一张:(记作3.4A)

  第二张:(记作3.4B)

  第三张:(记作 3.4C)

  教学过程

  Ⅰ.创设问题情境,引入新课

  [师]我们知道经过一点可以作无数条直线,经过两点只能作一条直线.那么,经过一点能作几个圆?经过两点、三点……呢?本节课我们将进行有关探索.

  Ⅱ.新课讲解

  1.回忆及思考

  投影片(3.4A)

  1.线段垂直平分线的性质 及作法.

  2.作圆的关键是什么?

  [生]1.线段垂直平分线的性质是:线段垂直平分线上的点到线段两端点的距离相等.

  作法:如下图,分别以A、B为圆心,以大于 AB长为半径画弧,在AB的两侧找出两交点C、D,作直线CD,则直线CD就是线段A B的垂直平分线,直线CD上的任一点到A与B的距离相等.

  [师]我们知道圆的定义是:平面上到定点的距离等于定长的所有点组成的图形叫做圆.定点即为圆心,定长即为半径.根据定义大家觉得作圆的关键是什么?

  [生]由定义可知,作圆的.问题实质上就是圆心和半径的问题.因此作圆的关键是确定圆心和半径的大小.确定了圆心和半径,圆就随之确定.

  2.做一做(投影片3.4B)

  (1)作圆,使它经过已知点A,你能作出几个这样的圆?

  (2)作圆,使它经过已知点A、B.你是如何作的?你能作出几个这样的圆?其圆心的分布有什么特点?与线段AB有什么关系?为什么?

  (3)作圆,使它经过已知点A、B、C(A、B、C三点不在同一条直线上).你是如何作的?你能作出几个这样的圆?

  [师]根据刚才我们的分析已知,作圆的关键是确定圆心和半径,下面请大家互相交换意见并作出解答.

  [生](1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆. 由于圆心是任意的.因此这样的圆有无数个.如图(1).

  (2)已 知点A、B都在圆上,它们到圆心的距离都等于半径.因此 圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任 意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径.圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).

  (3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三 点的距离相等,就是所作圆的圆心.

  因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.

  [师]大家的分析很有道理,究竟应该怎样找圆心呢?

  3.过不在同一条直线上的三点作圆.

  投影 片(3.4C)

  作法 图示

  1.连结AB、BC

  2.分别作AB、BC的垂直

  平分线DE和FG,DE和

  FG相交于点O

  3.以O为圆心,OA为半径作圆

  ⊙O就是所要求作的圆[

  他作的圆符合要求吗?与同伴交流.

  [生]符合要求.

  因为连结AB,作AB的垂直平分线ED,则ED上任意一点到A、B的距离相等;连结BC,作BC的垂直平分线FG,则FG上的任一点到B、C的距离相等.ED与FG的满足条件.

  [师]由上可 知,过已知一点可作无数个圆.过已知两点也可作无数个圆,过不在同一条直线上的三点可以作一个圆,并且只能作一个圆.

  不在同一直线上的三个点确定一个圆.

  4.有关定义

  由上可知,经过三角形的三个顶点可以作一个 圆,这个圆叫做三角形的外接圆(circumcircle of triangle),这个 三角形叫这个圆的内接三角形.

  外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心(circumcenter).

  Ⅲ.课堂练习

  已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?

  解:如下图.

  O为外接圆的圆心,即外心.

  锐角三角形的外心在三角形的内部,直角三角形的外心在斜边上,钝角三角形的外心在三角形的外部.

  Ⅳ.课时小结

  本节课所学内容如下:

  1.经历不在同一条直线上的 三个点确定一个圆的探索过程.

  方法.

  3.了解三角形的外接圆,三角形的外心等概念.

  Ⅴ.课后作业

  习题3.6

  Ⅵ.活动与探究

  如下图,CD所在的直线垂直平分线段AB.怎样使用这样的工具找到圆形工件的圆心?

  解:因为A、B两点在圆上,所以圆心必与A、B两点的距离相等,又因为和一条线段的两个端点距离相等的点在这条线段的垂直平分线上,所以圆心在CD所在的直线上.因此使用这样的工具可以作出圆形工件的任意两条直径.它们的交点就是圆心.

  初中数学《点和圆的位置关系》的教案设计 2

  教学目标:

  1、掌握点与圆的位置关系。

  2、过不在一直线上的三点确定一个圆,与画圆的方法。

  3、数学思想方法的渗透,分类、转化。

  教学重、难点:

有关经过已知点作圆的问题的分析。

  教学过程:

  一、引入:根据射击击中靶子的`位置不同,体现平面内点与圆的位置关系。

  即点A在圆内OA

  点B在圆上OB=rd=r

  点C在圆外OC>rd﹥r

  (d表示点到圆心的距离)

  二、有A、B、C三点,试画一下过点B的圆有几个?点A或C呢?

  试画出过二个点A、B的圆有几个?圆心有何特征?

  试画出过三个点A、B、C的圆有几个?圆心有何特征?半径呢?

  (分清一直线上与不在一直线上)

  得出结论:不在同一直线上的三个点确定一个圆。

  方法:作AB、BC、AC的垂直平分线,找到圆心。⊙O叫做△ABC的外接圆,O叫做外接圆的圆心——外心。△ABC叫做⊙O的内接三角形。

  思考:

  1、作一个钝角三角形,并且作出它的外接圆。

  2、作一个直角三角形,并且作出它的外接圆。

  3、指出锐角三角形、钝角三角形和直角三角形的外心,各有怎样的位置?

