(热)五年级数学下册教案
作为一名人民教师,常常需要准备教案,借助教案可以更好地组织教学活动。如何把教案做到重点突出呢?下面是小编精心整理的五年级数学下册教案,欢迎阅读与收藏。
五年级数学下册教案1
教学目标
1、让学生通过找次品的操作活动和分析、归纳的理性思考,发现解决这类问题的最佳策略-把待测物品平均分3组。
2、以“找次品”活动为载体,让学生通过观察、猜测、试验、推理等方式感受解决问题策略的多样性及运用优化的方法解决问题的有效性。
3、让学生体会用缩小范围逐步逼近的方法来解决问题的数学思想,培养学生思考问题的严密性和口头语言表达的逻辑性。
学情分析
解决问题的策略研究学生已经不是第一次接触,此前学习过的“沏茶”、“田忌赛马”、“打电话”等都属于这一范畴,在这几节课的学习中,对简单的优化思想方法、通过画图的方式发现事物隐含的规律等都有所渗透,学生已经具有一定的逻辑推理能力和综合运用所学知识解决问题的能力。本节课学生的探究活动中要用到天平,在以往学习等式的性质时,学生对天平的结构、用法以及平衡与不平衡所反映的信息都已经有了很好的'掌握。新课程实施以来,小组合作交流、自主探究的学习方式已为广大学生所接受,成为学生比较喜爱的主要学习方式,学生已具备一定的合作能力,在小组学习中学生能够较好地分工、合作、交流,较好地完成探究任务。
重点难点
教学重点:
发现解决这类问题的最佳策略。
教学难点:
理解并认可最佳策略的有效性。
教学过程
活动1【导入】创设情境、激发兴趣
1、看视频,谈感受。
播放美国“挑战者”号航天飞机失事的视频。看后你从中了解到什么信息?你有什么感受?
2、发现次品。
生活中经常会有一些产品与合格产品不一样。有的是外观瑕疵,有的是成分不过关,还有的是产品的质量与正常的不同……我们把这些不合格的产品称为“次品”。(板书:次品。)你身边有哪些次品?和同学交流。
今天我们要找的次品的就是外观一样,质量不同,或轻一些、重一些的次品。(板书:找)
活动2【讲授】初步感知、寻找方法
1、出示例题。
有81瓶木糖醇,其中有一瓶少了10片,可以用什么办法把它找出来呢?
数一数,掂一掂,摇一摇等方法,选择最优化的方法,用天平。
2、天平的原理。
如果两端重量相等,天平就平衡;如果不相等,重的一端下沉,轻的一端上扬。
3、华罗庚的数学思想。
让学生自由猜测称的次数。
师:同学们猜的结果不一样,可能是数量太大了。数学中有种方法叫做“化繁为简”,这正和华罗庚思想不谋而合,让我们从数量较小的来研究吧!
活动3【活动】自主探究、方法多样
1.研究2瓶
师:如果利用天平来测量,至少需要几次可以找出次品呢?板书做好记录:2次(1,1)
2.讨论3瓶的问题
如果利用天平来测量,至少要称多少次才能保证找出来呢?生叙述称球的过程。板书记录:3(1,1,1)
注重天平一共有3个空间可以利用,这样节省次数。生将探究结果填入导学案中。
3.研究4-8瓶的问题
如果利用天平来测量,至少要称2次才能保证找到次品的可以是几瓶?
学生以小组为单位,运用手中的小圆片动手操作,并记录在导学案中。
课件出示小组活动要求。
(1)把待测物品分成了几份?每份几个?
(2)如果天平平衡,次品在哪里?如果天平不平衡,次品又在哪里?
4、重点汇报8瓶的设计方案。
(1)师引导学生:比较3、4种分法,并展开讨论:想想为什么方法3的次数是最少的?你觉得它会和什么有关系呢?
(2)师小结:所以我们在找物品的次品时,把待测的物品平均分成3份是最好的。板书:把待测物品分3份。
(3)师:比较1、2、3种分法,讨论为什么同样分3份,为什么第3种方法只用了2次哪?
(4)师小结:所以我们在找物品中的次品时,只要把物品平均分成3份,如果不能平均分成3份,就尽量平均分成3份。每份之间的差尽可能少。板书:每份之间的差尽可能少。
5、研究9瓶
学生根据总结的方法直接说出次数,小组验证。
活动4【练习】拓展提高,优化方案
1、运用掌握的方法找方法:12瓶、15瓶、24瓶需要几次能找到次品?
2、举一反三:从26瓶木糖醇中,找到一个次品,至少称几次一定能找出次品?在导学案上完成。
3、发散思维:有2187瓶矿泉水,其中2186瓶质量相同,另有1瓶是盐水,比其他的水略重一些。至少称几次能保证找出这瓶盐水?
五年级数学下册教案2
一、教学目标:
1、知识与技能:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
2、过程与方法:让学生主动通过参与观察、猜测、交流等活动,经历探索求倒数的方法的过程,培养学生发现问题、解决问题的意识和自主学习的能力。
3、情感态度与价值观:激发学生积极参与、团结合作、主动探究的学习精神。
二、教学重点:
理解倒数的意义。
三、教学难点:
理解“互为”;会求一个数的倒数。
四、教学方法:
1、教法:发现式教学法、启发式教学法和小组讨论法相结合。
2、学法:指导学生会观察、会思考、会交流。
五、教学过程:
(一)、创设情境——理解“互为”
师:今天老师很高兴和大家一起上课,刚才呢我们进行了彼此的问候,那你们称呼我什么呢?生:老师。师:那我称大家什么?生:学生。
师:那我们是什么关系啊?生:师生关系。
师:老师更想成为大家的朋友,你们愿意和老师交朋友吗?生:愿意
师:那我们现在就是朋友关系。师:说到朋友,老师这里有一句话,“我是朋友”你们对这句话有什么意见?(ppt出示)生:??
师:板书“互为”。
师:这种现象我们数学中也有,今天咱们就一起走进数学王国。
(二)、观察归纳——形成概念
给数字找朋友
师:课件出示几个分数,让学生找出乘积是1的两个数。并列出乘法算式。师生共同小结:乘积是1的'两个数互为倒数。师:那什么样的两个数互为倒数?条件是什么?(强调“两个数”——“互为”;“乘积为1”——“倒数”。)师:板书倒数的概念。(出示课题:倒数)
(三)、观察比较——探究方法
师:观察找出来的几组分数,它们的分子和分母有什么变化?小组间相互讨论。
生:分子和分母的位置调换了。
师:那我们怎么求一个分数的倒数?小组间相互讨论。
师生共同小结:求倒数的方法:一个分数的倒数就是把这个分数的分子分母交换位置。
思考题:是不是所有的整数都有倒数?5的倒数是多少?1的倒数是多少?0的倒数是多少?(小组讨论)
生:5的倒数是师:你是怎么想的?预设:生:把5看成分母是1的分数,或5×=1师:1的倒数呢?
