平行线的性质教学设计方案

时间:2023-12-12 11:35:04 博耿 初中数学教案 我要投稿
  • 相关推荐

平行线的性质教学设计方案(精选9篇)

  作为一名人民教师,时常需要用到教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。怎样写教学设计才更能起到其作用呢?以下是小编帮大家整理的平行线的性质教学设计方案(精选9篇),欢迎大家分享。

平行线的性质教学设计方案(精选9篇)

  平行线的性质教学设计方案 1

<title>  生活中的平移</title>

  教学目标

  (一)教学知识点

  1.平移的定义

  2.平移的基本性质

  (二)能力训练要求

  1.通过具体实例认识平移,理解平移的基本内涵.

  2.探索平移的基本性质,理解平移前后两个图形对应点连线平行且相等,对应线段和对应角分别相等的性质.

  (三)情感与价值观要求

  经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移的基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识。

  教学重点

  平移的基本性质.

  教学难点

  平移的基本内涵的理解.

  教学方法

  探索、发现法.

  教具准备

  图片:一些游乐园的图片、辘轳、电梯等.

  电脑演示:平移的过程,粒子运动及行星运转等.

  投影片四张:

  第一张:想一想,议一议(记作投影片3.1A);

  第二张:想一想(记作投影片3.1B);

  第三张:平移的性质(记作投影片3.1C);

  第四张:例1(记作投影片3.1D).

  教学过程

  Ⅰ.巧设情景问题,引入课题

  [师]同学们,还记得游乐园内的一些项目吗?(或投影片放图片,或在电脑上演示幻灯片):旋转木马、荡秋千、小火车、滑梯……它们曾经使我们许多人乐而忘返.不过,你想过没有:小火车在笔直的铁轨上开动时,火车头走了200米,那车尾走了多少米呢?

  [生齐]也走了200米.

  [师]很好.其实,数学就在我们身边,它有很多规律等待我们去探索,去发现!无论是年代久远的老牛上的辘轳(出示图片);还是刚刚耸立起的高楼大厦里的电梯,(出示图片),无论是微观世界里的粒子运动(电脑演示),还是浩翰宇宙中的行星运转(电脑演示).其中最简捷的运动变化形式主要是平移和旋转,让我们走进图形变换的天地,继续探索图形变换的奥秘吧!

  从今天开始,我们就来探索第三章:图形的平移和旋转.

  Ⅱ.讲授新课

  [师]下面我们来看第一节:生活中的平移(电脑演示:P57的图3—1,然后提出问题)

  (1)图3—1中,传送带上的电视机的形状、大小在运动前后是否发生了变化?手扶电梯上的人呢?

  [生齐]传送带上的电视机的形状、大小在运动前后没有发生改变.

  手扶电梯上的人也没有变化.

  [师]很好,我们再看(电脑演示):

  在传送带上,如果电视机的.某一按键向前移动了80cm,那么电视机的其他部位向什么方向移动?移动了多少距离?

  [生]电视机的其他部位也向前移动,也移动了80cm.

  [师]好,(电脑出示问题,并演示四边形ABCD移动到四边形EFGH的位置的过程)

  如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH(如下图),那么四边形ABCD与四边形EFGH的形状、大小是否相同?

  [生]四边形ABCD与四边形EFGH的形状、大小相同.

  [师]很好,那同学们来想一想,议一议(出示投影片3.1A)

  传送带运送电视机的过程中,电视机的形状、大小、位置等因素中,哪些没有发生改变?哪些发生了变化?手扶电梯上的人呢?

  平行线的性质教学设计方案 2

  一、教学目标

  1、知识与技能目标:经历观察、操作、推理、交流等活动,进一步发展空间观念、推理能力和有条理表达的能力。

  2、能力目标:经历探索平行线性质的过程,掌握平行线的性质,并能解决一些实际问题。

  3、情感态度目标:在自己独立思考的基础上,积极参与小组活动对平行线的性质的讨论,敢于发表自己的看法,并从中获益。

  4、品质素养目标:培养学生勤于思考、勇于探索、钻研的品质。

  为实现以上教学目标,突出重点,解决难点,充分发挥现代教育技术的作用,我制作了多媒体课件,运用多媒体辅助教学,变静为动,融声、形、色为一体为学生提供生动、形象、直观的观察材料,激发学生学习的积极性和主动性。