  4、任何一个四边形都有外接圆吗?

  初中数学《点和圆的位置关系》的教案设计 3

  学习目标:

1、理解点与圆的位置关系由点到圆心的距离决定;

  2、理解不在同一条直线上的三个点确定一个圆;

  3、会画三角形的外接圆,熟识相关概念

  学习过程

  一、点与圆的位置三种位置关系

  生活现象:阅读课本,这一现象体现了平面内点与圆的位置关系. 如图1所示,设⊙O的半径为r,

  A点在圆内,OA r

  B点在圆上,OB r

  C点在圆外,OC r

  反之,在同一平面上,已知的半径为r⊙O,和A,B,C三点:

  若OA>r,则A点在圆 ;

  若OB<r,则B点在圆 ;

  若OC=r,则C点在圆 。

  二、多少个点可以确定一个圆

  问题:在圆上的点有 多个,那么究竟多少个点就可以确定一个圆呢? 试一试

  画图准备:

  1、圆的 确定圆的大小,圆 确定圆的位置;

  也就是说,若如果圆的 和 确定了,

  那么,这个圆就确定了。

  2、如图2,点O是线段AB的垂直平分线

  上的任意一点,则有OA OB 图2

  画图:

  1、画过一个点的圆。

  右图,已知一个点A,画过A点的圆.

  小结:经过一定点的圆可以画 个。

  2、画过两个点的圆。

  右图,已知两个点A、B,画过同时经过A、B两点的圆.

  提示:画这个圆的关键是找到圆心,

  画出来的圆要同时经过A、B两点,

  那么圆心到这两点距离 ,可见,

  圆心在线段AB的 上。

  小结:经过两定点的圆可以画 个,但这些圆的圆心在线段的 上

  3、画过三个点(不在同一直线)的圆。

  提示:如果A、B、C三点不在一条直线上,那么经过A、B两点所画的圆的圆心在线段AB的垂直平分线上,

  而经过B、C两点所画的圆的圆心在

  线段BC的垂直平分线上,此时,这

  两条垂直平分线一定相交,设交点为O,

  则OA=OB=OC,于是以O为圆心,

  OA为半径画圆,便可画出经过A、B、C

  三点的圆.

  小结:不在同一条直线上的三个点确定 个圆.

  三、概括

  我们已经知道,经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆(circumcircle).三角形外接圆的圆心叫做这个三角形的外心(circumcenter).这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线的交点.

  如图:如果⊙O经过△ABC的三个顶点,

  则⊙O叫做△ABC的 ,圆心O叫

  做△ABC的' ,反过来,△ABC叫做

  ⊙O的 。

  △ABC的外心就是AC、BC、AB边的 交点。

  四、分组练习

  (A组)

  1、已知⊙O的半径为4,A为线段PO的中点,当OP=10时,点A与⊙O的位置关系为( )

  A.在圆上 B.在圆外 C.在圆内 D.不确定

  2、任意画一个三角形,然后再画这个三角形的外接圆.

  3、判断题:

  ①三角形的外心到三边的距离相等………………( )

  ②三角形的外心到三个顶点的距离相等。…………( )

  4、三角形的外心在这个三角形的( )

  A.内部 B.外部 C.在其中一边上 D.以上三种都可能

  5、能过画图的方法来解释上题。

  在下列三个圆中,分别画出内接三角形(锐角,直角,钝角三种三角形)

  6、直角三角形的两条直角边分别为5和12,则其外接圆半径的长为

  7、若点O是△ABC的外心,∠A=70°,则∠BOC=

  (B组)

  8、一个点到圆的最小距离为4cm,最大距离为9cm,则该圆的半径是( )

  A.2.5cm或6.5cm B.2.5cm C. 6.5cm D.5cm或13cm

  9、随意画出四点,其中任何三点都不在同一条直线上,是否一定可以画一个圆经过这四点?请试画图说明.

  初中数学《点和圆的位置关系》的教案设计 4

  一、课题

  27.3 过三点的圆

  二、教学目标

  1.经历过一点、两点和不在同一直线上的三点作圆的过程.

  2.. 知道过不在同一条直线上的三个点画圆的方法

  3.了解三角形的外接圆和外心.

  三、教学重点和难点

  重点:经历过一点、两点和不在同一直线上的三点作圆的过程.

  难点:知道过不在同一条直线上的三个点画圆的方法.

  四、教学手段

  现代课堂教学手段

  五、教学方法

  学生自己探索

  六、教学过程设计

  (一)、新授

  1.过已知一个点A画圆,并考虑这样的圆有多少个?

  2.过已知两个点A、B画圆,并考虑这样的圆有多少个?

  3.过已知三个点A、B、C画圆,并考虑这样的圆有多少个?

  让学生以小组为单位,进行探索、思考、交流后,小组选派代表向全班学生展示本小组的探索成果,在展示后,接受其他学生的质疑.

  得出结论:过一点可以画无数个圆;过两点也可以画无数个圆;这些圆的圆心都在连结这两点的线段的垂直平分线上;经过不在同一直线上的三个点可以画一个圆,并且这样的圆只有一个.

  不在同一直线上的三个点确定一个圆.