预设:生:1的倒数是1。
师:你是怎样想的?
预设:生:
(1)整数的倒数是用1做分子,用这个整数做分母。所以1的倒数为1。
(2)因为1×1=1,所以1的倒数为1。
师:0的倒数是几呢?
预设:生:0没有倒数,因为
(1)0作分母无意义。
(2)0×(任何数)≠15151
(四)、加强练习、巩固提高。
(课件出示)
同学们已经认识了倒数,那么你们能根据刚才所学找到下面各数的倒数吗?(能)那就请同学们进入闯关环节,先独立完成,遇到困难可以同伴互助,看看哪些同学和小组能连闯三关,开始!
(五)、拓展延伸
(课件出示)
(六)、课堂小结——谈谈感受。
最后,让我们来回忆一下,这节课你们都有哪些收获?
(七)、板书设计
倒数:
乘积是1的两个数互为倒数。
调换分子和分母的位置。
0没有倒数,1的倒数是1
五年级数学下册教案3
教学目标
1、通过小组合作学习,经历设计打电话方案并找出最优方案的过程,体验画图分析、交流讨论的学习方法。
2、通过这个综合应用,让同学进一步体会数学与生活的密切联系以和优化思想在生活中的应用
3、通过画图方式发现事物隐含的规律,培养学生的归纳推理能力。
学情分析
《打电话》所使用的素材是学生所熟悉的,问题和学生的生活经验密切结合,学生对这一问题的研究很有兴趣。“打电话”这一问题正是为学生提供了可探究的空间,学生尝试寻找“答案”时,不是简单地应用已知的信息,也没有可直接利用的方法、公式。尽管不是所有的学生最终都能出色地完成任务,但是他们都尽自己的思维能力“走”得足够远。很有让学生去研究的价值。
重点难点
【教学重点】
理解打电话的各个方案并从中优化出最好的方案。
【教学难点】
能够运用打电话的最优方案解决一些简单的实际问题。
教学过程
活动1【导入】
一、引入新课(出示半开放性素材)2分钟
问题:学校刚接到教育局通知,让我们学校马上派15位同学马上赶到二小参加现场科技制作比赛,由付老师负责通知他们,你们帮付老师想想,付老师可以用什么方法通知他们?
师由这个问题引出最直接、最能保证通知到位的方式:打电话(板书课题)
(听+想+讲)
活动2【活动】
二、自主合作(学生呈现多个项度+确定项度)(6分钟)
学生自主学习课本P132-133,并同桌或前后两人交互打电话的方案,时间3分钟
(看+想+讲+听)
(师巡视,并对自主学习认真的同学及予表扬)
自主学习要求:
a、看课本P132———133,看完以后,同桌或前后两人交流下讨论打电话的方案。
b、通过自学,看课本中介绍了哪几种打电话的方案。
c、时间3分钟。
通过自学,我知道课本中介绍了哪几种打电话的方案?
(师根据学生回答,整理项度并板书:)
项度呈现:
主气泡:打电话
子气泡:分组通知、逐个通知、每个人不空闲通知
其中“分组通知”又包括分三组、四组、五组等三个向度。
3、生在团队长的带领下团队共同确定其中的1个项度进行讨论,团队长并做好组内分工。
(讲+看+小动)
活动3【活动】
三、合作探究(交互+强化)14分钟
1.团队长根据自已团队选择的问题带领组员开展4—6人的'小组交互,强化学习,并把学习的成果记录在白板上,并作好发言准备。
(通过小组的共同交互学习,让学生对本节课的知识达到6—8次的强化学习,师在学生合作探究的过程中,及时给予指导和帮助)
(做+想+讲+听+大动)
合作探究要求:
a、团队长根据选择的问题,带领组员开展小组讨论,强化学习,并把团队学习的成果记录在白板上。
b、每个团队做好上台展示交流的准备。
c、时间是7分钟
2:师巡视:提醒有关的小组做好展示交流的准备。
活动4【活动】
四、展示交流(汇集+强化)
1、选择四个团队上台展示汇报,涵盖所有项度的知识点。
(师根据学生的展示汇报情况,给予鼓励和表扬)
(讲+听+看+做)
2、教师精讲,师生共同完成2n的推导过程,小结出最优方案。
(看+讲+做+听+想)
活动5【练习】
五、巩固练习
⑴有一棵奇妙的树,原来只有1个树枝,第一年长出1个树枝,第二年每个树,枝分别长出1个新枝,第三年每个树,枝又都分别长出1个新枝,照这样计
算,第五年这棵树上一共有几个树枝?
⑵小鸭子想开一个游泳会,如果通知一只鸭子要3分钟,你能帮它想一想,有什么办法在最短的时间内通知到30只鸭子来参加游泳会吗
活动6【活动】
六、课堂小结
这节课你们学会了什么?把你的收获告诉大家?
五年级数学下册教案4
一、学习目标
(一)学习内容
“正方体的认识”是《义务教育教科书数学》(人教版)五年级下册第三单元第20页例3以及课后做一做。本节内容是在学生已经直观的认识了长方体、正方体等立体图形的基础上进行教学的。学生能通过实物或模型辨认正方体,知道正方体有6个面,每个面都是正方形。在教学正方体时,应激活经验,回顾特点,对比长方体特点,感知“正方体是特殊的长方体”。
(二)核心能力
能运用迁移类推的学习方法,通过观察、操作,认识正方体,建立空间观念,提高分析对比,抽象概括的能力。
(三)学习目标
1.在认识长方体的基础上,通过观察正方体、动手操作折正方体,自主探究正方体关于面、棱、顶点的特征,建立空间观念。
2.通过对比分析长方体和正方体的特征,抽象概括出长方体和正方体之间的关系。
(四)学习重点
掌握正方体的特征,理解长方体和正方体的关系。
(五)学习难点
建立空间观念,形成立体图形的初步印象。
(六)配套资源
实施资源:《正方体的认识》名师教学课件,各种正方体实物,长方体模型,剪好书本第123页的正方体展开图。
二、学习设计
(一)课前设计
1.预习任务
(1)长方体的特征有哪些?我们是从几方面来认识它的?请自己整理出来。
(2)请找找生活中的正方体物品,并思考:关于正方体你都知道了哪些知识?
(二)课堂设计
1.谈话导入
师:课前让同学们寻找生活中的正方体物品,谁来和大家分享一下你找到了什么?
师:生活中有许多物体的形状是正方体,正方体也叫立方体,这节课我们一起来认识它。板书课题。
设计意图:结合生活实际,学生对正方体已有一定的认识,因此通过分享学生在生活中找到的正方体,使学生对正方体有了初步的了解,激发了进一步学习正方体的兴趣。
2.问题探究
(1)观察模型,探究特征
师:长方体和正方体都属于立体图形,回想一下,我们是从几方面来认识长方体的?