  二、教学重点和难点

  重点:平行线的三个性质以及综合运用平行线性质、判定等知识解题。

  难点:区分性质和判定以及怎样综合运用同位角、内错角、同旁内角的关系解题。

  三、教材分析

  平行线是最简单、最基本的几何图形,在生活中随处可见,它不仅是研究其他图形的基础,而且在实际中也有着广泛的应用。因此,探索和掌握好它的有关知识,对学生更好的认识世界、发展空间观念和推理能力都是非常重要的。

  教材设置了一个通过探索平行线性质的活动,在活动中,鼓励学生充分交流,运用多种方法进行探索,尽可能地发现有关事实,并能应用平行线性质解决一些问题,运用自己的语言说明理由,使学生的推理能力和语言表达能力得到提高。为学生今后的学习打下了基础。

  因此,无论在知识技能上,还是在学生能力的培养及感情教育等方面,这节课都起着十分重要的作用。

  四、学生情况分析

  考虑本校处在城乡结合部,大部分学生的基础比较差,缺乏自学能力,动手能力比较差,所以,这个学期应该重视学生学习兴趣和态度的培养、重视学生的自主探索和合作交流以及新意识的培养。利用七年级学生都有好胜、好强的特点,扭转学数学难、数学枯燥的这种局面。形成一种勤动手、勤动脑,勤探索和肯合作交流的良好气氛

  五、课前准备

  课前准备:多媒体课件、三角尺、直尺。

  六、 教学过程

  问题与情境

  师生互动

  设计意图

  活动1

  你身边的问题

  问题:

  如图,工人在修一条高速公路时在前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯是左拐300,那么第二个弯应朝什么方向。才能不改变原来的.方向。

  学生观察,小组讨论,交流问题并发表见解,

  教师进一步引导学生分析,引导学生将这个问题如何转化成数学问题。

  本次活动应关注的问题是:

  1、不改变方向,在数学中理解应是什么,

  2、在这个问题中包含了什么问题

  3、如何将它转化为数学问题。

  通过实例,让学生从具体的实例中发现数学问题,进而寻求解决问题的方法,使学生懂得数学来源于现实,服务于现实生活,同时也调动了学生的积极性,提高了学生的兴起,

  活动2:

  探究平行线的性质

  问题:

  1、上节课学习了用一把直尺和一块三角板可以画两条平行线,想一想在这个过程中三角尺取到什么作用,你能不能用两把直尺画出两条平行线,如果不能,为什么?

  2、自己阅读课本的21页“探究”部分,并把空填好。

  用电脑展示在画平行线时三角尺在其中取到的作用。

  学生通过学习测量比较得到这些角中上下两个角的关系,

  关注的问题是:

  1、注意性质具有一般性。不能简单从几个特殊的例子,就断定它就具有某种性质,而需要一个从特殊到一般的推导过程。

  2、理清两条直线平行,同位角相等,内错角也相等,同旁内角互补之间的关系。

  通过动手测量提高学生的动手操作能力,并培养学生从特殊需要到一般的推理能力,使其从感性上升到理性认识。

  活动3:

  运用与推理

  问题:

  你能根据性质1,说出性质2,性质3成立的理由吗?如图,因为a∥b。 所以∠1=∠2(_______)

  又∠3=∠_____,(对顶角相等)

  所以∠2=∠3,类似地,对于性质3,你能说出道理吗?

  想一想:这节课开始的那个问题应该如何解决?

  学生回答,再由同学补充。老师纠正。

  教师引导学生观察因为所以之间的关系。

  能过学生做和说,培养学生的一定的表达能力和逻辑推理能力。

  活动4

  巩固与提高

  问题1:如图直线a,b被直线c所截 ,

  1、 如果a∥b ,∠1=60°,那么∠2,∠3,∠4为多少度。为什么?

  2、 如果∠1=60°,∠3=120°,直线a、b有什么关系?为什么?

  问题2:∠1=100°,∠5=100°,∠2=60°,那么∠4、∠3为多少度?