  给出三角形外接圆的概念:经过三角形三个顶点可以作一个圆,这个圆叫作三角形的外接圆,外接圆的'圆心叫做三角形的外心.

  例:画已知三角形的外接圆.

  让学生探索课本第15页习题1.

  一起探究

  八年级(一)班的学生为老区的小朋友捐款500元,准备为他们购买甲、乙 两种图书共12套.已知甲种图书每套45元,乙种图书每套40元.这些钱最多能买甲种图书多少套?

  分析:带领学生完成课本第13页的表格,并完成2、3 问题,使学生清楚通过列表可以更好的分析题目,对于情景较为复杂的问题情景可采用这种分析方法解题.另外通过此题,使学生认识到:在应不等式解决实际问题时,当求出不等式的解集后,还要根据问题的实际意义确定问题的解.

  (二)、小结

  七、练习设计

  P15习题2、3

  八、教学后记

  后备练习:

  1. 已知一个三角形的三边长分别是 ,则这个三角形的外接圆面积等于 .

  2. 如图,有A, ,C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()

  A.在AC,BC两边高线的交点处

  B.在AC,BC两边中线的交点处

  C.在AC,BC两边垂直平分线的交点处

  D.在A,B两内角平分线的交点处

  初中数学《点和圆的位置关系》的教案设计 5

  教学内容:

过三点的圆

  教学目标

  1.知识与技能目标

  (1)通过问题的解决过程,使学生了解三角形的外接圆、三角形的外心、圆的内接三角形的概念,理解“不在同一条直线上的三点确定一个圆”.

  (2)学生熟练掌握应用尺规“过不在同一条直线上的三点作圆的方法.

  (3)向学生渗透转化、分类讨论等数学思想方法,为今后学习数学打下基础.

  2.过程与方法目标

  通过学生自己动手作图,在动手参与的过程中探索、发现科学知识,进一步提高学生动手操作的积极性,提高学生应用数学知识解决实际问题的能力.

  3.情感态度与价值观目标

  (1) 增强学生的数学应用意识,提高学生积极学习数学的兴趣.

  (2) 培养学生的`创新意识和永无止境的科学探索精神.

  教学重点

“过不在同一条直线上的三点作圆”的方法.

  教学难点

如何确定圆的思维过程.

  关 键

如何确定一个圆的圆心.

  教学过程

  一、回顾交流,归纳提升

  1.两点可以确定几条直线?

  2.两直线相交有几个交点?

  3.叙述“线段垂直平分线”的性质,三角形三边的垂直平分线的交点有几个?交点与三角形三个顶点之间在距离上有什么关系?

  4.点和圆的位置关系有几种?

  二、问题牵引,导入新知

  问题:机械上的一个圆盘零件打碎后只保留下它的一块残片,

  如图:现要配制一个同样大小的圆盘,请大家帮助想一想有没有办法配制?

  师启发:从圆盘的残片中可以得到圆的什么?

  生:可以得到圆的一段弧.

  师: 要配制一个同样大小的圆盘,还需要知道原来圆盘的什么?

  生:半径.

  师:那么由残片中得到原来圆盘的一段弧,能不能确定这个圆弧的半径的大小呢?

  生:不能,还需要知道圆弧的圆心.

  师:知道了圆的一段弧,只要找到弧的圆心,弧的半径也就确定了.因而这个问题的关键是怎样由已知弧去确定弧的圆心的问题,现请大家思考以下两个问题:

  (1)弧上的点具有什么特性?

  (2)由圆弧上的一个点能否把圆心确定下来?两个点呢?三个点呢?

  师启发、引导,由学生完成这两个问题后,教师讲评.

  例:作圆,使它经过不在同一条直线上的三个已知点.

  此例由学生互相讨论后独立完成,并抽一名学生到黑板上板书,写出过程,画出图形.

  师生共同归纳结论:

  定理 : 不在同一条直线上的三点确定一个圆.

  注意:强调打点词的作用.

  师:如图,A、B﹑C三点在圆上称为接,由△ABC和⊙o的内外关系,由学生思考后回答以下两个问题,教师板书.

  (1)什么叫做三角形的外接圆?

  (2)什么叫做三角形的外心和圆的内接三角形?

  三、课堂练习,巩固深化

  P100 :1﹑2﹑3﹑4

  思考: (1) 经过同一直线上的三个点能作一个圆吗?

  (2) 经过任意四个点是不是一定可以画一个圆?请举例说明.

  四、课堂总结,发展潜能

  本节课主要学习了经过不在同一条直线上的三点作圆的问题,作圆的问题主要是根据已知条件去找圆心和半径的问题.由于作的圆要经过已知点,如果确定了圆心,半径也就确定了.因此作圆的关键在于找到圆心的问题,能否作圆以及作多少个圆都取决于能否确定圆心的位置和圆心的个数.

  五、布置作业,专题突破

  P112: 8﹑9﹑10

  初中数学《点和圆的位置关系》的教案设计 6

尊敬的各位老师:

  大家好!