(面、棱、顶点,长宽高)
师:对于正方体,你们准备从几方面来认识?
生自由发言。
师:现在请你们借助手中的正方体物品来观察研究,看看正方体都有哪些特征?
同桌合作,自主探求正方体的特征。
交流汇报。(汇报时重在交流探究的过程和方法)
预设:
①正方体有6个面,每个面都是正方形并且6个面都相等;
②正方体有12条棱,每条棱都相等;
③正方体有8个顶点。
小结:同学们从棱、面、顶点三方面进行研究,得出了“正方体是有6个完全相同的正方形围成的立体图形,12条棱长度相等”的结论。
(2)制作模型,加深认识特征
师:认识了正方体的特征,现在请你们动手制作一个正方体,制作完后,量出它的棱长是多少厘米,并向同桌介绍你制作的正方体的特征。
用剪好的书本第123页的`正方体展开图做一个正方体。
展示学生作品分享制作感想。
设计意图:学完长方体后,学生已明确了面、棱、顶点的概念,知道了从哪些方面探究图形特征,因此放手让学生自主探究,充分经历自主探究的过程,通过观察、动手,学生亲身感知正方体这个立体图形。考查目标1
(3)对比观察,探究长方体和正方体的关系
师:我们都是从面、棱、顶点来认识长方体和正方体,它们之间有什么相同点和不同点呢?请4人小组,用你们喜欢的方式整理出来。
交流汇报后,教师用表格的形式进行整理。
引导归纳长方体和正方体的关系:正方体可以看成是长、宽、高都相等的长方体。我们可以用下图来表示长方体和正方体的关系。
设计意图:学生通过观察比较,主动探索,从而明确长方体和正方体的关系,提升了学生的探究能力和归纳能力,同时也经历了知识形成的过程,体验了成功的喜悦,增强了学习的信心。考查目标2
3.巩固练习
(1)第20页的做一做。用棱长为1cm的小正方体搭一搭。
①搭一个稍大一些的正方体,至少需要多少个小正方体?动手试一试。
②用12个小正方体搭一个长方体,可以有几种不同的搭法?记录搭的长方体的长、宽、高。
③搭一个四个面是正方形的长方体,其余两个面有什么特点
4.课堂总结
师:通过这节课的学习,你有什么收获?
小结:从面、棱、顶点三方面认识了正方体,有6个面,都相等,12条棱也都相等,有8个顶点,正方体是特殊的长方体。
(三)课时作业
1.
(1)正方体的棱长是8分米,每个面的周长和面积分别是多少?
(2)正方体棱长的和是48厘米,每个面的周长和面积分别是多少?
答案:
(1)32分米、64平方分米
(2)16厘米、16平方厘米
解析:通过对正方体面、棱特征的考察,加深理解,为后面学习表面积和体积打基础。考查目标1、2
2.根据所提供的条件,回答问题:
它的前面是()形,长()厘米,宽()厘米。
它的右面是()形,长()厘米,宽()厘米。
它的上面是()形,面积是()平方厘米。
答案:略。
解析:通过“线”想“体”,再从“体”中找“面”进一步发展空间观念,同时感受每个面与长、宽、高的关系,为表面积打基础。考查目标1、2
五年级数学下册教案5
【设计理念】
数学课程标准明确指出,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法。本节课抓住关键词,把握自然数(0除外)按因数个数分类的数学方法,让学生充分讨论质数和合数的特征,经历质数和合数这一知识的发生发展过程,通过观察、比较、分析、归纳,构建质数和合数概念,更好地掌握数学思想,提升学生学习数学的兴趣,培养良好的学习态度。
【教学内容】
人教版五年级下册第23~24页“质数与合数”。
【学情与教材分析】
本课是在学生掌握“因数、倍数、奇数、偶数、2、3、5的倍数特征”的基础上进行的。本单元涉及的概念多,“质数与合数”是一节概念教学课,概念抽象易混淆,在生活中运用较少,与学生的生活有一定的距离,是本课的难点也是本单元内容教学的难点。
【教学目标】
1、让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。
2、把握整数按因数个数的分类法,理解和掌握质数与合数的特征,能应用概念寻找或判断质数。
3、通过研究质数与合数特征的学习活动,体会学习数学的思想方法。
【教学准备】
课件;练习纸每生一张。
【教学过程】
活动一:构建质数和合数概念
1、引导学生按要求列出乘法算式:“因数用整数、不用1”。
教师板书“1=”……“20=”,教师不言语,用手势引导学生按要求说出乘法算式。
学情预设:学生中可能出现用1或小数的问题,师用手势提醒“不用1”“用整数”。
2.师:按“用整数、不用1”的要求无法列出乘法算式的数,我们叫它质数;可以列出乘法算式的数,我们叫它合数。
教师依次在这些质数的前面填上“质数”、“合数”,学生自然而然的在教师板书时说出“质数”和“合数”。
【设计意图】
“活动一”全过程教师基本不言语,只用手势或神情来组织教学,给学生一个神秘感,在创设静谧的氛围中静心体会质数与合数的区别。
活动二:讨论质数和合数的特征
1.师:“从这些乘法算式中,你发现了什么?
学情预设:学生有可能说出质数都是奇数;对策:教师指出2是质数、15是合数;
合数可以写出乘法算式;如果不用1,质数无法写出乘法算式。
2.教师擦除“不用1”,学生列出相应的乘法算式,再进一步用因数的个数来探讨质数和合数的概念。
师:观察因数的个数,你又发现了什么?
从乘法算式中,学生很快并能清晰地发现质数只有1和它本身两个因数,而合数则除了1和它本身两个因数外,还有别的因数(至少三个因数)。
3、根据学生回答板书。
4.讨论:“1”是质数还是合数?
学情预设:有的学生可能认为:1有两个因数,一个是1,一个是它本身,1应该是质数;有的学生可能认为:1的本身还是1,所以1应该只有一个因数;有的学生可能认为:1既不是质数也不是合数。
师把板书写完整。
5.小结:谁能用自己的语言说一说什么样的数叫质数?什么样的数叫合数?怎样判断一个数是质数还是合数?
【设计意图】
预留足够的时间让学生经历操作、观察、发现、概念归纳的数学化过程,构建质数和合数概念。并尝试根据因数的个数归纳出质数与合数的概念,学会运用质数和合数的特征进行判断,充分感受到知识之间既有区别,又有联系。
活动三:应用概念寻找或判断质数
1、继续寻找30以内的其它质数。
2.做一做:出示数字卡片:17、22、29、35、37、87、93、96、1,将数字卡片填入质数与合数相应的集合圈里。
3.下面的说法正确吗?说说你的理由。
⑴所有的奇数都是质数。()
⑵所有的偶数都是合数。()
⑶在1、2、3、4、5……中,除了质数以外都是合数。()
⑷两个质数的'和是偶数。()
【设计意图】
通过不断的寻找、发现与判断质数的练习中,使学生意识可以用合理的方法来判断,巩固质数与合数特征的认识。
活动四:拓展延伸深化概念
1.你知道他们各是多少吗?(在小组内交流各自的想法后汇报)
⑴两个质数的和是10,积是21,他们各是多少?