  解:因为∠1=100°,∠5=100°

  所以∠1=∠____ ( )

  所以 _____∥_______ ( ),

  又因为 ∠2 =60° ( )

  所以 ∠4=∠______=______( )

  又因为 ∠4与∠3________ ( )

  所以 ∠3=180°—_____=______°

  问题3:填一填

  如图,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,

  (1)因为∠1=∠ABC,

  所以 AD∥_____ ( )

  (2) 因为 ∠3=∠5

  所以 AB∥_____ ( )

  (3)因为∠2=∠4

  所以 ______∥______ ( )

  (4)因为∠1=∠ADC

  所以______∥______ ( )

  (5) 因为∠ABC+∠BCD=180

  所以 _______∥______ ( )

  问题4,学与用:

  某市为建设社会主义新农村,村村通煤气,市政工作人员已经在道路的两侧铺设了两条平行的燃气管道,如果公路一侧铺设的角度为100°,为了便于连接,那么另一侧应以什么角度铺设?为什么?

  小结:

  布置作业

  课本25页的第1、2、3题

  由学生独立完成,老师指导,引导学生注意这些之间的关系。

  应关注的问题是:

  1、 平行线的性质和判定的不同。

  2、 几何推理证明的要领。

  3、 正确分清推理中因为和所以所表达的意义

  通过具体问题,使学生更进一步理解和认识平行线的性质和判定的区别和联系。进一步认识角与角之间的关系,进一步锻炼学生几何证明题的逻辑推理能力。

  平行线的性质教学设计方案 3

  学习目标:

  1、使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.

  2、通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的科学探索方法,培养学生的辩证思维能力和逻辑思维能力.

  3、培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性.

  学习重点:

  平行线性质的研究和发现过程是本节课的重点.

  学习难点:

  正确区分平行线的性质和判定是本节课的难点。

  一、情景诱导。

  平行线的判定方法有哪三种?它们分别是先知道什么,后知道什么?

  反过来,如果两条直线平行,同位角、内错角、同旁内角又各有什么关系呢?这就是我们下面要学习的平行线的性质。

  二、探究指导

  (学生解决探究问题,老师准备板书,巡视检查,帮助有困难的同学,掌握学生情况)

  探究提纲

  1、利用直尺和三角尺画两条平行线a平行于b,然后画一条截线c与这两条平行线相交,度量所形成的8个角的度数,并记录下来。

  2、这8个角中,哪些是同位角?它们之间的度数有什么关系?由此猜想两条平行线被第三条直线截得的同位角有什么关系?用一句话叙述你的结论,并用符号语言表示。(这个结论就是平行线的性质1)

  3、系。根据你所画的图形写出已知,求证,并证明你的结论。用一句话叙述你的结论,并用符号语言表述你的结论。

  4、类似地,请你用平行线的性质1,推出两条平行线被第三条直线截得的同旁内角之间的关系。根据你所画的图形写出已知,求证,并证明你的结论。用一句话叙述你的结论,并用符号语言表述你的结论。

  三、展示归纳。

  1、学生汇报探究结果,学生说老师写。

  2、教师发动学生评价,补充,完善。

  3、揭示平行线的'性质,然后老师画龙点睛。(把你们总结的性质与课本对照一下,一样吗?表述不太一样但意思一样,把课本上的读一遍)。

  四、变式练习。

  (填空题和选择题直接口答;解答题先让学生做,教师巡回指导,然后让有一定问题的学生汇报展示,发动学生评价完善。教师强调关键地方,总结解题思路,再进行下一个变式练习)

  1、下列说法中是是平行线的性质的有___________

  ①两直线平行,同位角相等

  ②内错角相等,两直线平行

  ③两直线平行,同旁内角互补

  ④平行于同一条直线的两条直线互相平行。

  ⑤同旁内角互补,两直线平行

  2、如图,a∥b,a、b被c所截,得到∠1=∠2的依据是()

  A、两直线平行,同位角相等B、两直线平行,内错角相等

  C、同位角相等,两直线平行D、内错角相等,两直线平行

  3、平面内互不重合的四条直线,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为.

  4、如图,AB∥EF,BC∥DE,则∠E+∠B的度数为________.

  5、如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为________.