  今天我说课的内容是人教版九年级上册24.1.1和24.2.1合成课《圆及点与圆的位置关系》。下面,我从教学模式,教材,教法,学法,学习过程和反思六个方面进行阐述。

  一、洋思教学模式:先学后教,当堂训练。

  1、“先学”,教师简明扼要地出示学习目标,提出自学要求,进行学前指导;提出思考题,规定自学内容;确定自学时间,完成自测题目。

  2、“后教”,在自学的基础上,教师与学生,学生与学生之间的互动学习。教师对学生解决不了的疑难问题,进行通俗有效的解释。

  3、“当堂训练”,在“先学后教”之后,让学生通过一定时间和一定量的训练,应用所学过的知识解决实际问题,加深理解课堂所学的重点和难点。

  4、课堂的主要活动形式:学生自学—学生独立思考—学生之间的讨论—学生交流经验。

  二、教材。

  本节课是人教版九年级上册24.1.1和24.2.1合成课《圆及点与圆的位置关系》,主要学习圆的描述定义和集合定义,以及点与圆的三种位置关系。学生在以前对圆已经有了初步了解,并且会利用圆规画圆,并会用自己的语言加以简单描述,初步具有了有条理地思考与表达的能力,为本章的深入学习奠定了基础。点与圆的位置关系是在理解圆的'定义的基础上展开的,通过圆的定义,我们知道:圆内各点到圆心的距离都小于半径;圆上各点到圆心的距离都等于半径;圆外各点到圆心的距离都大于半径。由此可知,每一个圆都把平面上的点分成三部分:圆内的点,圆上的点和圆外的点。对学生来说,这样比较容易理解,并通过代数关系表述几何问题,使学生深化理解代数与几何之间的联系,为后面接触直线与圆,圆与圆的位置关系作下铺垫。

  基于以上分析,依据数学课程标准,制定本节课的学习目标如下:

  1.理解圆的描述定义,了解圆的集合定义;

  2.经历探索点与圆的位置关系的过程,以及如何确定点和圆的三种位置关系;

  3.初步渗透数形结合和转化的数学思想,并逐步学会用数学的眼光和运动,集合的观点去认识世界,解决问题。

  学习重点:圆的概念的形成过程及定义,点与圆的几种位置关系以及用数量关系表述点与圆的位置关系。学习难点:判断点与圆的位置关系。

  三、教法。

  根据本节课的内容,结合九年级学生的认知特点,从学生已有的生活经验和知识出发,为学生提供充分的从事数学活动和交流的机会,促使他们在自主探索的过程中,真正理解和掌握基本的数学知识、数学思想和数学方法,同时获得广泛的数学经验。本节课运用操作,探究,讨论,发现等方法贯穿课堂始终:用“情境教学法”导入新课,激发学生的学习兴趣,引导学生深入研究圆与我们生活的密切联系;用“活动探究法”让学生动起来,从而主动探究点与圆的三种位置关系,完成实践操作;用“小组合作法”让学生在小组中尽情表达自己的观点,建立自信,取长补短,培养与人合作的能力。

  四、学法。

  九年级的学生已经具备了独立探索新知识的能力,并且对于新知识有着强烈的求知欲,在学习过程中应特别注意调动他们学习的积极性和创造性。俄罗斯教育家苏霍姆林斯基曾经说过:教给学生能借助已有知识去获取新知识,启发学生积极思考的教学技巧。在本节课的学习过程中,努力创造条件让学生根据老师提出的目标和途径,运用已有的知识与生活经验,动脑,动手,动口,进行观察,实验,阅读,思考,主动地研究问题,学会知识。学生先学,先练,老师后讲,后教。

  五、学习过程。

  1、问题牵引:提出问题

  情境1:“明月几时有”,“欲上青天揽明月”中的“明月”,给我们以圆的印象,说几个生活中有关圆的物体和成语。

  情境2、思考:车轮为什么做成圆形?如果车轮做成椭圆或方形,坐车的人是什么感觉?

  情境3、出示一个运动员打靶用的靶环,提问:你知道运动员的成绩是怎么计算的吗?图中的A,B,C三点分别表示某运动员打了三靶的着弹点与靶环中心十环区的位置,哪一靶的成绩最好?你是怎样判断的?

  2、学生自学:自学课本78,79,90页的内容,完成自学提纲上的题目。在这个环节,要注意细节,要循序渐进,层层深入,要注意用哪个问题或哪道题,可以把知识简单明了地让学生了解和理解。

  3、学生展示:学生以口头回答和板演的方式展示自学提纲上的问题。在这个环节上,教师尽可能不讲,有学生不明白的地方,充分实施“兵”教“兵”的策略。

  4、教师后教:针对学生自学过程中的疑惑,教师画龙点睛地进行讲解,把本节课的重点和学生的难点,言简意赅地讲解清楚,学生已经懂得就不再多说。

  5、当堂检测:这是为了再次突破难点,让学生把难点知识再次加深印象。同时,教师参与学生活动,和学生一起小结解此类题的方法,这样学生容易把知识贮存起来,并做到举一反三.