⑵两个质数的和是20,积是91,他们各是多少?
⑶最小的质数是?最小的合数是?
2.在括号里填上质数:
8=()+()12=()+()28=()+()
3.数学小阅读:哥德巴赫猜想。
同学们你们知道吗,刚才你们正在尝试解决一道世界难题,做了一件很有价值的事,这个世界难题就是:是不是所有大于2的偶数,都可以写成两个质数的和呢?这个问题是德国数学家哥德巴赫最先提出的,所以被称为哥德巴赫猜想。世界各国的数学家都想攻克这一难题,但至今还未解决。我国数学家陈景润在这一领域已经取得了举世瞩目的成果。
请同学们进行数学小阅读:哥德巴赫猜想。课后,感兴趣的同学们也可以查找相关书籍或上网查阅相关资料。
【设计意图】
在适度拓展中,尝试解决“任何大于2的偶数,都可以写成两个质数的和”的哥德巴赫猜想。在数学小阅读中,让学生了解数学发展的历史,感受数学文化的魅力,同时留有空间,让学生课后探究。
活动五:总结
这节课你有哪些收获?
五年级数学下册教案6
学习内容:
课本第60—61页内容,练习十一第1—4题。
学习目标:
1.我能通过学习知道分数是怎样产生的。
2.我能在正确认识单位“1”的基础上,理解分数的意义。
学习重难点:
我能理解单位“1”及分数的意义。
课前准备:
正方形纸
学习过程:
一、导入新课
二、合作探究、检查独学
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.自学课本第60、61页内容。根据自学内容我发现:
(1)分数是如何产生的?
(2)分数的意义是什么?
(3)什么是单位“1”?
(4)议一议:分数的分母和分子与什么有关系?结合你创造的分数,说一说分数表示的是什么?
3.小组内合作交流,小组代表展示、汇报。
4.总结升华:分数的定义是:把单位“1”()若干份,表示这样的()或者()的数叫做分数。
5.我能行:完成课本第63页练习十一第1—4题。
五年级下册数学分数的意义教案14
教学内容:
教材第75~76页内容及练习与应用第1—7题。
教学目标:
1、通过回顾与整理,使学生进一步加深对分数意义的理解
2、用分数的有关知识,熟练解决求一个数是另一个数几分之几的实际问题
3、进一步理解分数的基本性质,掌握约分和通分的方法。
4、通过小组交流的形式组织学生整理知识要点,体验自己学习的收获,建立合理的认知结构。
教学重点:
熟练解决求一个数是另一个数几分之几的实际问题
教学难点:
帮助学生建立合理的认知结构。
教学方法:
讲练结合法
教学过程:
一、回顾与整理
1、这一单元你学会了什么?
学生交流。
2、小组讨论书上的三个问题。
指名汇报。约分和通分的根据是什么?
约分要约到什么为止?什么是最简分数?通分一般用什么作公分母?
二、练习与应用
1、做第1题。
下面的涂色部分可用哪些分数表示?还能说出其他分数吗?说说你是怎样想的?
2、做第2、3题。
学生独立完成。校对,说说自己的'想法。
3、做第4题。
可以用直线上同一个点表示的数,有什么特点?
你准备怎样找呢?学生完成约分,说说哪些分数相等?学生独立画点。
5、做第5题。
学生独立完成。指名汇报方法。
6、第6题
学生先独立练习
引导比较A三道题目计算方法有什么相同?
B算式中选择的除数有什么不同?
C从中还能想到些什么?
沟通求一个数是另一个数的几分之几与求一个数是另一个数的几倍的联系。
7、第7题
练习后加强对比
引导学生区别清楚:一、第一个问题是求平均每条童裤用了这块布的几分之几,需要把5米看做单位“1”,并把它平均分成6份,用分数表示其中的一份,得到的分数不注明单位名称。二、第二个问题是求平均每条童裤用布几分之几米,要把5米等分成6份,并用分数表示其中的一份,得到的结果要注明单位名称“米”。
三、课堂总结
通过今天的复习你有什么收获?
五年级数学下册教案7
教学目标:
1、通过生活事例,使学生初步了解图形的旋转变换。结合生活实际,能初步感知旋转现象,探索旋转的特征和性质。
2、通过动手操作,使学生会在方格纸上将一个简单图形旋转90°。
3、初步学会运用旋转的方法在方格纸上设计图案,发展学生的空间观念。
4、欣赏图形的旋转变换所创造出的美,培养学生的审美能力;感受旋转在生活中的应用,体会数学的价值。
重、难点:
1、理解图形旋转变换的含义。
2、探索图形旋转的特征和性质。
3、能在方格纸上将一个简单图形旋转90°。
教学准备:
多媒体课件方格纸
教学过程:
一、情景导入
同学们,你们喜欢做游戏吗?今天老师给你们带来一个魔方,再做这个游戏时,最常用到的操作时什么?(旋转)
请同学们用手示范一下怎样进行旋转?(学生用手势演示)
问:你们在做旋转手势时为什么有的向左旋转,有的向右旋转?(因为有的是顺时针旋转,有的是逆时针旋转。)
集体联系顺时针旋转90度和逆时针旋转90度。
请一人到投影前操作魔方。其他同学提示其具体的旋转方向。
师:刚才同学们在做游戏的过程中,反复提到一个词“旋转”,这节课,咱们就来共同研究“旋转”。
板书课题:旋转
二、明确概念
1、联系生活
师:生活中,你还见过哪些旋转现象呢?
生:风扇、陀螺、钟表、车轮、风车……
课件出示几种旋转现象。
师:同学们说的这几种都是旋转现象,那么旋转有怎样的特征和性质呢?我们借助最常见的钟表来进行研究吧。
2、学习例3、
(1)认识线段的旋转,理解旋转的含义。
出示钟表实物。
师:请同学们观察钟表的`指针,描述指针从“12”到“1”师怎样旋转的。(指针从“12”绕点O顺时针旋转30°到“1”)
师演示指针由“1”到“3”。
问:这次指针又是如何旋转的?(指针从“1”绕点O顺时针旋转60°到“3”)
师演示指针由“3”到“6”。
同桌互相说一说:指针从几开始?是绕哪个点旋转的?怎样旋转?旋转了多少度?
(2)明确旋转要素
旋转物体起止位置绕哪一点旋转方向旋转度数
板书:点方向度数
师:要想清楚说明旋转现象,明确以上几个要素最为重要。
三、探索图形旋转的特征和性质
1、观察风车的旋转过程。(出示课件)
请学生说一说,在风的吹动下,风车是如何旋转的。
风车绕点O逆时针旋转90°。
思考:你是怎样判断风车旋转的角度呢?