  平行线的性质教学设计方案 4

  【教学目标】

  知识目标:理解掌握平行线的性质并能应用

  能力目标:培养学生形成观察辨别、逆向推理等数学方法,培养学生良好的创造性思维能力、逆向思维能力和严密的推理过程。

  情感目标:通过多种教学活动,树立自信,自强,自主感,由此激发学习数学的兴趣,增强学好数学的信心。

  【教学重点、难点】

  重点:平行线的性质是重点

  难点:例4是难点

  【教学过程】

  一、知识回顾:

  1、平行线的判定

  2、平行线的性质

  二、1、合作学习:

  如图,直线AB∥CD,并被直线EF所截。∠2与∠3相等吗?∠3与∠4的和是多少度?思考下列几个问题:

  (1)图中有哪几对角相等?

  (2)∠3与∠1有什么关系?∠4与∠2有什么关系?

  2、你发现平行线还有哪些性质?

  平行线的性质:

  CFA432DE1B两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。

  两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

  3、做一做:

  如图,AB,CD被EF所截,AB∥CD(填空)

  若∠1=120°,则∠2=()∠3=-∠1=()

  4、例3如图1-14,已知AB∥CD,AD∥BC。判断∠1与∠2是否相等,并说明理由。

  思考下列几个问题:

  (1)∠1与∠BAD是一对什么的角?它们是否相等?为什么?

  (2)∠2与∠BAD是一对什么的角?它们是否相等?为什么?

  (3)那么∠1与∠2是否相等?为什么?解:∠1=∠2 ∵AB∥CD(已知)

  ∴∠1+∠BAD=180°(两直线平行,同旁内角互补)∵AD∥BC(已知)

  ∴∠2+∠BAD=180°(两直线平行,同旁内角互补)

  E1B3DA2FCD1A2BC图1—14∴∠1=∠2(同角的补角相等)

  讨论:还有其它解法吗?如不用“两直线平行,同旁内角互补”这个性质是否可以解?

  5、练一练:(P、14课内练习1、2)

  6、例4如图1-15,已知∠ABC+∠C=180°,BD平分∠ABC。

  ∠ABCBD与∠D相等吗?请说明理由。思考下列几个问题:

  (1)AB与CD平行吗?为什么?

  (2)∠D与∠ABD是一对什么的'角?它们是否相等?为什么?

  (3)∠CBD与∠ABD相等吗?为什么?

  解:∠D=∠CBD ∵∠ABC+∠C=180°(已知)

  ∴AB∥CD(同旁内角互补,两直线平行)∴∠D=∠ABD(两直线平行,内错角相等)

  ∵BD平分∠ABC(已知)

  ∴∠CBD=∠ABD=∠D想一想:是否还有其它方法?(用三角形内角和定理等)

  7、练一练:

  如图,已知∠1=∠2,∠3=65°,求∠4的度数。

  三、拓展

  12a34bD图1-15Ccd

  1、如图1,已知AD∥BC,∠BAD=∠BCD。判断AB与CD是否平行,并说明理由

  2、如图2,已知AB∥CD,AE∥DF。请说明∠BAE=∠CDF D CABA图1 B FECD

  四、知识整理:

  1、平行线的性质:

  两条平行线被第三条直线所截,内错角相等。简单地说,两直线平行,内错角相等。两条平行线被第三条直线所截,同旁内角互补。简单地说,两直线平行,同旁内角互补。

  2、思维方法:如不能直接证明其成立,则需证明它们都与第三个量相等

  3、要注意一题多解

  五、布置作业

  P、15作业题及作业本

  平行线的性质教学设计方案 5

  【知识要点】

  1.三角形:由不在同一条直线上的三条线段首尾顺次链接所围成的封闭图形叫做三角形

  这三条线段叫做这个三角形的边;(AB、BC、CA)

  相邻两条边的公共端点叫做这个三角形的顶点;(A、B、C)

  相邻两条边所夹的角叫做这个三角形的内角,又叫做这个三角形的角(∠A、∠B、∠C)

  三角形的内角的邻补角叫做这个三角形的外角

  2.三角形的表示为△ABC

  3.三角形的三条重要线段:高、中线、内角平分线(三条高所在的直线都交于一点,这个点叫做三角形的垂心;三条中线交于一点,这个点叫做三角形的重心;三条内角平分线交于一点,这个点叫做三角形的内心)