  6.精思慎想,忆收获:对自己说说本节课的收获,对同伴说说本节课需要注意的地方,对老师说说本节课的疑惑以及还没有弄明白的问题,即回顾本节课的知识,把难点和易错点再给大家梳理一遍。

  初中数学《点和圆的位置关系》的教案设计 7

  本节课成功之处有以下几点:

  1、让学生的数学学习贴近生活。

  数学来源于生活,并用于生活。初中数学,虽然知识越来越抽象,但是只要我们用心发现,还是可以找到现实生活中的素材。作为一名数学教师,要让学生体会他们学习的是有意义的数学,这些知识是与生活息息相关的,从而激起学生学习数学的兴趣。

  在本节课的开头,利用多媒体课件展示生活中的圆形,学生在享受数学美的同时也深切地感受到生活离不开圆,体会到学习圆的重要性。虽然小学阶段学生已经对圆的有关知识有所了解,但只是一种感性认识,知道一个图形是圆,还没有抽象出“平面上到定点的'距离等于定长的所有点组成的圆形叫做圆”的概念。本节课主要是让学生通过观察,把圆与车轮作类比,结合圆规画圆,得出圆的本质特点“圆周上的点到圆心的距离处处相等”后,就容易归纳出圆的定义。点和圆的位置关系也可以从生活中找到原型。已投射的飞镖和靶的位置关系就是一个很好的例子,它是学生既熟悉又比较感兴趣的事物。例1的应用更让学生体会生活中有数学,数学是解决实际问题的工具。

  总而言之,本节课确实让学生感到学习数学也就是关注生活,只不过给生活中的这些现象以新的说法。所以抽象的数学也就显得简单了,学生也就更加喜欢学数学了。

  2、改变了学习方式。

  《新课标》指出:“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与交流合作是学生学习数学的重要方式。”为此,我在课堂中给学生动手操作的机会,让每位学生用圆规在本子上画圆,同时要求他们动脑,动口,通过画圆过程体会圆的特点,以便于归纳圆的概念。让四位学生分两组合作在黑板上画圆,还让他们谈谈合作成功的经验(一位一定要固定好圆心,另一位一定要拉紧绳子的另一端粉笔头在黑板上绕一周)。所以得出确定圆需要两个要素即圆心和半径。在必要时,教师也让学生小组合作互相讨论,充分利用集体的智慧,使之能够解决较难的问题。

  3、问题设计符合学生的认知规律。

  从情境动画片中的车轮到为什么车轮要做成圆形,圆形车轮有什么特点把

  圆与车轮作类比有什么相似之处……,这些问题的设计非常连贯,学生也很主动地围绕“问题串”思考,自然地得出了圆的概念,解决了本节课的难点。再是例1的具体应用,再次让学生体验数学来源于生活并用于生活。

  初中数学《点和圆的位置关系》的教案设计 8

  高耸入云的建筑物,海洋石油钻井平台、人造地球卫星等等,都是人类数学智慧的结晶。接下来我们大家一起了解初三数学点和圆的位置关系教学计划。

  (一)创设情境 导入新课

  活动一:观察

  我国射击运动员在奥运会上获金牌,为我国赢得荣誉,图是射击靶的示意图,它是由许多同心圆(圆心相同,半径不相同)构成的,你知道击中靶上不同位置的成绩是如何计算的吗?

  提示:解决这个问题要研究点和圆的位置关系.

  活动二:问题探究

  问题1:观察图中点a,点b,点c与圆的位置关系?

  点a在圆内,点b在圆上,点c在圆外

  问题2:设⊙o半径为r,说出来点a,点b,点c与圆心o的距离与半径的关系:oa< r,ob = r,oc >r

  问题3:反过来,已知点到圆心的距离和圆的半径,能否判断点和圆的位置关系?

  设⊙o的半径为r,点p到圆心的距离op = d,则有:

  点p在圆内d点p在圆上d=r点p在圆外d>r例题讲解 如图所示,已知矩形abcd的边ab=3cm,ad=4cm.

  (1)以点a为圆心,4cm为半径作⊙a,则点b、c、d与⊙a的位置关系如何?

  (二)合作交流 解读探究

  活动三

  你知道击中靶上不同位置的成绩是如何计算的吗 ?

  射击靶图上,有一组以靶心为圆心的大小不同的圆,他们把靶图由内到外分成几个区域,这些区域用由高到底的环数来表示,射击成绩用弹着点位置对应的环数来表示.弹着点与靶心的距离决定了它在哪个圆内,弹着点离靶心越近,它所在的区域就越靠内,对应的环数也就越高,射击的成绩越好.

  活动四:探究

  (1)如图,做经过已知点a的圆,这样的圆你能做出多少个?

  (2)如图做经过已知点a、b的圆,这样的圆你能做出多少个?他们的圆心分布有什么特点?

  思考

  经过不在同一条直线上的三点做一个圆,如何确定这个圆的圆心?

  分析:如图 三点a、b、c不在同一条直线上,因为所求的圆要经过a、b、c三点,所以圆心到这三点的距离相等,因此这个点要在线段ab的垂直的平分线上,又要在线段bc的垂直的平分线上.

  1.分别连接ab、bc、ac

  2.分别作出线段ab的垂直平分线l1和l2,设他们的交点为o ,则oa=ob=oc;

  3.以点o为圆心,oa(或ob、oc)为半径作圆,便可以作出经过a、b、c的圆.

  由于过a、b、c三点的'圆的圆心只能是点o,半径等于oa,所以这样的圆只能有一个,即:

  结论:不在同一条直线上的三点确定一个圆.

  经过三角形的三个顶点可以做一个圆,这个圆叫做三角形的外接圆,

  外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的外心.

  (三)应用迁移 巩固提高

  1、判断下列说法是否正确

  (1)任意的一个三角形一定有一个外接圆( ).