小组交流观察到的现象。
一是由图1到图2,风车绕点O逆时针旋转了90°;二是根据三角形变换的位置判断风车旋转的角度
三是根据对应的线段判断风车旋转的角度;四是根据对应的点判断风车旋转的角度。
2、小结
通过观察,我们发现风车旋转后,不仅每个三角形都绕点O逆时针旋转了90°,而且,每条线段,每个顶点,都绕点O逆时针旋转了90°、
3、概括旋转的特征和性质。
师:刚才通过观察我们发现,风车旋转后,每个三角形的位置都变了,那么什么没有变呢?(三角形的形状、大小没有变;点O的位置没有变;对应线段的长度没有变;对应线段的夹角没有变。)
四、绘制图形
1、自主画图。
我们已经了解了一个图形旋转的全过程,想不想自己试着画一画呢?
(1)出示例4方格纸。
(2)请学生看清图形。
(3)说一说你是怎样画的。
引导学生明确:对应点与点O所连线段的夹角都是90°;对应点到点O的距离都相等。
学生独立完成。
(4)作品展示,交流画法。
2、总结画法。
我们在画一个旋转图形时,首先要确定它周围的点,然后找到这个图形各个点的对应点,最后连线。
五年级数学下册教案8
教学内容:
人教版小学数学五年级下册第二单元第5第6页《因数与倍数》
教材分析:
整除概念是贯穿这部分教材的一条主线。签于学生在前面已经具备了大量的区分整除与有余数除法的知识基础,对整除的含义已经有了比较清楚的认识,不出现整除的定义并不会对学生理解其他概念产生任何影响。因此,教材中删去了“整除”的数学化定义,而是借助整除的模式a×b=c直接引出因数和倍数的概念。
学情分析:
因数和倍数是最基本的两个概念,理解了因数和倍数的含义,对于一个数的因数的个数是有限的、倍数的个数是无限的等结论自然也就掌握了,对于后面的奇数、偶数、质数、合数等概念的理解也是水到渠成。要引导学生用联系的观点去掌握这些知识,而不是机械地记忆一堆支离破碎、毫无关联的概念和结论。数论本身就是研究整数性质的一门学科,有时不太容易与具体情境结合起来,而学生到了五年级,抽象能力已经有了进一步发展,有意识地培养他们的抽象概括能力也是很有必要的,如让学生通过几个特殊的例子,自行总结出任何一个数的倍数个数都是无限的,逐步形成从特殊到一般的归纳推理能力,等等。
教学目标:
1、学生掌握找一个数的因数,倍数的方法。
2、学生能了解一个数的因数是有限的,倍数是无限的;能熟练地找一个数的因数和倍数。
3、培养学生的观察能力。
教学重点:
掌握找一个数的因数和倍数的方法。
教学难点:
能熟练地找一个数的因数和倍数。
教学准备:
多媒体课件
教学过程:
一、自主探索
1、出示书上主题图,学生列出乘法算式
2×6=12,在这里,2和6是12的因数。12是2的倍数,也是6的倍数。(教师板书因数,倍数)
2、出示书中主题图,学生列出乘法算式。
3×4=12,能试着说一说谁是谁的因数,谁是谁的倍数吗?
学生口答,巩固因数和倍数的含义?
3、两个数在什么情况下才能说是因数和倍数关系?能不能说3是因数,12是倍数?为什么?
学生发表自己的见解。
总结:因数和倍数必须是成对出现,它们是相互依存的。不能说3是因数,12是倍数。
4、你还能找出12的其他因数吗?
学生独立完成,集体订正。
总结:为了方便,在研究因数和倍数的时候,我们所说的数一般指的是整数(不包括0)。
5、小结引出课题。
师:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数和商的倍数,除数和商是被除数的因数。例如,12÷2=6,12是2和6的倍数,2和6是12的因数。(教师板书)
6、例题学习
出示例题:18的因数有哪几个?
学生独立试做,集体订正
(1)想谁和谁相乘是18?
18=1×1818=2×918=3×6
所以18的因数是1,2,3,6,9,18。
(2)列出被除数是18的除法算式
18÷1=1818÷2=918÷3=6
18÷6=318÷9=218÷18=1
分析:18最小的因数是哪一个?1还是哪些数的因数?18最大的因数是那一个
7、出示做一做:
30的因数有哪些?36呢?学生独立练习,并口述方法,由此你发现了什么?一个数最小的`因数是1,最大的因数是它本身,一个数的因数的个数是有限的。一个数的最小倍数是它本身,没有最大的倍数。
8、小结:用字母表示数的知识表述因数和倍数的关系
M÷N=PM、N、P都是非0的自然数,N和P是M的因数,M是N和P的倍数。
A×B=CA、B、C都是非0的自然数,A和B是C的因数,C是A和B的倍数。
二、巩固练习
1、(出示主题图)下面的四组中,谁是谁的因数?谁是谁的倍数?
4和2426和1375和2581和9
2、课本练习
三、总结反思:
由学生回忆本节课所学内容。
五年级数学下册教案9
教学目标
1、学生能够结合具体实物说出体积的含义。知道常用的体积单位,并且能用体积单位合理估计物体的体积的大小。
2、学生通过具体的观察比较、思考交流、感悟体验等学习活动,经历物体体积概念的形成过程,逐步建立空间观念。
3、在学习活动中,培养学生细心观察,认真分析,交流倾听,善于比较的学习习惯。
学情分析
在原来知识结构里:学生学习了线段的长度、面积的大小及相关的计量单位,学生初步建立了一维二维的空间观念。这些为学习新知奠定了基础。
体积对于小学生来说是一个全新的概念。由认识平面图形到认识立体图形,是学生空间观念的一次发展。为了更深入地了解教材的编写意图,我对北师大版、苏教版、人教版的本课内容做了比较。发现它们有一个共同特点:都是通过实验演示或操作活动,让学生在体验中理解体积的含义,构建体积单位的表象。因此,我由学生熟悉的事物入手,引导学生观察、思考、回顾、感知、操作、想象,让学生在体验中感知,在对比中学习,逐步达到对概念的认识与理解。
教学重点:
学生能够在观察思考、感知体验、操作想象等活动中建立体积概念及体积单位的表象。
教学难点:
在具体的体验活动中理解体积的含义,经历体积是1立方厘米、1立方分米、1立方米的大小的表象形成过程。
教学过程
活动1【导入】体积和体积单位
一、对比引入新知。
学生汇报:分别是线段,长方形和正方形,长方体或正方体。
教师引导:
线段有长短之分,长(正)方形和长(正)方体有大小之别。
为了表示物体的长短,我们认识了长度。
为了表示物体平面部分的大小,我们学习了面积。
如果要表示整个物体的大小,那又将产生什么呢?
