二次根式

时间:2023-05-02 02:26:25 初中数学教案 我要投稿

二次根式

一、教学目标 

1.了解二次根式的意义;

2. 掌握用简单的一元一次不等式解决二次根式中字母的取值问题;

3. 掌握二次根式的性质 和 ,并能灵活应用;

4.通过二次根式的计算培养学生的逻辑思维能力;

5. 通过二次根式性质 和 的介绍渗透对称性、规律性的数学美.

二、教学重点和难点

重点:(1)二次根的意义;(2)二次根式中字母的取值范围.

难点:确定二次根式中字母的取值范围.

三、教学方法

启发式、讲练结合.

四、教学过程 

(一)复习提问

1.什么叫平方根、算术平方根?

2.说出下列各式的意义,并计算:

, , , , , , ,

通过练习使学生进一步理解平方根、算术平方根的概念.

观察上面几个式子的特点,引导学生总结它们的被平方数都大于或等于零,其中 ,

, , , 表示的是算术平方根.

(二)引入新课

我们已遇到的 , , ,这样的式子是我们这节课研究的内容,引出:

新课:二次根式

定义: 式子 叫做二次根式.

对于 请同学们讨论论应注意的问题,引导学生总结:

(1)式子 只有在条件a≥0时才叫二次根式, 是二次根式吗? 呢?

若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分.

(2) 是二次根式,而 ,提问学生:2是二次根式吗?显然不是,因此二次

根式指的是某种式子的“外在形态”.请学生举出几个二次根式的例子,并说明为什么是二次根式.下面例题根据二次根式定义,由学生分析、回答.

例1 当a为实数时,下列各式中哪些是二次根式?

分析: , , , 、 、 、 四个是二次根式. 因为a是实数时,a+10、a2-1不能保证是非负数,即a+10、a2-1可以是负数(如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0),因此, 与 不是二次根式.

例2 x是怎样的实数时,式子 在实数范围有意义?

解:略.

说明:这个问题实质上是在x是什么数时,x-3是非负数,式子 有意义.

例3  当字母取何值时,下列各式为二次根式:

(1) (2) (3) (4)

分析:由二次根式的定义 ,被开方数必须是非负数,把问题转化为解不等式.

解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时, 是二次根式.

(2)-3x≥0,x≤0,即x≤0时, 是二次根式.

(3) ,且x≠0,∴x>0,当x>0时, 是二次根式.

(4) ,即 ,故x-2≥0且x-2≠0, ∴x>2.当x>2时, 是二次根式.

例4  下列各式是二次根式,求式子中的字母所满足的条件:

(1) ; (2) ; (3) ; (4)

分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,.即: 只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零.

解:(1)由2a+3≥0,得 .

(2)由 ,得3a-1>0,解得 .

(3)由于x取任何实数时都有|x|≥0,因此,|x|+0.1>0,于是 ,式子 是二次根式. 所以所求字母x的取值范围是全体实数.

(4)由-b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0.

(三)小结(引导学生做出本节课学习内容小结)

1.式子 叫做二次根式,实际上是一个非负的实数a的算术平方根的表达式.

2.式子中,被开方数(式)必须大于等于零.

(四)练习和作业 

练习:

1.判断下列各式是否是二次根式

分析:(2) 中, , 是二次根式;(5)是二次根式. 因为x是实数时,x、x+1不能保证是非负数,即x、x+1可以是负数(如x<0时,又如当x<-1时=,因此(1)(3)(4)不是二次根式,(6)无意义.

2.a是怎样的实数时,下列各式在实数范围内有意义?

五、作业 

教材P.172习题11.1;A组1;B组1.

六、板书设计 

二次根式

【二次根式】相关文章:

关于把二次根式化为最简二次根式的习题04-28

二次根式教案02-15

二次根式的除法04-28

二次根式 习题04-28

二次根式的加减(2)05-01

二次根式教学反思04-07

数学二次根式教案02-15

二次根式教案15篇02-27

二次根式的加减教学反思04-30

二次根式的除法教学反思04-29