  (2)任意一个圆有且只有一个内接三角形( )

  (3)经过三点一定可以确定一个圆( )

  (4)三角形的外心到三角形各顶点的距离相等( )

  2、如图,已知等边三角形abc中, 边长为6cm,求它的外接圆半径.

  3、如图,已知 rt⊿abc 中 ,若 ac=12cm,bc=5cm,求的外接圆半径.

  (四)总结反思 拓展升华

  总结:

  1、本节学习的数学知识:(1)点和圆的位置关系;(2)不在同一直至线上的三点确定一个圆。

  2、本节学习的数学方法是数形结合

  初中数学《点和圆的位置关系》的教案设计 9

  一、教学目标:

  根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为:

  (1)知识目标:

  a、知道直线和圆相交、相切、相离的定义。

  b、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。

  c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。

  2)能力目标:

  让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。

  3)情感目标:

  在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问题,让学生结合学过的知识,把它们抽象出几何图形,再表示出来。让学生感受到实际生活中,存在的直线和圆的三种位置关系,便于学生用运动的观点观察圆与直线的位置关系,有利于学生把实际的问题抽象成数学模型,也便于学生观察直线和圆的公共点的变化。

  二、教材的重点难点

  直线和圆的三种位置关系是重点,本课的难点是直线和圆的三种位置关系的性质与判定的应用。

  三、在教学中如何突破这个重点和难点

  解决重点的方法主要是:

  (1)由学生观察老师展示的一轮红日从海平面升起的照片提出问题,能不能我们学过的知识把它们抽象出几何图形再展示出来(让学生尝试通过日出的情境画出几种情况)。

  (2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。是什么?)。

  在说直线与圆的位置关系时,如何突破这个难点:

  (1)突破直线和圆不能有两个以上的公共点,让学生讨论,最后明确否定。

  (2)把直线在圆的上下移动,引导学生用运动的观点观察直线和圆的位置关系,并让他们发现直线与圆的公共点的个数,揭示直线和圆相交、相切、相离的定义,归纳直线和圆的三种位置关系。

  (3)突破直线和圆有唯一一个公共点是直线和圆相切(指直线与圆有一个并且只有一个公共点,它与有一个公共点的含义不同)。

  (4)突破直线和圆的位置关系的.(如果圆O的半径为r,圆心到直线的'距离为d,

  1、直线l与圆 O相交<=>d

  2、直线l与圆 O相切<=>d=r

  3、直线l与圆 O相离<=>d>r

  (上述结论中的符号“<=>”读作“等价于”)

  式子的左边反映是两个图形(直线和圆)的位置关系的性质,右边是反映直线和圆的位置关系的判定。

  四、教学程序

  创设情境,导入新课,新授,巩固练习,学生质疑,学生小结,布置作业

  [提问] 通过观察、演示,你知道直线和圆有几种位置关系?

  [讨论] 一轮红日从海平面升起的照片

  [新授] 给出相交、相切、相离的定义。

  [类比] 复习点与圆的位置关系,讨论它们的数量关系。通过类比,从而得出直线与圆的位置关系的性质定理及判定方法。

  [巩固练习] 例1,

  出示例题

  例1 在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆与AB有什么样的位置关系?为什么?

  (1)r=2cm; (2)r=2、4cm; (3)r=3cm

  由学生填写下例表格。

  直线和圆的位置关系

  公共点个数

  圆心到直线距离d与半径r关系

  公共点名称

  直线名称

  图形

  补充练习的答案由师生一起归纳填写

  初中数学《点和圆的位置关系》的教案设计 10

尊敬的各位评委,亲爱的各位同行:

  大家好!今天我 的说课 内容是人教版九年级上册第二十四章第二节第二课时的直线与圆的位置关系。下面我将以教什么、怎么样教、为什么这样教为思路从教材分析、学情分析、教学目标、学法教法、教学过程和板书设计六个方面对本课进行说明。

  一、教材分析

  教材的地位和作用。

  圆在平面几何中占有重要地位, 它被安排在初中数学第二十四章, 属于 一个提高阶段 。而 直线和圆的位置关系 又是本章的一个中心内容。 从知识体系上看 :它有 着承上启下的作用 , 既是 对 点与圆的位置关系的延续与提高,又是 后面 学习切线的性质和判定、圆和圆的位置关系 及高中继续学习几何知识 的基础 。 从数学思想方法层面上看 : 它运用运动变化的观点揭示了知识的发生过程 以及相关知识 间的内在联系,渗透了数形结合、分类讨论、类比等数学思想方法,有助于提高学生的数学思维品质 。

  二、学情分析

  在此之前学生已经 学习了点和圆的位置关系 , 对圆有了一定 的 感性和理性认识 ,但在某种程度上特别是平面几何问题上,学生还是依靠事物的具体直观形象。加之 九年级学生好奇心强,活泼好动 , 注意力易分散 , 认知水平大都停留在表面现象, 对亲身体验的事物容易激发求知的渴望 , 因此要想方设法,引导学生深入思考、主动探究、主动获取新知识。

  三、教学目标:

  根据学生已有的认知基础及本课的教材的地位、作用 ,结合数学课程标准 我将确定如下的 教学 目标:

  (1) 掌握直线和圆的三种位置关系 性质及判定。

  (2) 通过观察、实验、合作 交流 等数学活动使学生了解探索问题的一般方法;

  (3) 通过直线和圆的位置关系的探究,向学生渗透分类讨论、数形结合 、类比 的数学思想 ,

  陪养学生观察、分析和概括的能力;