这节课老师和同学们一块来学习。
【设计意图】对比引入,既能激发学生学习新知的兴趣,同时又引发学生的思考:这三者相互之间有联系吗?
活动2【活动】体积和体积单位
二、活动揭示概念。
活动一:体验书包里的空间。
提出问题:观察一下自己的书包,是不是还可以再放些东西?
学生汇报:有的已经装满,有的还可以再放些东西。
教师引导:书包没塞满说明它还有一定的空间。书包已经塞满,说明它没有了空间。它的空间被占据了。(板书:空间)
追问:书包的空间被谁占据了?
学生汇报:书占据了书包的空间,学习用具也占据了一定的空间,还有一些喜欢吃的食品,同样也可以把书包的`空间占据了。
追问:这说明什么?
学生汇报:任何物体都会占据一定的空间的。(板书:物体占空间)
教师进一步引导:大家可以举例说一说生活中物体占有空间的现象。
学生交流:我们占据教室的空间教室占据学校的空间学校占据小区的空间……
【设计意图】学生身边引入,通过引导观察和思考,让学生体验书包里有“空间”。并随之拓展,将空间这一概念形象化,具体化,丰富学生的空间表象。
活动二:观察演示实验。
1、盛水的杯子装入石头,水面升高。
2、装满沙的杯子倒出沙子,放入石块,结果沙子不能全部被装入。
3、与第一个实验相比,盛水的杯子装入一块较大石头,水面升高的幅度较大。
提出问题:你能解释实验现象吗?
学生交流:水面升高,是因为石头把水的空间占据了。
沙子不能被装入,是因为石头占据了沙子的空间。
石头较大,占据的空间就较大,水就升的高。
教师归纳:物体要占据空间,并且所占的空间大小是不一样的。(补充板书:物体所占空间的大小)
教师引导:粉笔盒与电脑桌比,粉笔盒占据的空间小,电脑桌占据的空间大……为了更加简洁地表示物体所占空间的大小,我们引入了“体积”(板书)
引导学生叙述:书包的体积是书包所占空间的大小,电脑的体积是指……教室的体积是指……
引导概念:物体的体积是表示物体所占空间的大小。
【设计意图】为了进步加深学生对“空间”的理解,以及对概念的完善,继续通过演示实验,帮助学生直观感受物体所占空间的大小,步步相扣,层层推理,逐步引出物体的体积概念,较好地处理好了体积概念的抽象。
三、多角度认识单位
1、认识单位产生的必要性。
物体所占空间有大有小,所占空间大就是体积大,所占空间小,就是体积小。
下面的电冰箱、小水杯和篮球,哪个体积大?哪个体积小?
学生交流:电冰箱体积最大小水杯的体积最小。
问题引导:上面的物体,体积大小非常直观,若是像这样的两个物体,你能一子比较出它们体积的大小吗?
学生建议将它们分成若干个大小相同的小立方体。教师课件演示。
结论:要想比较它们的大小,必须要有统一的体积单位。
2、对比加深记忆。
同学们打开课本第39面,自学书上内容,看看常见的体积单位有哪些?书上是怎样描述的。
学生汇报:棱长是1厘米的正方体,体积是1立方厘米
棱长是1分米的正方体,体积是1立方分米
棱长是1米的正方体,体积是1立方米
填写表格:通过比较,使学生能够感受单位的共同结构与特征。从而加深记忆。
意义
常用单位
简写符号
长度
面积
体积
3、建立单位表象。
教师出示准备好的1立方厘米和1立方分米的正方体模型和其它实物。
辨认:让学生找出1立方厘米的正方体,并说说身边哪些物体的体积大约是1立方厘米。
举例:一个手指尖的大小、一个筛子的大小、一个键盘字母按键的大小等。动手摸一摸,亲自学生感受1立方厘米实际大小。
操作:用12个1立方厘米的正方体摆成一个长方体,有几种摆法?
想象:棱长是1厘米的正方体,体积是1立方厘米。2个这样正方体,体积是2立方厘米,10个呢?100个呢?1000个呢?那么1000立方厘米又有多大呢?
②找出1立方分米的正方体,说说身边哪些物体的体积大约是1立方分米。
感受1立方分米实际大小或几立方分米。
认识1立方米
先让学生比划。看看教室里面那些物体的体积接近1立方米。
学生体验:三把米尺借助教室的一个墙角共同来做一个1立方米的空间。1立方米的空间到底有多大,老师想让几个同学站到我们做的这个1立方米的空间里去,看一看可以站多少同学?”
教师可进一步举例:一个橱柜的大小,一个电脑柜的大小约是1立方米。
1立方米的水可以装满500个暖瓶。
【设计意图】学生对一个新的概念的接受和形成需要不断地体验和强化,本环节学生通过观察、比较、感知、操作、想象等活动逐步建立单位的表象,较好地渗透了单位化的思想。
活动3【练习】体积和体积单位
四、巩固运用提升。
1、结合具体实物说一说体积的含义。
电脑的体积是指电脑所占空间的大小。
2、在下面括号里填上适当的单位。
五年级数学下册教案10
【教学内容】
教材第20页内容。
【教学目标】
1.通过观察、操作,认识正方体的特征,形成正方体的概念。
2.通过观察、比较,明确长方体和正方体的相同点与不同点。
3.经历正方体的认识过程,初步学会用数学的眼光观察现实物体。
4.体验数学知识与实际生活的密切联系,培养学生的空间观念,渗透学习目的性的教育。
【教学重点】
掌握正方体的特征,理解长方体和正方体之间的关系。
【教学难点】
理解长方体和正方体之间的关系。
一、情境导入
1.回忆长方体的特征,请学生用语言进行描述。
2.操作:同桌交流,分别说出长方体的棱在哪儿?几条棱可以分别分成几组?相交于同一个顶点的三条棱叫做什么?
师:今天这节课,我们继续学习一种特殊的立体图形。(板书课题:正方体)
二、探究新知
1.观察正方体模型,组织学生展开交流,讨论。
师:正方体具有哪些特征呢?长方体和正方体有什么关系呢?
2.小组汇报学习结果。
组1:我们组发现正方体所有的面完全相同;长方体相对的面完全相同。而且正方体12条棱的长度都相等;长方体相对的4条棱的长度相等。
组2:我们组还要补充很重要的一点,正方体的长、宽、高都相等,长方体的长、宽、高不会出现都相等的情况。
师:长方体和正方体有什么关系呢?
组3:我们组发现正方体和长方体都有6个面、12条棱和8个顶点。
组4:我们组发现正方体相对的面也完全相同,正方体相对的4条棱长度也相等。因此,我们组认为:正方体也是长方体,只不过它是特殊的长方体。
3.小结。
(1)师:同学们的研讨交流非常好,的确像同学们所发现的,正方体完全符合长方体的特征,它是一种长宽、高都相等的特殊的长方体。谁能完整地概括一下正方体的特征呢?