  4.三角形内角和定理以及相关的结论

  (1)三角形的内角和为180°

  (2)直角三角形的两个锐角互余

  (3)三角形的外角和为360°

  (4)三角形的一个外角等于与它不相邻的两个内角的和

  (5)三角形的`一个外角大于与它不相邻的任何一个内角

  5.三角形的三边关系定理

  三角形的任意两边之和都大于第三条边;任意两边之差都小于第三条边

  6.三角形具有稳定性

  7.多边形:由在同一平面内,不在同一直线上的若干条线段首尾顺次连接所围成的封闭图形叫做多边形

  这些线段叫做这个多边形的边;

  相邻两条边的公共端点叫做这个多边形的顶点;

  相邻两条边所夹的角叫做这个多边形的内角,又叫做这个多边形的角

  多边形的内角的邻补角叫做这个多边形的外角

  8.对角线:连结多边形不相邻的两个顶点的线段叫做多边形的对角线

  由一个顶点出发的对角线有( n -3)条;( n 表示边数)

  多边形共有条对角线( n 表示边数)

  9.多边形的内角和及外角和

  (1)多边形的内角和为(n-2).180°( n 表示边数)

  (2)多边形的外角和为360°

  阶段练习

  一、回答下列各问题

  1.什么是三角形?它有哪些元素?通常用什么符号来表示它及三个角所对的边?

  2.为什么屋架、桥梁及电杆的支架多采用三角形的形状?

  3.如果△ABC的三条边长分别为(12、13、14)及(10、20、30),这样的三角形能成立吗?为什么?

  4.设△ABC的边长分别为a、b、c,那么这三条边的边长须具有什么条件,才能将△ABC画出来

  5.△ABC中有几条角平分线?试画图说明

  6.什么是三角形的高?一个三角形有几条高?三角形的高的位置是否一定在形内?为什么?

  试画图说明

  7.三角形的一条中线把这个三角形分成两部分,这两个部分的面积有什么关系?为什么?

  8.三角形的三个内角分别为α、β、γ,则α+β+γ的值是多少?

  9.三角形的一个外角与它不相邻的两个内角之间有什么关系?

  二、填空题

  1.三角形的外角和是内角和的_____________倍

  2.四边形的外角和是内角和的____________倍

  3.六边形的外角和是内角和的_______________倍

  4.一个多边形的内角和是900°,则这个多边形是________边形

  三、解答题

  已知AC、AD是五边形ABCDE的对角线,求证:AB+BC+CD+DE+EA>AC+CD+DA

  平行线的性质教学设计方案 6

  教学目标:

  1、经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。

  2、经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算。

  重点:探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算。

  难点:能区分平行线的性质和判定,平行线的性质与判定的混合应用。

  教学过程

  一、引导学生逆向思维

  现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补,判定两条直线平行的三种方法。在这一节课里:大家把思维的指向反过来:如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?

  二、实践探究

  1、学生画图活动:用直尺和三角尺画出两条平行线a∥b,再画一条截线c与直线a、b相交,标出所形成的八个角(如课本P21图5.3—1)。

  2、学生测量这些角的度数,把结果填入表内。

  角∠1∠2∠3∠4∠5∠6∠7∠8度数

  3、学生根据测量所得数据作出猜想。

  (1)图中哪些角是同位角?它们具有怎样的数量关系?

  (2)图中哪些角是内错角?它们具有怎样的数量关系?

  (3)图中哪些角是同旁内角?它们具有怎样的数量关系?

  4、学生验证猜测。

  学生活动:再任意画一条截线d,同样度量并计算各个角的度数,你的猜想还成立吗?

  5、师生归纳平行线的性质,教师板书。

  平行线具有性质:

  性质1:两条平行线被第三条直线所截,同位角相等,简称为两直线平行,同位角相等。

  性质2:两条平行线被第三条直线所截,内错角相等,简称为两直线平行,内错相等。

  性质3:两条直线按被第三条线所截,同旁内角互补,简称为两直线平行,同旁内角互补。

  教师让学生结合右图,用符号语言表达平行线的这三条性质,教师同时板书平行线的性质和平行线的判定。

  平行线的性质平行线的判定

  因为a∥b,因为∠1=∠2,

  所以∠1=∠2所以a∥b。

  因为a∥b,因为∠2=∠3,

  所以∠2=∠3,所以a∥b。

  因为a∥b,因为∠2+∠4=180°,

  所以∠2+∠4=180°,所以a∥b。

  6、教师引导学生理清平行线的性质与平行线判定的区别。

  学生交流后,师生归纳:两者的条件和结论正好相反:

  由角的数量关系(指同位角相等,内错角相等,同旁内角互补),得出两条直线平行的论述是平行线的判定,这里角的关系是条件,两直线平行是结论。

  由已知的两条直线平行得出角的数量关系(指同位角相等,内错角相等,同旁内角互补)的论述是平行线的'性质,这里两直线平行是条件,角的关系是结论。

  7、进一步研究平行线三条性质之间的关系。

  教师:大家能根据性质1,推出性质2成立的道理吗?