  (4 ) 体会事物间的相互渗透 , 感受数学思维的严谨性,并在合作学习中 体验 成功的 喜悦 。

  教 学 的重难点 :

  重点:直线和圆的三种位置关系的性质与判定。

  难点: 用数量法刻画 直线与圆的三种位置关系。

  突破难点的策略: 引导学生动手动脑、操作实践 , 类比点和圆的位置关系的判定方法,配合几何画板直观演示 来 加深学生对知识的理解。

  四、学法教法

  教无定法,教学有法,贵在得法。根据新课改理念及学生特点,本节课 主要 采用 “启发式”问题教学法 , 根据 维果斯基 的“ 最近发展区理论 ”, 站在学生思维的最近发展区上启发诱导,用环环相扣的问题将探究活动层层深入 ; 整堂课紧紧围绕 “情景问题――学生体验――合作交流”的学习模式 展开 ,并充分发挥 几何画板、多媒体课件直观、形象的功能辅助教学 ,激励学生积极参与、观察、发现其知识的内在联系,使每个学生都能积极思维。

  五、教学过程

  (1) 创设情境,引出课题(3分钟)

  从学生的生活经验和已有知识出发,创设情境 。 通过多媒体课件展示《海上日出》的朗诵视频,让学生观察并抽象出其中的几何图形(直线和圆) , 营造探索问题的氛围 , 从而引出课题(直线和圆的位置关系) 。 同时让学生体会到数学知识无处不在,应用数学无处不有 , 符合“数学教学应从生活经验出发”的新课标要求。

  (2) 动手操作 探求新知(20分钟)

  a、学生动手实验――探究位置关系 得出概念

  美国学者说过:听过的会忘记,看过的会记得,做过的能学会。可见实验法在教学中有着何等重要的作用。从这一思想出发,我设计了一个动手操作的环节:让学生在纸上画一条直线, 把课前准备好的圆卡片,在纸上移动,再现日出的整个过程,并归纳其公共点的个数变化情况。

  然后提出问题: 你能 由此 归纳出直线和圆有几种不同的位置关系吗? 你是怎样区分这几种位置关系的?如何用语言描述位置关系? 教师层层设问,让学生思维自然发展,教学有序的进入实质部分。 由于动手操作环节的铺垫, 学生很容易能够从公共点个数的变化 情况对 直线和圆的位置关系 进行分类 。通过学生演示归纳,师生共同 得出 有关概念。教师板书讲解内容并总结:可利用直线与圆的交点个数判断直线与圆的三种位置关系。特别强调 相切中 “只有一个交点”的含义。

  b、讲练结合―― 运用 定义法、引出数量法

  在学习了直线和圆的位置关系后,学生自然就得到了直线和圆的位置关系的第一种判定方法:定义法 ,这种方法对学生而言比较直观简单,因此教材上没有相应的练习。于是我设计了一道练习题:在练习中 让学生发现用定义法来判断直线和圆的位置关系的局限性, 当公共点个数不好判断时又该怎么办呢? 你能类比之前所学的点和圆的位置关系的判定方法加以说明吗? 从而引出用数量关系刻画直线和圆的位置关系的学习。

  c、类比总结――探究第二种判定方法

  由点与圆的`位置关系的性质与判定,类比迁移到直线与圆的位置关系,学生较容易想到画图、测量等实验方法,小组交流合作,教师适时指导 , 再利用几何画板 重复演示 得出结论:

  ①d>r,直线L和⊙O相离;

  ②d=r,直线L和⊙O相切;

  ③d<r,直线L和⊙O相交,也就是用圆心到直线的距离d与半径r的大小关系来判定直线和圆三种位置关系, 并强调:既是性质也是判定 。

  在动手操作, 探索新知 的过程中,让学生参与到定义的形成与给出过程中,在练习中发现定义法的局限性,从而引出对数量法的学习,让学生类比点和圆的位置关系的判定, 验证 直线和圆的位置关系,更加直接而自然 ,有效的突破教学难点 ,也让学生感受到所学知识间的相互联系。

  (3) 巩固练习,提高能力(10分钟)

  为 得到及时的反馈情况, 我设计了如下的练习,而这个时段的学生 因 疲劳,注意力 易 分散,我抓住学生的好胜心理,首先设计了 一 道填空题:看谁抢得快

  1、已知圆的直径为13cm,设直线和圆心的距离为d :

  1)若d=4、5cm ,则直线和圆 , 直线和圆有____个公共点;

  2)若d=6、5cm ,则直线和圆______, 直线和圆有____个公共点;

  3)若d= 8 cm ,则直线和圆______, 直线和圆有____个公共点。

  这 道 题 同时运用了数量法和定义法的判定 ,解题关键是 要引导学生 找出d与r并进行比较,从中体现数学中的转化思想。

  2 、Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm, 判断以点 C为圆心,下列r为半径的 ⊙ C与AB的位置关系 :

  (1)r =2cm ;

  (2)r =2、4cm ;

  (3)r =3cm 。 (P101习题24、2第2题)

  3 、在Rt△ABC中,∠C=90°,AC=3cm,BC= 4cm,以C为圆心,r为半径的圆

  (1)当圆C与线段AB相交时,r ;

  (2)当圆C与线段AB相切时,r ;

  (3)当圆C与线段AB相离时,r ;

  解题关键是要引导学生 找出这两个问题的不同与联系,再进行求解。通过这两个题可以培养学生解决变式问题的能力。 教师引导学生完成,加强个别指导。

  (4) 课堂小结 构建体系(5分钟)

  本节课你有哪些收获? 你还有哪些疑惑 ?