生1:正方体有6个面、12条棱、8个顶点。
生2:正方体有6个面,每个面都是正方形且完全相同,有12条棱且长度都相等,有8个顶点。
(2)师:正如同学们所说,正方体是由6个完全相同的正方形围成的立体图形,它是一种长、宽、高都相等的.长方体。那么正方体和长方体之间有哪些相同点和不同点呢?
生1:它们都有6个面、12条棱、8个顶点。
生2:正方体的棱长度都相等,长方体相对的棱长度相等。
三、巩固练习
1.教材第20页“做一做”。
2.教材第21~22页练习五第4、5、8、9题。
四、课堂小结
想一想,我们这节课都研究了什么?是用什么方法研究的?你学到了什么?
【板书设计】
正方体
6个面12条棱8个顶点
6个面都是正方形,6个面完全相同
12条棱长度相等
正方体是特殊的长方体。
【教后思考】
正方体特征的研究是以长方体特征的研究为基础的,在教学中把两者联系起来,通过长方体特征的研究方法的迁移,使学生自主进行正方体特征的研究,学生运用实物、抽象的几何图形,在小组合作学习中,通过动手操作、观察比较,认识了正方体的特征,并明确了长方体和正方体的关系,发展了空间观念,也使学生获得了探究知识成功的体验,增强了学习的信心,这是这节课做得较好的地方。
五年级数学下册教案11
一、教学内容:
人教版义务教育课程标准实验教科书小学数学五年级下册教材第61~62页,练习十一部分练习。
二、教材分析:
“分数的意义”一课是人教版新教材五年级下册的内容,是对小学生数概念的一次重要扩展。与旧教材相比,新教材在单位“1”这个概念的理解上进行了微调,将原先的“一个物体、一个计量单位,几个物体组成的一个整体都可以看作单位“1”这项内容调整为比较符合认知习惯的“一个物体、一些物体都可以看作一个整体,通常用单位‘1’表示”。
三、教学目标:
1、使学生在初步认识分数的基础上,理解分数的意义,掌握分子、分母和分数单位的含义。
2、通过分数的学习,培养学生动手操作,观察、思考、抽象概括的能力。
3、使学生体会到分数就在我们身边,运用分数可以解决生活中的实际问题,从而增强学生学习数学的兴趣。
四、教学重点:理解分数的意义
教学难点:认识单位“1”和概括分数的意义
五、学情分析:
学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数,知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数及同分母分数的大小,会加减简单的同分母分数。通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,让学生经历整个概念的形成过程,帮助他们从中获得感悟,促使其主动参与建构。
六、设计理念:
本课的教学设计主要以构建主义基本理念为依托,注重学生的认知规律,关注学生的生活经验,让学生在做数学中体验分数的价值,激发学习的兴趣,培养良好的'数感。 《数学课程标准》指出:“让学生在观察、操作、猜测、交流、反思等活动中逐步体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时掌握必要的基础知识与基本技能。”为了比较完整的建立起分数的概念,利用孩子们在三年级对分数的初步认识已有的知识为基础,提供平台让学生举例说明分数的含义,让学生在合作、探究中主动获取知识,找到把许多物体组成的一个整体平均分与把一个物体平均分之间的内在联系,抽象概括出分数的意义,并强调了单位“1”的概念,揭示了分数表示部分与整体的关系。教学过程中师生、生生之间的自我评价与相互评价,增强了学生的自信心和责任感,促进师生的共同发展。
五年级数学下册教案12
教学目标:
1、通过具体情境和实际操作,培养学生综合运用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。
2、培养学生观察、思考以及与同伴交流的良好习惯。
教学重点:
会用小块方砖铺满某个平面。
教学难点:
计算铺满某个平面需要多少块方砖,多少钱。
教学过程:
一、创设情境
同学们,小明家买了一套新房。近期,家里要装修了。妈妈让小明设计自己的卧室怎样铺地砖。今天就请同学们来帮小明出出主意,和小明一起来研究一下铺地砖中的数学问题。(板书课题)
二、自主探究,合作交流。
(一)算卧室面积
1、买地砖之前要了解哪些相关知识?
2、小明卧室地面的长和宽分别是4m和3m,你们能帮他算算他的卧室有多大吗?
(二)分小组讨论,并填写表格
所需地砖的数量,所需钱数
40厘米×40厘米
30厘米×30厘米
(三)汇报交流方法
1、学生汇报交流
2、得出结论
3、算一算
小明爸爸、妈妈的.房间面积约为18平方米,用边长为40厘米的正方形地砖铺地面,至少需要多少块这样的地砖?需要多少钱?你能帮小明算算吗?
学生独立完成,指名学生上黑板板演。
三、巩固新知,练习反馈。
四、全课总结
五年级数学下册教案13
设计说明
本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:
1、把新知融入到有趣的情境中,激发学生的学习兴趣。
在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。
2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。
在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。
设计意图:
在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。
课前准备
教师准备PPT课件长方形纸
教学过程
(1)复习巩固,情境导入,激发兴趣
1、求下面每组数的公因数。
42和50 15和5 8和21 18和12
2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。
(2)认识约分
1、尝试“变分数”。
课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。
让学生了解“变化”的要求:
①这个分数要与的大小相等。
②这个分数的分子、分母要比的分子、分母小。
2、了解约分的'概念。
①所变出的分数与原分数有什么关系?
②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。
③请学生说一说所变的分数是怎样得来的。
观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。
3、认识最简分数。
①约分后的分子、分母能否再变小了?为什么?
②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。
4、说出几个最简分数,强化最简分数的概念。
(3)合作交流,总结方法
1、讨论:你能根据我们化简的过程找到约分的方法吗?
2、小结。
教师板书约分时一般采用的两种方法:
①逐步约分法。
如约分时,依次用12,18的公因数2和3去除,最后约分成。
②一次约分法。
如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。
3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。
五年级数学下册教案14
一、教学目标和要求。
1、经历折叠和展开的过程,体会立体图形和它的平面展开图的关系,发展空间观念。
2、能正确判断平面展开图所对应的简单立体图形。
二、教学重点。
判断平面展开图所对应的`简单立体图形。
三、教学难点。
判断平面展开图所对应的简单立体图形。
四、教学时数。
2课时。
五、教学过程。
(一)想一想。
出示教科书第38页的图形,并让学生准备这样的图形。按虚线折叠成一个封闭的立体图形,它的形状像什么?(学生小组交流讨论,合作,教师引导学生先想象这个平面展开图折叠以后像什么。)
(二)画一画。
动手操作,将附页3图1剪下,按虚线折叠后,形状是一座小房子。
(三)做一做。
1、通过折叠后的小房子来确定天窗和门的位置,然后在平面图上画出来。
天窗可以在平面图中上数第二个或第三个长方形内,门可以在第一个或第四个长方形内,也可以在两边的五边形内。
2、根据学生的实际情况,把这个问题进行拓展,首先将附页3图1中的各个图形标上号码,长方形从上到下依次为1,2,3,4,5,左边的五边形为6号图形,右边的为7号图形。然后,提出挑战性的问题:
(1)与图形6相对的声纳个图形?
