数学三角形全等的判定3教案

时间:2023-06-27 17:05:22 偲颖 初中数学教案 我要投稿
  • 相关推荐

数学三角形全等的判定3教案

  作为一名辛苦耕耘的教育工作者,就不得不需要编写教案,教案有助于学生理解并掌握系统的知识。写教案需要注意哪些格式呢?以下是小编帮大家整理的数学三角形全等的判定3教案,仅供参考,希望能够帮助到大家。

数学三角形全等的判定3教案

  数学三角形全等的判定3教案1

  教学目标:

  1、知识目标:

  (1)掌握已知三边画三角形的方法;

  (2)掌握边边边公理,能用边边边公理证明两个三角形全等;

  (3)会添加较明显的辅助线。

  2、能力目标:

  (1)通过尺规作图使学生得到技能的训练;

  (2)通过公理的初步应用,初步培养学生的逻辑推理能力。

  3、情感目标:

  (1)在公理的形成过程中渗透:实验、观察、归纳;

  (2)通过变式训练,培养学生“举一反三”的学习习惯。

  教学重点:

  SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

  教学难点:

  如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

  教学用具:

  直尺,微机

  教学方法:

  自学辅导

  教学过程:

  1、新课引入

  投影显示

  问题:有一块三角形玻璃窗户破碎了,要去配一块新的',你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

  这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

  2、公理的获得

  问:通过上面问题的分析,满足什么条件的两个三角形全等?

  让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

  公理:有三边对应相等的两个三角形全等。

  应用格式:(略)

  强调说明:

  (1)格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

  (2)在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

  (3)此公理与前面学过的公理区别与联系

  (4)三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

  (5)说明AAA与SSA不能判定三角形全等。

  3、公理的应用

  (1)讲解例1。学生分析完成,教师注重完成后的点评。

  例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

  求证:AD⊥BC

  分析:(设问程序)

  (1)要证AD⊥BC只要证什么?

  (2)要证∠1=只要证什么?

  (3)要证∠1=∠2只要证什么?

  (4)△ABD和△ACD全等的条件具备吗?依据是什么?

  证明:(略)

  (2)讲解例2(投影例2)

  例2已知:如图AB=DC,AD=BC

  求证:∠A=∠C

  (1)学生思考、分析、讨论,教师巡视,适当参与讨论。

  (2)找学生代表口述证明思路。

  思路1:连接BD(如图)

  证△ABD≌△CDB(SSS)先得∠A=∠C

  思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

  (3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

  例3如图,已知AB=AC,DB=DC

  (1)若E、F、G、H分别是各边的中点,求证:EH=FG

  (2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

  学生思考、分析,适当点拨,找学生代表口述证明思路

  让学生在练习本上写出证明,然后选择投影显示。

  证明:(略)

  说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

  例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,求证:AC=2AE。

  证明:(略)

  学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

  5、课堂小结:

  (1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

  在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

  (2)三种方法的综合运用

  让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

  6、布置作业:

  a、书面作业P70,11、12。

  b、上交作业P70,14P71B组3。

  数学三角形全等的判定3教案2

  教学目标:

  1、探索两个直角三角形全等的条件。

  2、掌握两个直角三角形全等的条件(hl)。

  3、了解角平分线的性质:角的内部,到角两边距离相等的点,在角平分线上,及其简单应用。

  教学重点与难点:

  教学重点:直角三角形全等的判定的方法“hl”。

  教学难点:直角三角形判定方法的说理过程。

  教学过程:

  一、创设情境,引入新课:

  教师演示一等腰三角形,沿底边上高裁剪,让同学们观察两个三角形是否全等?

  二、合作学习:

  (1)回顾:判定两个直角三角形全等已经有哪些方法?

  (2)有斜边和一条直角边对应相等的两个三角形全等吗?如何会全等,教师可启发引导学生一起利用画图,叠合方法探索说明两个直角三角形全等的判定方法,可充分让学生想象。不限定方法。

  教师归纳出方法后,要学生注意两点:<1>“hl”是仅适用于rt△的特殊方法。

  (3)教师引导、学生练习p47

  三、应用新知,巩固概念

  例题讲评

  例:已知:p是∠aob内一点,pd⊥oa,pe⊥ob,d,e分别是垂足,且pd=pe,则点p在∠aob的平分线上,请说明理由。

  分析:引导猜想可能存在的rt△;构造两个全等的rt△;要说明p在∠aob的.平分线上,只要说明∠dop=∠eop

  小结:角平分线的又一个性质:(判定一个点是否在一个角的平分线上的方法)

  角的内部,到角的两边距离相等的点,在这个角的平分线上。

  四、学生练习,巩固提高

  练一练:p481.2.p493

  五、小结回顾,反思提高

  (1)本节内容学的是什么?你认为学习本节内容应注意些什么?

  (2)学习本节内容你有哪些体会?

  (3)你认为有没有其他的方法可以证明直角三角形全等(勾股定理)

  (4)你现在知道的有关角平分线的知识有哪些?

  六、布置作业

【数学三角形全等的判定3教案】相关文章:

三角形全等的判定教案08-31

数学教案-三角形全等的判定109-29

数学教案-三角形全等的判定209-29

数学教案-直角三角形全等的判定09-29

三角形全等的判定209-29

三角形全等的判定109-29

三角形全等的判定说课12-10

全等三角形的判定定理11-07

全等三角形判定教学反思11-08