  结合上图,教师启发分析:考察性质1、性质2的结论发生了什么变化?学生回答∠1换成∠3,教师再问∠1与∠3有什么关系?并完成说理过程,教师纠正学生错误,规范地给出说理过程。

  因为a∥b,所以∠1=∠2(两直线平行,同位角相等);

  又∠3=∠1(对顶角相等),所以∠2=∠3。

  教师说明:这是有两步的说理,第一步推理根据平行线性质1,第二步推理的条件不仅有∠1=∠2,还有∠3=∠1。∠2=∠3是根据等式性质。根据等式性质得到的结论可以不写理由。

  学生仿照以下说理,说出如何根据性质1得到性质3的道理。

  8、平行线性质应用。

  讲解课本P23例题

  三、巩固练习:课本练习(P22)。

  四、作业:课本P22。1,2,3,4,6。

  平行线的性质教学设计方案 7

  【教学目标】

  1、经历平行线的性质:两直线平行,同位角相等的发现过程。

  2、掌握平行线的性质:两直线平行,同位角相等。

  3、会用两直线平行,同位角相等进行简单的推理和判断,并学会表达。

  【教学重点】

  平行线的性质:两直线平行,同位角相等。

  【教学难点】

  例2的.推理过程要用到平行线的判定和性质。

  【教学预设】

  【活动1】复习引入

  1、如果两条直线被第三条直线所截,那么符合怎样的条件才能得到两直线平行的结论?(学生口答,教师板书。)

  条件 结论

  同位角相等, 两直线平行。

  内错角相等, 两直线平行。

  同旁内角互补, 两直线平行。

  2、练习:

  (1) 如图①,A、B、C三点在一条直线上。

  如果3 =6,那么 ∥ 。( )

  如果6 =9,那么 ∥ 。( )

  如果1 +2 +3 =180,那么 ∥ 。( )

  如果 ,那么BE∥CD。( )

  (2) 如图②,看图填空:

  ∵1 =2(已知)

  ∥ 。( )

  又∵2 =3(已知)

  ∥ 。( )

  【活动2】

  1、 引入新课的课堂练习:

  (1)你们练习本上的横线与横线成什么关系?(平行)

  (2)请画出其中二条(二条之间可空若干行),分别用a、b 表示,a∥b,再画一条c分别与a、b相交。

  (3)标出一对同位角,用1、2表示,并量一下度数。

  平行线的性质教学设计方案 8

  一、目标分析

  1、知识与技能:探索平行线的性质,会用平行线的性质定理进行简单的计算、证明;了解平行线的性质和判定的区别。

  2、过程与方法:通过学生动手操作、观察,培养他们主动探索与合作能力,使学生领会数形结合、转化的数学思想和方法,从而提高学生分析问题和解决问题的能力。

  3、情感、态度与价值观:情境的创设,使学生认识到数学来源于生活又为生活服务,从而认识到数学的重要性。通过对平行线的性质的推导过程,培养学生严密的思维能力。

  二、教学重点、难点

  重点:平行线的三个性质及运用。

  难点:平行线的性质定理的推导及平行线的性质定理与判定定理的区别。

  三、教学过程

  1、创设情境引入

  (1)、我们的生活离不开电,生活中的电是通过两条互相平行的导线送到千家万户的。输电线路在某处转了一个弯,已知转弯后的两条导线中的一条和原来的两条导线中的一条之间的夹角是130°,那么这条导线和原来的.另一条导线之间的夹角是多少度呢?学习了这节课后我们就很容易知道答案了。

  【设计意图】通过生活中的实例引入,既能提高学生的学习兴趣,激发学生探索知识的热情,也能使学生认识到数学来源于生活。

  (2)设问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?内错角、同旁内角之间又有什么关系呢?