(2)和图形1相对的是哪个图形?借助想象活动,发展学生的空间观念。
(四)练一练。
1、第39页第1题。
引导学生进行想象,作出最初的判断,然后通过动手操作,讨论并交流,得出结论。
2、第39页第2题。
进一步让学生体会立体图形和它的平面展开图之间的对应关系,有多余信息。学生独立完成本题,教师允许学习有困难的学生通过动手操作解决问题。
五年级数学下册教案15
教学内容:
五年级下册教科书第65—66页。
教学目标:
1、在具体的问题情境中,探究和理解分数与除法的关系,并能正确地用分数表示两个整数相除的商,会用两种方法叙述分数的意义。
2、在探究过程中,培养学生观察、比较、归纳等探究的能力。
3、体会知识来源于实际生活的需要,激发学习数学的积极性。
教学重点:
经历探究过程,理解和掌握分数与除法的关系。
教学难点:
通过操作,让学生理解一个分数可以表示的两种意义。
教材分析:
《分数与除法》是人教版小学数学五年级下册第四单元《分数》第二课时的教学内容。是在对分数意义有初步认知基础上的深入理解。在这节数学课中,不仅要让学生掌握分数与除法之间直观的位置关系,还要从分数意义中理解分数与除法的联系。所以在本课的的设计中,以分数意义的辨析贯穿始终。因为分数的意义,本身就是除法的界定,这才是分数与除法最根本的联系。
本节教学内容重视引导学生在观察比较中发现分数与除法的关系,探究整数除法得不到整数商的情况时,可以用分数表示;在表示整数除法的商时,用除数作分母,用被除数做分子。教材从“分蛋糕”的实际情境引入,引导学生列出除法算式,并结合分数的意义得出结果,然后引导学生比较几个算式,探索发现分数与除法的关系。根据分数与除法的关系,让学生用分数表示两数相除的商或把分数写成两数相除的形式。
教具学具:
课件,模型。
教学设计
一、导入
师:孩子们,上课之前先考验下大家,(出示课件)这个谜底是什么?
生:月饼。
师:你们的课外知识真丰富,你们喜欢吃月饼吗?
生:喜欢。
师:老师也喜欢。在月饼中也含有许多数学知识,我们一起来看看吧(出示课件),把6块月饼平均分给3个小朋友,每人分得多少块?怎样列式计算?
生:2块,6÷3=2(块)。(板书)
师:说得真棒,要是声音再大些就更好了,我们再来看下一个问题,把1块月饼平均分给2个小朋友,每人分几块?怎样列式计算?
生:0、5块,1÷2=0、5(块)。(板书)
师:表达得特别清楚,让大家一听就懂。老师就继续考验大家,如果把1块月饼平均分给3个小朋友,每人分几块?怎样列式计算?
师:你为你们组又增添了一份光彩。看来大家已经能够解决分月饼的问题了,不用学具直接说出5除于7等于多少?
生:七分之五。
师:非常正确。我们再来看这些算式,整数除法得不到整数商的时侯,可以用什么数表示商?
生:可以用分数表示。
师:在表示整数除法的商时,用谁作分母?用谁做分子?
生:用被除数作分子,除数作分母。
师:那么分数与除法有什么样的关系呢?谁能用语言概括下?
生:被除数除以除数等于除数分之被除数。
师:你表达得这么清晰流畅,了不起!
师总结:可以用分数表示整数除法的商,用除数作为分母,被除数作为分子,除号相当于分数中的分数线。反过来,一个分数也可以看作两个数相除,分数的分子相当于除法中的被除数,分母相当于除数,分数线相当于除号。所以,分数与除数的关系我们可以用式子来表示为:被除数÷除数=被除数/除数(板书)。用字母表示是?
生:a÷b= a/b(b≠0)(板书)
师:这个关系式里每个数的范围要注意什么?
生:因为在除法里除数不能是零,所以分数的分母也不能是零。即b≠0。
师:想一想分数与除法有哪些联系和区别?
教师强调:分数是一种数,但也可以看作两个数相除(分数的分子相当于除法中的被除数,分母相当于除数)。除法是一种运算。
师:今后我们再看分数时,会有两种意义。(把“1”平均分成4份,表示这样3份的数,也可以是把“3”平均分成4份,表示这样1份的数。)
二、巩固练习
师:你们知道阿凡提吗?你有他聪明吗?敢不敢挑战他?我们来闯关,大家有信心吗?
1、1、用分数表示下面各式的商。
(1)3÷2 =()
(2)2÷9 =()
(3)7÷8 =()
(4)5÷12 =()
(5)31÷5 =()
(6)m÷n =()n≠0
2、把5千克糖平均分成7份,每份是( )千克;把1千克糖平均分成7份,5份是( )千克;也就是说5千克糖的( )和1千克糖
的( )是相等的
三、课堂小结
说说你的`收获是什么?重点说说分数与除法的关系。
结束语:今天我们通过自己的努力,发现并学会了这么多知识,老师真为你们骄傲!其实生活中有更多的知识等着我们去发现、探索,快做个有新人吧,你会成长得更快!
四、作业布置
练习十二第1,3题。
板书设计
分数与除法
被除数÷除数=被除数/除数
a÷b= a/b(b≠0)
教学反思
这节课在引入课题之前,先利用谜语激发学生兴趣,引进分数,复习旧知。在探索新知时,从想象中每人2个饼,到一张饼,把一张饼平均分给4个人,每人能得到几块?有了刚才的复习知识进行铺垫、迁移,很容易能用算式1÷4来计算,学生很快会说出1/4,这时我会再提问:为什么是1/4?你是怎么分得?学生用准备的圆片分一分;接着出示:学生一步步经历了分得过程,对分数的意义就理解得更好了,也就明白了为什么是3/4。当用分数表示整数除法的商时,用除数作分母,用被除数作分子。反过来,一个分数也可以看作两个数相除。可以理解为把“1”平均分成4份,表示这样的3份;也可以理解为把“3”平均分成4份,表示这样的1份。也就是说,分数与除法之间的关系的理解、建立过程,实质上是与分数的意义的拓展同步的。教学之后,再来反思自己的教学,发现就小学阶段的数学知识存储于学生脑海里的状态而言,除了抽象性的之外,应当是抽象与具体可以转换的数学知识。
【五年级数学下册教案】相关文章:
数学五年级下册教案10-22
五年级下册数学的教案03-12
五年级数学下册教案05-24
数学五年级下册人教版教案01-12
五年级数学下册教案02-10
小学数学下册教案11-15
小学数学下册教案12-27
五年级下册数学教案12-03
五年级数学下册教案旋转02-17
五年级下册人教版数学教案01-12