  (通过提问方式进行小结,交流收获与不足,让学生养成学习,总结―再学习的良好学习习惯。教师再总结:这节课我们学习了三种位置关系、两种判定方法、三种思想,有利于帮助学生理清知识脉络,巩固学习效果。3、2、3)

  (5) 作业布置 课后延伸 (2分钟)

  必做题:

  1、阅读教材100-101

  2、P112练习2

  选做题:如图,已知∠AOB=β(β为锐角) ,M为OB上一点,且 OM=5cm,以M为圆心、以2.5为半径作圆

  (1)⊙M与直线OA的位置关系由 大小决定;

  (2)若⊙M与直线OA相切,则β= ;

  (3)若⊙M与直线OA相交,则β的取值范围是 。

  初中数学《点和圆的位置关系》的教案设计 11

  教学目标:

  1.掌握圆与圆的五种位置关系的定义、性质及判定方法;两圆连心线的性质;

  2.通过两圆的位置关系,培养学生的分类能力和数形结合能力;

  3.通过演示两圆的位置关系,培养学生用运动变化的观点来分析和发现问题的能力.

  教学重点:

  两圆的五种位置与两圆的半径、圆心距的数量之间的关系.

  教学难点:

  两圆位置关系及判定.

  (一)复习、引出问题

  1.复习:直线和圆有几种位置关系?各是怎样定义的?

  (教师主导,学生回忆、回答)直线和圆有三种位置关系,即直线和圆相离、相切、相交.各种位置关系是通过直线与圆的公共点的`个数来定义的

  2.引出问题:平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?

  (二)观察、分类,得出概念

  1、让学生观察、分析、比较,分别得出两圆:外离、外切、相交、内切、内含(包括同心圆)这五种位置关系,准确给出描述性定义:

  (1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部时,叫做这两个圆外离.(图(1))

  (2)外切:两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部时,叫做这两个圆外切.这个唯一的公共点叫做切点.(图(2))

  (3)相交:两个圆有两个公共点,此时叫做这两个圆相交.(图(3))

  (4)内切:两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部时,叫做这两个圆内切.这个唯一的公共点叫做切点.(图(4))

  (5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部时,叫做这两个圆内含(图(5)).两圆同心是两圆内含的一个特例.(图(6))

  2、归纳:

  (1)两圆外离与内含时,两圆都无公共点.

  (2)两圆外切和内切统称两圆相切,即外切和内切的共性是公共点的个数唯一

  (3)两圆位置关系的五种情况也可归纳为三类:相离(外离和内含);相交;相切(外切和内切).

  教师组织学生归纳,并进一步考虑:从两圆的公共点的个数考虑,无公共点则相离;有一个公共点则相切;有两个公共点则相交.除以上关系外,还有其它关系吗?可能不可能有三个公共点?

  结论:在同一平面内任意两圆只存在以上五种位置关系.

  (三)分析、研究

  1、相切两圆的性质.

  让学生观察连心线与切点的关系,分析、研究,得到相切两圆的连心线的性质:

  如果两个圆相切,那么切点一定在连心线上.

  这个性质由圆的轴对称性得到,有兴趣的同学课下可以考虑如何对这一性质进行证明

  2、两圆位置关系的数量特征.

  设两圆半径分别为R和r.圆心距为d,组织学生研究两圆的五种位置关系,r和d之间有何数量关系.(图形略)

  两圆外切d=R+r;

  两圆内切d=R-r(R>r);

  两圆外离d>R+r;

  两圆内含dr);

  两圆相交R-r

  说明:注重“数形结合”思想的教学.

  (四)应用、练习

  例1:如图,⊙O的半径为5厘米,点P是⊙O外一点,OP=8厘米

  求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少?

  (2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少?

  解:(1)设⊙P与⊙O外切与点A,则

  PA=PO-OA

  ∴PA=3cm.

  (2)设⊙P与⊙O内切与点B,则

  PB=PO+OB

  ∴PB=13cm.

  例2:已知:如图,△ABC中,∠C=90°,AC=12,BC=8,以AC为直径作⊙O,以B为圆心,4为半径作.

  求证:⊙O与⊙B相外切.

  证明:连结BO,∵AC为⊙O的直径,AC=12,

  ∴⊙O的.半径,且O是AC的中点

  ∴,∵∠C=90°且BC=8,

  ∴,

  ∵⊙O的半径,⊙B的半径,

  ∴BO=,∴⊙O与⊙B相外切.

【初中数学《点和圆的位置关系》的教案设计】相关文章:

《圆与圆的位置关系》的教案12-16

直线和圆的位置关系教学反思04-14

《圆与圆的位置关系》公开课教案12-17

原创:课题:§24.2.3 圆和圆的位置关系(我的市优课教案)12-17

《直线与圆的位置关系》心得体会12-16

《多边形和圆的关系 》教案12-16

初中数学《两条直线的位置关系》的教案(通用6篇)02-06

初中数学圆教案04-17

初中数学《圆 》教案12-30

小学数学圆的知识点总结11-04