  【设计意图】:通过复习回忆平行线的判定来引入新课的目的,一是温故而知新,促使学生实现知识思维的正迁移;二是有利于学生在学习过程中去比较性质与判定的不同。

  2、探索新知

  (1)画两条平行线被第三条直线所截,找出哪些角是同位角,哪些是内错角、同旁内角,并用量角器量一下同位角,确定它们的大小关系。猜想同位角之间的关系。

  【设计意图】:画平行线的这个过程主要让学生明白确定平行线性质的前提是要两条平行线,帮助学生区分平行线的性质与判定。

  (2)讲解平行线的性质一。

  【设计意图】:加深学生的印象,更加牢固的掌握这一知识点,为推导出下面两个性质打好基础。

  (3)引导学生大胆猜想两平行线被第三条直线所截得到的内错角、同旁内角之间的关系。讲解推导过程。

  【设计意图】:这样设计不仅使学生认识到平行线的三个性质之间的联系,还培养了学生大胆猜测并通过推理验证所猜测的结论的能力,为培养学生自主学习和良好的学习习惯都有帮助。

  (4)总结平行线的性质

  性质1:两直线平行,同位角相等。

  性质2:两直线平行,内错角相等。性质3:两直线平行,同旁内角互补。

  (5)平行线的性质和平行线的判定区别:

  要强调“平行线的判定是知道了角的关系来得出平行,而平行线的性质是知道两直线平行得角的关系”

  3、知识运用

  (1)解决引入时提出的问题

  (2)利用所学的知识讲解例4和例5

  (3)把一条直线平行移动到另一个位置,这两条直线一定平行。讲解例6。

  (4)练习P174—175第1、2、3、4题

  【设计意图】:通过例题的讲解,使学生认识到平行线的性质的用处,通过练习,使学生对此处知识点更加熟悉。

  4、回顾总结

  (1)、通过这节课的学习,你有什么收获?你感受最深的是什么?

  (2)、这节课得到的平行线的性质与平行线判定的方法有什么区别和联系?你能区分清楚吗?

  【设计意图】:通过提出两个问题,让学生自己进行小结,回顾本节课所学的知识,并将本节课学的知识与前一节所学的知识进行比较、整理。有利于学生加以区分和为以后的应用打下基础。

  5、作业设计P175第5题

  【设计意图】:本题是让学生补充完整解答过程,学生在做作业过程中不但可以更深刻的理解平行线的性质,同时也让学生了接逻辑推理的步骤,培养学生推理的能力。

  四、说板书设计平行线的性质

  1.平行线的性质:

  性质1:例题:练习:性质2:性质3:

  2.平行线的性质与判定的区别

  【设计意图】:这样设计板书,既简洁明了,又突破了重难点,使学生很容易知道本节课的主要内容,也便于学生进行归纳总结。

  五、自我评价

  本节课从实际问题引入课题,各个环节自然衔接。在设计上,强调自主学习,让学生在探究过程中进行,观察分析,合理猜想,解决问题体验并感悟平行线的性质,使他们感受到学习的快乐,真正成为学习的主人。农远资源的利用,使学生对本节课的重点内容更加明了,更易使学生接受。通过本节课的学习,学生能基本掌握平行线的性质,并利用性质解决相关问题,学生的逻辑思维能力也将进一步的得到加强

  平行线的性质教学设计方案 9

  教学目的

  1.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

  2.使学生了解平行线的性质和判定的区别.

  重点难点

  1.平行的三个性质,是本节的重点,也是本章的重点之一.

  2.怎样区分性质和判定,是教学中的一个难点.

  教学过程

  一、引入

  问:我们已经学习过平行线的哪些判定公理和定理?

  学生齐答:

  1.同位角相等,两直线平行.

  2.内错角相等,两直线平行.

  3.同旁内角互补,两直线平行.

  问:把这三句话颠倒每句话中的前后次序,能得怎样的三句话?新的三句话还正确吗?

  学生答:

  1.两直线平行,同位角相等.

  2.两直线平行,内错角相等.

  3.两直线平行,同旁内角互补.

  教师指出:把一句原本正确的话,颠倒前后顺序,得到新的一句话,不能保证一定正确.例如,“对顶角相等”是正确的,倒过来说“相等的角是对顶角”就不正确了因此,上述新的三句话的`正确性,需要进一步证明.

  二、新课

  平行线的性质一:两条平行线被第三条直线所截,同位角相等.

  简单说成:两直线平行,同位角相等.

  怎样说明它的正确性呢?

  方法一通过测量实践,作出两条平行线a∥b,再任意作第三条直线c,量量所得的同位角是否相等.

  方法二从理论上给予严格推理论证.(以下证法,教师可视学生接受情况,灵活处理讲或者不讲)

  已知:如图2-32,直线AB、CD、被EF所截,AB∥CD.

  求证:∠1=∠2.

  证明:(反证法)

  假定∠1≠∠2,

  则过∠1顶点O作直线A′B′使∠EOB′=∠2.

  ∴A′B′∥CD(同位角相等,两直线平行).

  故过O点有两条直线AB、A′B′与已知直线CD平行,这与平行公理矛盾.即假定是不正确的.

  ∴∠1=∠2.

  另证:(同一法)

  过∠1顶点O作直线A′B′使∠E0B′=∠2.

  ∴A′B′∥CD(同位角相等,两直线平行).

  ∵AB∥CD(已知),且O点在AB上,O点在A′B′上,

  ∴A′B′与AB重合(平行公理)

  ∴∠1=∠2.

  平行线的性质二:两条平线被第三条直线所截,内错角相等.

  简单说成:两直线平行,内错角相等.

  启发学生,把这句话“翻译”成已知、求证,并作出相应的图形.

  已知:如图2-33,直线AB、CD被EF所截,AB∥CD,

  求证:∠3=∠2.

  证明:

  ∵AB∥CD(已知)

  ∴∠1=∠2(两直线平行,同位角相等).

  ∵∠1=∠3(对顶角相等),

  ∴∠3=∠2(等量代换).

  说明:如果学生仿照性质一,用反证法或同一法去证,应该给以鼓励并同时指出,既然性质一已证明正确,那么也可以直接利用性质一的结论,这样常常可以使证明过程简单些.然后介绍或引导学生得出上面的证法.

  平行线的性质三:两条平行线被第三条直线所截,同旁内角互补.

  简单说成:两直线平行,同旁内角互补.

  要求学生仿照性质二,自己写出已知、求证、证明.教师请程度较好的学生上黑板板演,并巡视课堂,帮助有困难的学生克服困难,最后对黑板上学生的板书进行全班订正.

  已知:如图2-34,直线AB、CD被EF所截,AB∥CD.

  求证:∠2+∠4=180°.

  证法一:

  ∵AB∥CD(已知),

  ∴∠1=∠2(两直线平行,同位角相等),

  ∵∠1+∠4=180°(邻补角),

  ∴∠2+∠4=180°(等量代换).

  证法二:

  ∵AB∥CD(已知),

  ∴∠2=∠3(两直线平行,内错角相等).

  ∵∠3+∠4=180°(邻补角),

  ∴∠2+∠4=180°(等量代换).

  例已知某零件形如梯形ABCD,现已残破,只能量得∠A=115°,∠D=100°,你能知道下底的两个角∠B、∠C的度数吗?根据是什么?(如图2-35).

  解:∠B=180°-∠A=65°,

  ∠C=180°-∠D=80°.(根据平行线的性质三)

  小结:平行线的性质与判定的区别:

  1.从因果关系上看

  性质:因为两条直线平行,所以……;

  判定:因为……,所以两条直线平行.

  2.从所起作用上看

  性质:根据两条直线平行,去证两角相等或互补:

  判定:根据两角相等或互补,去证两条直线平行.

  三、作业

  1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?

  2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?

  3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.

  教后记:

  学生学习了这个平行线的性质后,不能理解它的用途,两直线平行不知道应该是哪些角应该相等,哪些角应该互补,哪个是前提哪个是结论不能充分的理解。导致使用的错误。应加强这方面的训练。学生图形的认识能力仍有待提高。

【平行线的性质教学设计方案】相关文章:

平行线的性质教案02-22

平行线的性质教案 10篇03-25

比的性质教学反思04-08

平行线及其判定教学反思04-26

《等式的性质》教学反思04-03

等式的性质教学反思11-04

《钠的性质》教学设计及教学反思10-30

平行线作文11-28

平行线的交点作文12-11

《分数的基本性质》教学反思04-06